
Package ‘miaSim’
April 22, 2025

Type Package

Version 1.14.0

Title Microbiome Data Simulation

Description Microbiome time series simulation with generalized Lotka-Volterra model,
Self-Organized Instability (SOI), and other models. Hubbell's Neutral model
is used to determine the abundance matrix. The resulting abundance matrix
is applied to (Tree)SummarizedExperiment objects.

License Artistic-2.0 | file LICENSE

biocViews Microbiome, Software, Sequencing, DNASeq, ATACSeq, Coverage,
Network

Encoding UTF-8

RoxygenNote 7.2.3

Depends TreeSummarizedExperiment

Imports SummarizedExperiment, deSolve, stats, poweRlaw,
MatrixGenerics, S4Vectors

Suggests ape, cluster, foreach, doParallel, dplyr, GGally, ggplot2,
igraph, network, reshape2, sna, vegan, rmarkdown, knitr,
BiocStyle, testthat, mia, miaViz, colourvalues, philentropy

URL https://github.com/microbiome/miaSim

BugReports https://github.com/microbiome/miaSim/issues

Roxygen list(markdown = TRUE)

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/miaSim

git_branch RELEASE_3_21

git_last_commit da3162c

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-04-21

1

https://github.com/microbiome/miaSim
https://github.com/microbiome/miaSim/issues

2 .applyInterType

Author Yagmur Simsek [cre, aut],
Karoline Faust [aut],
Yu Gao [aut],
Emma Gheysen [aut],
Daniel Rios Garza [aut],
Tuomas Borman [aut] (ORCID: <https://orcid.org/0000-0002-8563-8884>),
Leo Lahti [aut] (ORCID: <https://orcid.org/0000-0001-5537-637X>)

Maintainer Yagmur Simsek <yagmur.simsek.98@gmail.com>

Contents

.applyInterType . 2

.estimateAFromSimulations . 3

.eventTimes . 4

.getInteractions . 5

.isPosInt . 5

.rdirichlet . 6

.replaceByZero . 6

.simulationTimes . 7
powerlawA . 7
randomA . 8
randomE . 11
simulateConsumerResource . 13
simulateGLV . 17
simulateHubbell . 20
simulateHubbellRates . 21
simulateRicker . 23
simulateSOI . 24
simulateStochasticLogistic . 26

Index 30

.applyInterType Generate pairs of interactions according to interaction types

Description

A helper function to be used in combination with .getInteractions()

Usage

.applyInterType(I, pair, interType)

https://orcid.org/0000-0002-8563-8884
https://orcid.org/0000-0001-5537-637X

.estimateAFromSimulations 3

Arguments

I Matrix: defining the interaction between each pair of species

pair Numeric: a vector with a length of 2, indicating the 2 focusing species in the
process of applying the interaction types

interType Character: one of ’mutualism’, ’commensalism’, ’parasitism’, ’amensalism’, or
’competition’. Defining the interaction type

Value

A matrix of interaction types with one pair changed

.estimateAFromSimulations

Get the interspecies interaction matrix A using leave-one-out method

Description

generate matrix A from the comparisons between simulations with one absent species and a simu-
lation with complete species (leave-one-out)

Usage

.estimateAFromSimulations(
simulations,
simulations2,
n_instances = 1,
t_end = NULL,
scale_off_diagonal = 0.1,
diagonal = -0.5,
connectance = 0.2

)

Arguments

simulations A list of simulation(s) with complete species

simulations2 A list of simulation(s), each with one absent species

n_instances Integer: number of instances to generate (default: n_instances = 1)

t_end Numeric: end time of the simulation. If not identical with t_end in params_list,
then it will overwrite t_end in each simulation (default: t_end = 1000)

scale_off_diagonal

Numeric: scale of the off-diagonal elements compared to the diagonal. Same to
the parameter in function randomA. (default: scale_off_diagonal = 0.1)

diagonal Values defining the strength of self-interactions. Input can be a number (will be
applied to all species) or a vector of length n_species. Positive self-interaction
values lead to exponential growth. Same to the parameter in function randomA.
(default: diagonal = -0.5)

4 .eventTimes

connectance Numeric frequency of inter-species interactions. i.e. proportion of non-zero off-
diagonal terms. Should be in the interval 0 <= connectance <= 1. Same to the
parameter in function randomA. (default: connectance = 0.2)

Value

a matrix A with dimensions (n_species x n_species) where n_species equals to the number of ele-
ments in simulations2

.eventTimes generate a vector of times when events is happening

Description

generate a vector of times when events is happening

Usage

.eventTimes(t_events = NULL, t_duration = NULL, t_end = 1000, ...)

Arguments

t_events, t_duration
Numeric: vector of starting time and duration of the events

t_end Numeric: end time of the simulation

... : additional parameters to pass to simulationTimes, including t_start, t_step, and
t_store.

Value

A vector of time points in the simulation

Examples

tEvent <- .eventTimes(
t_events = c(10, 50, 100),
t_duration = c(1, 2, 3),
t_end = 100,
t_store = 100,
t_step = 1

)

.getInteractions 5

.getInteractions Generate interactions according to five types of interactions and their
weights

Description

Generate interactions according to five types of interactions and their weights

Usage

.getInteractions(n_species, weights, connectance)

Arguments

n_species Integer: defining the dimension of matrix of interaction

weights Numeric: defining the weights of mutualism, commensalism, parasitism, amen-
salism, and competition in all interspecies interactions.

connectance Numeric: defining the density of the interaction network. Ranging from 0 to 1

Value

A matrix of interactions with all interactions changed according to the weights and connectance.

.isPosInt check whether a number is a positive integer

Description

check whether a number is a positive integer

Usage

.isPosInt(x, tol = .Machine$double.eps^0.5)

Arguments

x Numeric number to test

tol Numeric tolerance of detection

Value

A logical value: whether the number is a positive integer.

6 .replaceByZero

.rdirichlet Generate dirichlet random deviates

Description

Generate dirichlet random deviates

Usage

.rdirichlet(n, alpha)

Arguments

n Number of random vectors to generate.

alpha Vector containing shape parameters.

Value

a vector containing the Dirichlet density

Examples

dirichletExample <- .rdirichlet(1, c(1, 2, 3))

.replaceByZero Replace one element with zero in a list.

Description

If the list contains m elements, then lengths of each element must be m, too. This function is
intended to generate a list of x0 (the initial community) with one missing species, to prepare the
parameter simulations_compare in estimateAFromSimulations.

Usage

.replaceByZero(input_list)

Arguments

input_list A list containing m elements, and lengths of each element must be m, too.

Value

A list of same dimension as input_list, but with 0 at specific positions in the elements of the list.

.simulationTimes 7

.simulationTimes Generate simulation times and the indices of time points to return in
simulation functions.

Description

Generate simulation times and the indices of time points to return in simulation functions.

Usage

.simulationTimes(t_start = 0, t_end = 1000, t_step = 0.1, t_store = 1000)

Arguments

t_start Numeric scalar indicating the initial time of the simulation. (default: t_start =
0)

t_end Numeric scalar indicating the final time of the simulation (default: t_end =
1000)

t_step Numeric scalar indicating the interval between simulation steps (default: t_step
= 0.1)

t_store Integer scalar indicating the number of evenly distributed time points to keep
(default: t_store = 100)

Value

lists containing simulation times (t_sys) and the indices to keep.

Examples

Time <- .simulationTimes(
t_start = 0, t_end = 100, t_step = 0.5,
t_store = 100

)
DefaultTime <- .simulationTimes(t_end = 1000)

powerlawA Interaction matrix with Power-Law network adjacency matrix

Description

N is the an Interspecific Interaction matrix with values drawn from a normal distribution H the
interaction strength heterogeneity drawn from a power-law distribution with the parameter alpha,
and G the adjacency matrix of with out-degree that reflects the heterogeneity of the powerlaw. A
scaling factor s may be used to constrain the values of the interaction matrix to be within a desired
range. Diagonal elements of A are defined by the parameter d.

8 randomA

Usage

powerlawA(n_species, alpha = 3, stdev = 1, s = 0.1, d = -1, symmetric = FALSE)

Arguments

n_species integer number of species

alpha numeric power-law distribution parameter. Should be > 1. (default: alpha =
3.0) Larger values will give lower interaction strength heterogeneity, whereas
values closer to 1 give strong heterogeneity in interaction strengths between the
species. In other words, values of alpha close to 1 will give Strongly Interacting
Species (SIS).

stdev numeric standard deviation parameter of the normal distribution with mean 0
from which the elements of the nominal interspecific interaction matrix N are
drawn. (default: stdev = 1)

s numeric scaling parameter with which the final global interaction matrix A is
multiplied. (default: s = 0.1)

d numeric diagonal values, indicating self-interactions (use negative values for
stability). (default: s = 1.0)

symmetric logical scalar returning a symmetric interaction matrix (default: symmetric=FALSE)

Value

The interaction matrix A with dimensions (n_species x n_species)

References

Gibson TE, Bashan A, Cao HT, Weiss ST, Liu YY (2016) On the Origins and Control of Community
Types in the Human Microbiome. PLOS Computational Biology 12(2): e1004688. https://doi.org/10.1371/journal.pcbi.1004688

Examples

Low interaction heterogeneity
A_low <- powerlawA(n_species = 10, alpha = 3)
Strong interaction heterogeneity
A_strong <- powerlawA(n_species = 10, alpha = 1.01)

randomA Generate random interaction matrix for GLV model

Description

Generates a random interaction matrix for Generalized Lotka-Volterra (GLV) model.

randomA 9

Usage

randomA(
n_species,
names_species = NULL,
diagonal = -0.5,
connectance = 0.2,
scale_off_diagonal = 0.1,
mutualism = 1,
commensalism = 1,
parasitism = 1,
amensalism = 1,
competition = 1,
interactions = NULL,
symmetric = FALSE,
list_A = NULL

)

Arguments

n_species Integer: number of species

names_species Character: names of species. If NULL, paste0("sp", seq_len(n_species))
is used. (default: names_species = NULL)

diagonal Values defining the strength of self-interactions. Input can be a number (will be
applied to all species) or a vector of length n_species. Positive self-interaction
values lead to exponential growth. (default: diagonal = -0.5)

connectance Numeric frequency of inter-species interactions. i.e. proportion of non-zero
off-diagonal terms. Should be in the interval 0 <= connectance <= 1. (default:
connectance = 0.2)

scale_off_diagonal

Numeric: scale of the off-diagonal elements compared to the diagonal. (default:
scale_off_diagonal = 0.1)

mutualism Numeric: relative proportion of interactions terms consistent with mutualism
(positive <-> positive) (default: mutualism = 1)

commensalism Numeric: relative proportion of interactions terms consistent with commensal-
ism (positive <-> neutral) (default: commensalism = 1)

parasitism Numeric: relative proportion of interactions terms consistent with parasitism
(positive <-> negative) (default: parasitism = 1)

amensalism Numeric: relative proportion of interactions terms consistent with amensalism
(neutral <-> negative) (default: amensalism = 1)

competition Numeric: relative proportion of interactions terms consistent with competition
(negative <-> negative) (default: competition = 1)

interactions Numeric: values of the n_species^2 pairwise interaction strengths. Diagonal
terms will be replaced by the ’diagonal’ parameter If NULL, interactions are
drawn from runif(n_species^2, min=0, max=abs(diagonal)). Negative val-
ues are first converted to positive then the signs are defined by the relative

10 randomA

weights of the biological interactions (i.e. mutualism, commensalism, para-
sitism, amensalism, competition) (default: interactions = NULL)

symmetric Logical: whether the strength of mutualistic and competitive interactions are
symmetric. This is implemented by overwrite a half of the matrix, so the propor-
tions of interactions might deviate from expectations. (default: symmetric=FALSE)

list_A List: a list of matrices generated by randomA. Used to support different groups
of interactions. If NULL (by default), no group is considered. Otherwise the
given list of matrices will overwrite values around the diagonal. (default: list_A
= NULL)

Value

randomA returns a matrix A with dimensions (n_species x n_species)

Examples

dense_A <- randomA(
n_species = 10,
scale_off_diagonal = 1,
diagonal = -1.0,
connectance = 0.9

)

sparse_A <- randomA(
n_species = 10,
diagonal = -1.0,
connectance = 0.09

)

user_interactions <- rbeta(n = 10^2, .5, .5)
user_A <- randomA(n_species = 10, interactions = user_interactions)

competitive_A <- randomA(
n_species = 10,
mutualism = 0,
commensalism = 0,
parasitism = 0,
amensalism = 0,
competition = 1,
connectance = 1,
scale_off_diagonal = 1

)

parasitism_A <- randomA(
n_species = 10,
mutualism = 0,
commensalism = 0,
parasitism = 1,
amensalism = 0,
competition = 0,
connectance = 1,

randomE 11

scale_off_diagonal = 1,
symmetric = TRUE

)

list_A <- list(dense_A, sparse_A, competitive_A, parasitism_A)
groupA <- randomA(n_species = 40, list_A = list_A)

randomE Generate random efficiency matrix

Description

Generate random efficiency matrix for consumer resource model from Dirichlet distribution, where
positive efficiencies indicate the consumption of resources, whilst negatives indicate that the species
would produce the resource.

Usage

randomE(
n_species,
n_resources,
names_species = NULL,
names_resources = NULL,
mean_consumption = n_resources/4,
mean_production = n_resources/6,
maintenance = 0.5,
trophic_levels = NULL,
trophic_preferences = NULL,
exact = FALSE

)

Arguments

n_species Integer: number of species

n_resources Integer: number of resources

names_species Character: names of species. If NULL, paste0("sp", seq_len(n_species))
is used. (default: names_species = NULL)

names_resources

Character: names of resources. If NULL, paste0("res", seq_len(n_resources))
is used.

mean_consumption

Numeric: mean number of resources consumed by each species drawn from a
poisson distribution (default: mean_consumption = n_resources/4)

mean_production

Numeric: mean number of resources produced by each species drawn from a
poisson distribution (default: mean_production = n_resources/6)

12 randomE

maintenance Numeric: proportion of resources that cannot be converted into products be-
tween 0~1 the proportion of resources used to maintain the living of microor-
ganisms. 0 means all the resources will be used for the reproduction of microor-
ganisms, and 1 means all the resources would be used to maintain the living of
organisms and no resources would be left for their growth(reproduction). (de-
fault: maintenance = 0.5)

trophic_levels Integer: number of species in microbial trophic levels. If NULL, by default,
microbial trophic levels would not be considered. (default: trophic_levels =
NULL)

trophic_preferences

List: preferred resources and productions of each trophic level. Positive values
indicate the consumption of resources, whilst negatives indicate that the species
would produce the resource.

exact Logical: whether to set the number of consumption/production to be exact as
mean_consumption/mean_production or to set them using a Poisson distribu-
tion. (default: exact = FALSE) If length(trophic_preferences) is smaller
than length(trophic_levels), then NULL values would be appended to lower
trophic levels. If NULL, by default, the consumption preference will be defined
randomly. (default: trophic_preferences = NULL)

Value

randomE returns a matrix E with dimensions (n_species x n_resources), and each row represents a
species.

Examples

example with minimum parameters
ExampleEfficiencyMatrix <- randomE(n_species = 5, n_resources = 12)

examples with specific parameters
ExampleEfficiencyMatrix <- randomE(

n_species = 3, n_resources = 6,
names_species = letters[1:3],
names_resources = paste0("res", LETTERS[1:6]),
mean_consumption = 3, mean_production = 1

)
ExampleEfficiencyMatrix <- randomE(

n_species = 3, n_resources = 6,
maintenance = 0.4

)
ExampleEfficiencyMatrix <- randomE(

n_species = 3, n_resources = 6,
mean_consumption = 3, mean_production = 1, maintenance = 0.4

)

examples with microbial trophic levels
ExampleEfficiencyMatrix <- randomE(

n_species = 10, n_resources = 15,
trophic_levels = c(6, 3, 1),

simulateConsumerResource 13

trophic_preferences = list(
c(rep(1, 5), rep(-1, 5), rep(0, 5)),
c(rep(0, 5), rep(1, 5), rep(-1, 5)),
c(rep(0, 10), rep(1, 5))

)
)
ExampleEfficiencyMatrix <- randomE(

n_species = 10, n_resources = 15,
trophic_levels = c(6, 3, 1),
trophic_preferences = list(c(rep(1, 5), rep(-1, 5), rep(0, 5)), NULL, NULL)

)
ExampleEfficiencyMatrix <- randomE(

n_species = 10, n_resources = 15,
trophic_levels = c(6, 3, 1)

)

simulateConsumerResource

Consumer-resource model simulation

Description

Simulates time series with the consumer-resource model.

Usage

simulateConsumerResource(
n_species,
n_resources,
names_species = NULL,
names_resources = NULL,
E = NULL,
x0 = NULL,
resources = NULL,
resources_dilution = NULL,
growth_rates = NULL,
monod_constant = NULL,
sigma_drift = 0.001,
sigma_epoch = 0.1,
sigma_external = 0.3,
sigma_migration = 0.01,
epoch_p = 0.001,
t_external_events = NULL,
t_external_durations = NULL,
stochastic = FALSE,
migration_p = 0.01,
metacommunity_probability = NULL,

14 simulateConsumerResource

error_variance = 0,
norm = FALSE,
t_end = 1000,
trophic_priority = NULL,
inflow_rate = 0,
outflow_rate = 0,
volume = 1000,
...

)

Arguments

n_species Integer: number of species
n_resources Integer: number of resources
names_species Character: names of species. If NULL, paste0("sp", seq_len(n_species))

is used. (default: names_species = NULL)
names_resources

Character: names of resources. If NULL, paste0("res", seq_len(n_resources))
is used.

E matrix: matrix of efficiency. A matrix defining the efficiency of resource-to-
biomass conversion (positive values) and the relative conversion of metabolic
by-products (negative values). If NULL, randomE(n_species, n_resources)
is used. (default: E = NULL)

x0 Numeric: initial abundances of simulated species. If NULL, runif(n = n_species,
min = 0.1, max = 10) is used. (default: x0 = NULL)

resources Numeric: initial concentrations of resources. If NULL, runif(n = n_resources,
min = 1, max = 100) is used. (default: resources = NULL)

resources_dilution

Numeric: concentrations of resources in the continuous inflow (applicable when
inflow_rate > 0). If NULL, resources is used. (default: resources_dilution
= NULL)

growth_rates Numeric: vector of maximum growth rates(mu) of species. If NULL, rep(1,
n_species) is used. (default: growth_rates = NULL)

monod_constant matrix: the constant of additive monod growth of n_species consuming n_resources.
If NULL, matrix(rgamma(n = n_species*n_resources, shape = 50*max(resources),
rate = 1), nrow = n_species) is used. (default: monod_constant = NULL)

sigma_drift Numeric: standard deviation of a normally distributed noise applied in each time
step (t_step) (default: sigma_drift = 0.001)

sigma_epoch Numeric: standard deviation of a normally distributed noise applied to random
periods of the community composition with frequency defined by the epoch_p
parameter (default: sigma_epoch = 0.1)

sigma_external Numeric: standard deviation of a normally distributed noise applied to user-
defined external events/disturbances (default: sigma_external = 0.3)

sigma_migration

Numeric: standard deviation of a normally distributed variable that defines the
intensity of migration at each time step (t_step) (default: sigma_migration =
0.01)

simulateConsumerResource 15

epoch_p Numeric: the probability/frequency of random periodic changes introduced to
the community composition (default: epoch_p = 0.001)

t_external_events

Numeric: the starting time points of defined external events that introduce ran-
dom changes to the community composition (default: t_external_events =
NULL)

t_external_durations

Numeric: respective duration of the external events that are defined in the ’t_external_events’
(times) and sigma_external (std). (default: t_external_durations = NULL)

stochastic Logical: whether to introduce noise in the simulation. If False, sigma_drift,
sigma_epoch, and sigma_external are ignored. (default: stochastic = FALSE)

migration_p Numeric: the probability/frequency of migration from a metacommunity. (de-
fault: migration_p = 0.01)

metacommunity_probability

Numeric: Normalized probability distribution of the likelihood that species from
the metacommunity can enter the community during the simulation. If NULL,
rdirichlet(1, alpha = rep(1,n_species)) is used. (default: metacommunity_probability
= NULL)

error_variance Numeric: the variance of measurement error. By default it equals to 0, indicating
that the result won’t contain any measurement error. This value should be non-
negative. (default: error_variance = 0)

norm Logical: whether the time series should be returned with the abundances as
proportions (norm = TRUE) or the raw counts (default: norm = FALSE) (default:
norm = FALSE)

t_end Numeric: the end time of the simulationTimes, defining the modeled time length
of the community. (default: t_end = 1000)

trophic_priority

Matrix: a matrix defining the orders of resources to be consumed by each species.
If NULL, by default, this feature won’t be turned on, and species will consume
all resources simultaneously to grow. The dimension should be identical to ma-
trix E. (default: trophic_priority = NULL)

inflow_rate, outflow_rate
Numeric: the inflow and outflow rate of a culture process. By default, in-
flow_rate and outflow_rate are 0, indicating a batch culture process. By setting
them equally larger than 0, we can simulate a continuous culture(e.g. chemo-
stat).

volume Numeric: the volume of the continuous cultivation. This parameter is important
for simulations where inflow_rate or outflow_rate are not 0. (default: volume =
1000)

... additional parameters, see utils to know more.

Value

an TreeSummarizedExperiment class object

16 simulateConsumerResource

Examples

n_species <- 2
n_resources <- 4
tse <- simulateConsumerResource(

n_species = n_species,
n_resources = n_resources

)

example with user-defined values (names_species, names_resources, E, x0,
resources, growth_rates, error_variance, t_end, t_step)

ExampleE <- randomE(
n_species = n_species, n_resources = n_resources,
mean_consumption = 3, mean_production = 1, maintenance = 0.4

)
ExampleResources <- rep(100, n_resources)
tse1 <- simulateConsumerResource(

n_species = n_species,
n_resources = n_resources, names_species = letters[seq_len(n_species)],
names_resources = paste0("res", LETTERS[seq_len(n_resources)]), E = ExampleE,
x0 = rep(0.001, n_species), resources = ExampleResources,
growth_rates = runif(n_species),
error_variance = 0.01,
t_end = 5000,
t_step = 1

)

example with trophic levels
n_species <- 10
n_resources <- 15
ExampleEfficiencyMatrix <- randomE(

n_species = 10, n_resources = 15,
trophic_levels = c(6, 3, 1),
trophic_preferences = list(

c(rep(1, 5), rep(-1, 5), rep(0, 5)),
c(rep(0, 5), rep(1, 5), rep(-1, 5)),
c(rep(0, 10), rep(1, 5))

)
)

ExampleResources <- c(rep(500, 5), rep(200, 5), rep(50, 5))
tse2 <- simulateConsumerResource(

n_species = n_species,
n_resources = n_resources,
names_species = letters[1:n_species],
names_resources = paste0(

"res", LETTERS[1:n_resources]
),
E = ExampleEfficiencyMatrix,
x0 = rep(0.001, n_species),
resources = ExampleResources,
growth_rates = rep(1, n_species),

simulateGLV 17

error_variance = 0.001,
t_end = 5000, t_step = 1

)

example with trophic priority
n_species <- 4
n_resources <- 6
ExampleE <- randomE(

n_species = n_species,
n_resources = n_resources,
mean_consumption = n_resources,
mean_production = 0

)
ExampleTrophicPriority <- t(apply(

matrix(sample(n_species * n_resources),
nrow = n_species

),
1, order

))
make sure that for non-consumables resources for each species,
the priority is 0 (smaller than any given priority)
ExampleTrophicPriority <- (ExampleE > 0) * ExampleTrophicPriority
tse3 <- simulateConsumerResource(

n_species = n_species,
n_resources = n_resources,
E = ExampleE,
trophic_priority = ExampleTrophicPriority,
t_end = 2000

)

simulateGLV Generalized Lotka-Volterra (gLV) simulation

Description

Simulates time series with the generalized Lotka-Volterra model.

Usage

simulateGLV(
n_species,
names_species = NULL,
A = NULL,
x0 = NULL,
growth_rates = NULL,
sigma_drift = 0.001,
sigma_epoch = 0.1,
sigma_external = 0.3,

18 simulateGLV

sigma_migration = 0.01,
epoch_p = 0.001,
t_external_events = NULL,
t_external_durations = NULL,
stochastic = TRUE,
migration_p = 0.01,
metacommunity_probability = NULL,
error_variance = 0,
norm = FALSE,
t_end = 1000,
...

)

Arguments

n_species Integer: number of species

names_species Character: names of species. If NULL, paste0("sp", seq_len(n_species))
is used. (default: names_species = NULL)

A matrix: interaction matrix defining the positive and negative interactions be-
tween n_species. If NULL, randomA(n_species) is used. (default: A = NULL)

x0 Numeric: initial abundances of simulated species. If NULL, runif(n = n_species,
min = 0, max = 1) is used. (default: x0 = NULL)

growth_rates Numeric: growth rates of simulated species. If NULL, runif(n = n_species,
min = 0, max = 1) is used. (default: growth_rates = NULL)

sigma_drift Numeric: standard deviation of a normally distributed noise applied in each time
step (t_step) (default: sigma_drift = 0.001)

sigma_epoch Numeric: standard deviation of a normally distributed noise applied to random
periods of the community composition with frequency defined by the epoch_p
parameter (default: sigma_epoch = 0.1)

sigma_external Numeric: standard deviation of a normally distributed noise applied to user-
defined external events/disturbances (default: sigma_external = 0.3)

sigma_migration

Numeric: standard deviation of a normally distributed variable that defines the
intensity of migration at each time step (t_step) (default: sigma_migration =
0.01)

epoch_p Numeric: the probability/frequency of random periodic changes introduced to
the community composition (default: epoch_p = 0.001)

t_external_events

Numeric: the starting time points of defined external events that introduce ran-
dom changes to the community composition (default: t_external_events =
NULL)

t_external_durations

Numeric: respective duration of the external events that are defined in the ’t_external_events’
(times) and sigma_external (std). (default: t_external_durations = NULL)

stochastic Logical: whether to introduce noise in the simulation. If False, sigma_drift,
sigma_epoch, and sigma_external are ignored. (default: stochastic = FALSE)

simulateGLV 19

migration_p Numeric: the probability/frequency of migration from a metacommunity. (de-
fault: migration_p = 0.01)

metacommunity_probability

Numeric: Normalized probability distribution of the likelihood that species from
the metacommunity can enter the community during the simulation. If NULL,
rdirichlet(1, alpha = rep(1,n_species)) is used. (default: metacommunity_probability
= NULL)

error_variance Numeric: the variance of measurement error. By default it equals to 0, indicating
that the result won’t contain any measurement error. This value should be non-
negative. (default: error_variance = 0)

norm Logical: whether the time series should be returned with the abundances as
proportions (norm = TRUE) or the raw counts (default: norm = FALSE) (default:
norm = FALSE)

t_end Numeric: the end time of the simulationTimes, defining the modeled time length
of the community. (default: t_end = 1000)

... additional parameters, see utils to know more.

Details

Simulates a community time series using the generalized Lotka-Volterra model, defined as dx/dt =
x(b+Ax), where x is the vector of species abundances, diag(x) is a diagonal matrix with the diagonal
values set to x. A is the interaction matrix and b is the vector of growth rates.

Value

simulateGLV returns a TreeSummarizedExperiment class object

Examples

generate a random interaction matrix
ExampleA <- randomA(n_species = 4, diagonal = -1)

run the model with default values (only stochastic migration considered)
tse <- simulateGLV(n_species = 4, A = ExampleA)

run the model with two external disturbances at time points 240 and 480
with durations equal to 1 (10 time steps when t_step by default is 0.1).
ExampleGLV <- simulateGLV(

n_species = 4, A = ExampleA,
t_external_events = c(0, 240, 480), t_external_durations = c(0, 1, 1)

)

run the model with no perturbation nor migration
set.seed(42)
tse1 <- simulateGLV(

n_species = 4, A = ExampleA, stochastic = FALSE,
sigma_migration = 0

)

20 simulateHubbell

run the model with no perturbation nor migration but with measurement error
set.seed(42)
tse2 <- simulateGLV(

n_species = 4, A = ExampleA, stochastic = FALSE,
error_variance = 0.001, sigma_migration = 0

)

simulateHubbell Hubbell’s neutral model simulation

Description

Neutral species abundances simulation according to the Hubbell model.

Usage

simulateHubbell(
n_species,
M,
carrying_capacity = 1000,
k_events = 10,
migration_p = 0.02,
t_skip = 0,
t_end,
norm = FALSE

)

Arguments

n_species integer amount of different species initially in the local community

M integer amount of different species in the metacommunity, including those of
the local community

carrying_capacity

integer value of fixed amount of individuals in the local community (default:
carrying_capacity = 1000)

k_events integer value of fixed amount of deaths of local community individuals in each
generation (default: k_events = 10)

migration_p numeric immigration rate: the probability that a death in the local community is
replaced by a migrant of the metacommunity rather than by the birth of a local
community member (default: migration_p = 0.02)

t_skip integer number of generations that should not be included in the outputted species
abundance matrix. (default: t_skip = 0)

t_end integer number of simulations to be simulated

norm logical scalar choosing whether the time series should be returned with the abun-
dances as proportions (norm = TRUE) or the raw counts (default: norm = FALSE)

simulateHubbellRates 21

Value

simulateHubbell returns a TreeSummarizedExperiment class object

References

Rosindell, James et al. "The unified neutral theory of biodiversity and biogeography at age ten."
Trends in ecology & evolution vol. 26,7 (2011).

Examples

tse <- simulateHubbell(
n_species = 8, M = 10, carrying_capacity = 1000, k_events = 50,
migration_p = 0.02, t_end = 100

)

simulateHubbellRates Hubbell’s neutral model simulation applied to time series

Description

Neutral species abundances simulation according to the Hubbell model. This model shows that
losses in society can be replaced either by the birth of individuals or by immigration depending on
their probabilities. The specific time between the events of birth or migration is calculated and time
effect is considered to determine the next event.

Usage

simulateHubbellRates(
n_species = NULL,
x0 = NULL,
names_species = NULL,
migration_p = 0.01,
metacommunity_probability = NULL,
k_events = 1,
growth_rates = NULL,
error_variance = 0,
norm = FALSE,
t_end = 1000,
...

)

Arguments

n_species Integer: number of species

x0 Numeric: initial species composition. If NULL, rep(100, n_species) is used.

22 simulateHubbellRates

names_species Character: names of species. If NULL, paste0("sp", seq_len(n_species))
is used. (default: names_species = NULL)

migration_p Numeric: the probability/frequency of migration from a metacommunity. (de-
fault: migration_p = 0.01)

metacommunity_probability

Numeric: Normalized probability distribution of the likelihood that species from
the metacommunity can enter the community during the simulation. If NULL,
rdirichlet(1, alpha = rep(1,n_species)) is used. (default: metacommunity_probability
= NULL)

k_events Integer: number of events to simulate before updating the sampling distribu-
tions. (default: k_events = 1)

growth_rates Numeric: maximum growth rates(mu) of species. If NULL, rep(1, n_species)
is used. (default: growth_rates = NULL)

error_variance Numeric: the variance of measurement error. By default it equals to 0, indicating
that the result won’t contain any measurement error. This value should be non-
negative. (default: error_variance = 0)

norm Logical: whether the time series should be returned with the abundances as
proportions (norm = TRUE) or the raw counts (default: norm = FALSE) (default:
norm = FALSE)

t_end Numeric: the end time of the simulationTimes, defining the modeled time length
of the community. (default: t_end = 1000)

... additional parameters, see utils to know more.

Value

simulateHubbellRates returns a TreeSummarizedExperiment class object

References

Rosindell, James et al. "The unified neutral theory of biodiversity and biogeography at age ten."
Trends in ecology & evolution vol. 26,7 (2011).

Examples

set.seed(42)
tse <- simulateHubbellRates(n_species = 5)

miaViz::plotSeries(tse, x = "time")

no migration, all stochastic birth and death
set.seed(42)
tse1 <- simulateHubbellRates(n_species = 5, migration_p = 0)

all migration, no stochastic birth and death
set.seed(42)
tse2 <- simulateHubbellRates(

n_species = 5,
migration_p = 1,

simulateRicker 23

metacommunity_probability = c(0.1, 0.15, 0.2, 0.25, 0.3),
t_end = 20,
t_store = 200

)

all migration, no stochastic birth and death, but with measurement errors
set.seed(42)
tse3 <- simulateHubbellRates(

n_species = 5,
migration_p = 1,
metacommunity_probability = c(0.1, 0.15, 0.2, 0.25, 0.3),
t_end = 20,
t_store = 200,
error_variance = 100

)

model with specified inputs
set.seed(42)
tse4 <- simulateHubbellRates(

n_species = 5,
migration_p = 0.1,
metacommunity_probability = c(0.1, 0.15, 0.2, 0.25, 0.3),
t_end = 200,
t_store = 1000,
k_events = 5,
growth_rates = c(1.1, 1.05, 1, 0.95, 0.9)

)

simulateRicker Generate time series with the Ricker model

Description

The Ricker model is a discrete version of the generalized Lotka-Volterra model and is implemented
here as proposed by Fisher and Mehta in PLoS ONE 2014.

Usage

simulateRicker(
n_species,
A,
names_species = NULL,
x0 = runif(n_species),
carrying_capacities = runif(n_species),
error_variance = 0.05,
explosion_bound = 10^8,
t_end = 1000,
norm = FALSE,
...

)

24 simulateSOI

Arguments

n_species Integer: number of species

A interaction matrix

names_species Character: names of species. If NULL, paste0("sp", seq_len(n_species))
is used. (default: names_species = NULL)

x0 Numeric: initial abundances of simulated species. If NULL, runif(n = n_species,
min = 0, max = 1) is used.

carrying_capacities

numeric carrying capacities. If NULL, runif(n = n_species, min = 0, max =
1) is used.

error_variance Numeric: the variance of measurement error. By default it equals to 0, indicating
that the result won’t contain any measurement error. This value should be non-
negative. (default: error_variance = 0.05)

explosion_bound

numeric value of boundary for explosion (default: explosion_bound = 10^8)

t_end integer number of simulations to be simulated

norm logical scalar returning normalised abundances (proportions in each generation)
(default: norm = FALSE)

... additional parameters, see utils to know more.

Value

simulateRicker returns a TreeSummarizedExperiment class object

References

Fisher & Mehta (2014). Identifying Keystone Species in the Human Gut Microbiome from Metage-
nomic Timeseries using Sparse Linear Regression. PLoS One 9:e102451

Examples

A <- powerlawA(10, alpha = 1.01)
tse <- simulateRicker(n_species = 10, A, t_end = 100)

simulateSOI Self-Organised Instability model (SOI) simulation

Description

Generate time-series with The Self-Organised Instability (SOI) model. Implements a K-leap method
for accelerating stochastic simulation.

simulateSOI 25

Usage

simulateSOI(
n_species,
x0 = NULL,
names_species = NULL,
carrying_capacity = 1000,
A = NULL,
k_events = 5,
t_end = 1000,
metacommunity_probability = runif(n_species, min = 0.1, max = 0.8),
death_rates = runif(n_species, min = 0.01, max = 0.08),
norm = FALSE

)

Arguments

n_species Integer: number of species

x0 a vector of initial community abundances If (default: x0 = NULL), based on mi-
gration rates

names_species Character: names of species. If NULL, paste0("sp", seq_len(n_species))
is used. (default: names_species = NULL)

carrying_capacity

integer community size, number of available sites (individuals)

A matrix: interaction matrix defining the positive and negative interactions be-
tween n_species. If NULL, powerlawA(n_species) is used. (default: A =
NULL)

k_events integer number of transition events that are allowed to take place during one
leap. (default: k_events = 5). Higher values reduce runtime, but also accuracy
of the simulation.

t_end Numeric: the end time of the simulation, defining the modeled time length of
the community. (default: t_end = 1000)

metacommunity_probability

Numeric: Normalized probability distribution of the likelihood that species from
the metacommunity can enter the community during the simulation. By default,
runif(n_species, min = 0.1, max = 0.8) is used. (default: metacommunity_probability
= runif(n_species, min = 0.1, max = 0.8))

death_rates Numeric: death rates of each species. By default, runif(n_species, min =
0.01, max = 0.08) is used. (default: death_rates = runif(n_species, min
= 0.01, max = 0.08))

norm logical scalar indicating whether the time series should be returned with the
abundances as proportions (norm = TRUE) or the raw counts (default: norm =
FALSE)

Value

simulateSOI returns a TreeSummarizedExperiment class object

26 simulateStochasticLogistic

Examples

Generate interaction matrix
A <- miaSim::powerlawA(10, alpha = 1.2)
Simulate data from the SOI model
tse <- simulateSOI(

n_species = 10, carrying_capacity = 1000, A = A,
k_events = 5, x0 = NULL, t_end = 150, norm = TRUE

)

simulateStochasticLogistic

Stochastic Logistic simulation

Description

Simulates time series with the (stochastic) logistic model

Usage

simulateStochasticLogistic(
n_species,
names_species = NULL,
growth_rates = NULL,
carrying_capacities = NULL,
death_rates = NULL,
x0 = NULL,
sigma_drift = 0.001,
sigma_epoch = 0.1,
sigma_external = 0.3,
sigma_migration = 0.01,
epoch_p = 0.001,
t_external_events = NULL,
t_external_durations = NULL,
migration_p = 0.01,
metacommunity_probability = NULL,
stochastic = TRUE,
error_variance = 0,
norm = FALSE,
t_end = 1000,
...

)

Arguments

n_species Integer: number of species

simulateStochasticLogistic 27

names_species Character: names of species. If NULL, paste0("sp", seq_len(n_species))
is used. (default: names_species = NULL)

growth_rates Numeric: growth rates of simulated species. If NULL, runif(n = n_species,
min = 0.1, max = 0.2) is used. (default: growth_rates = NULL)

carrying_capacities

Numeric: The max population of species supported in the community. If NULL,
runif(n = n_species, min = 1000, max = 2000) is used. (default: carrying_capacities
= NULL)

death_rates Numeric: death rates of each species. If NULL, runif(n = n_species, min =
0.0005, max = 0.0025) is used. (default: death_rates = NULL)

x0 Numeric: initial abundances of simulated species. If NULL, runif(n = n_species,
min = 0.1, max = 10) is used. (default: x0 = NULL)

sigma_drift Numeric: standard deviation of a normally distributed noise applied in each time
step (t_step) (default: sigma_drift = 0.001)

sigma_epoch Numeric: standard deviation of a normally distributed noise applied to random
periods of the community composition with frequency defined by the epoch_p
parameter (default: sigma_epoch = 0.1)

sigma_external Numeric: standard deviation of a normally distributed noise applied to user-
defined external events/disturbances (default: sigma_external = 0.3)

sigma_migration

Numeric: standard deviation of a normally distributed variable that defines the
intensity of migration at each time step (t_step) (default: sigma_migration =
0.01)

epoch_p Numeric: the probability/frequency of random periodic changes introduced to
the community composition (default: epoch_p = 0.001)

t_external_events

Numeric: the starting time points of defined external events that introduce ran-
dom changes to the community composition (default: t_external_events =
NULL)

t_external_durations

Numeric: respective duration of the external events that are defined in the ’t_external_events’
(times) and sigma_external (std). (default: t_external_durations = NULL)

migration_p Numeric: the probability/frequency of migration from a metacommunity. (de-
fault: migration_p = 0.01)

metacommunity_probability

Numeric: Normalized probability distribution of the likelihood that species from
the metacommunity can enter the community during the simulation. If NULL,
rdirichlet(1, alpha = rep(1,n_species)) is used. (default: metacommunity_probability
= NULL)

stochastic Logical: whether to introduce noise in the simulation. If False, sigma_drift,
sigma_epoch, and sigma_external are ignored. (default: stochastic = TRUE)

error_variance Numeric: the variance of measurement error. By default it equals to 0, indicating
that the result won’t contain any measurement error. This value should be non-
negative. (default: error_variance = 0)

28 simulateStochasticLogistic

norm Logical: whether the time series should be returned with the abundances as
proportions (norm = TRUE) or the raw counts (default: norm = FALSE) (default:
norm = FALSE)

t_end Numeric: the end time of the simulationTimes, defining the modeled time length
of the community. (default: t_end = 1000)

... additional parameters, see utils to know more.

Details

The change rate of the species was defined as dx/dt = b*x*(1-(x/k))*rN - dr*x, where b is the
vector of growth rates, x is the vector of initial species abundances, k is the vector of maximum
carrying capacities, rN is a random number ranged from 0 to 1 which changes in each time step,
dr is the vector of constant death rates. Also, the vectors of initial dead species abundances can be
set. The number of species will be set to 0 if the dead species abundances surpass the alive species
abundances.

Value

simulateStochasticLogistic returns a TreeSummarizedExperiment class object

Examples

Example of logistic model without stochasticity, death rates, or external
disturbances
set.seed(42)
tse <- simulateStochasticLogistic(

n_species = 5,
stochastic = FALSE, death_rates = rep(0, 5)

)

Adding a death rate
set.seed(42)
tse1 <- simulateStochasticLogistic(

n_species = 5,
stochastic = FALSE, death_rates = rep(0.01, 5)

)

Example of stochastic logistic model with measurement error
set.seed(42)
tse2 <- simulateStochasticLogistic(

n_species = 5,
error_variance = 1000

)

example with all the initial parameters defined by the user
set.seed(42)
tse3 <- simulateStochasticLogistic(

n_species = 2,
names_species = c("species1", "species2"),
growth_rates = c(0.2, 0.1),
carrying_capacities = c(1000, 2000),

simulateStochasticLogistic 29

death_rates = c(0.001, 0.0015),
x0 = c(3, 0.1),
sigma_drift = 0.001,
sigma_epoch = 0.3,
sigma_external = 0.5,
sigma_migration = 0.002,
epoch_p = 0.001,
t_external_events = c(100, 200, 300),
t_external_durations = c(0.1, 0.2, 0.3),
migration_p = 0.01,
metacommunity_probability = miaSim::.rdirichlet(1, alpha = rep(1, 2)),
stochastic = TRUE,
error_variance = 0,
norm = FALSE, # TRUE,
t_end = 400,
t_start = 0, t_step = 0.01,
t_store = 1500

)

Index

∗ internal
.simulationTimes, 7

.applyInterType, 2

.estimateAFromSimulations, 3

.eventTimes, 4

.getInteractions, 5

.isPosInt, 5

.rdirichlet, 6

.replaceByZero, 6

.simulationTimes, 7

powerlawA, 7

randomA, 8
randomE, 11

simulateConsumerResource, 13
simulateGLV, 17
simulateHubbell, 20
simulateHubbellRates, 21
simulateHubbellRates,numeric-method

(simulateHubbellRates), 21
simulateHubbellRates-numeric

(simulateHubbellRates), 21
simulateRicker, 23
simulateSOI, 24
simulateStochasticLogistic, 26

utils, 15, 19, 22, 24, 28

30

	.applyInterType
	.estimateAFromSimulations
	.eventTimes
	.getInteractions
	.isPosInt
	.rdirichlet
	.replaceByZero
	.simulationTimes
	powerlawA
	randomA
	randomE
	simulateConsumerResource
	simulateGLV
	simulateHubbell
	simulateHubbellRates
	simulateRicker
	simulateSOI
	simulateStochasticLogistic
	Index

