| newAIC | Compute the AIC of a model given some data |
| newAIC-method | Compute the AIC of a model given some data |
| newAlpha | Returns the matrix of paramters alpha |
| newAlpha-method | Class newmodel |
| newBeta | Returns the matrix of paramters beta |
| newBeta-method | Class newmodel |
| newBIC | Compute the BIC of a model given some data |
| newBIC-method | Compute the BIC of a model given some data |
| newEpsilon_alpha | Returns the vector of regularization parameter for alpha |
| newEpsilon_alpha-method | Class newmodel |
| newEpsilon_beta | Returns the vector of regularization parameter for beta |
| newEpsilon_beta-method | Class newmodel |
| newEpsilon_gamma | Returns the vector of regularization parameter for gamma |
| newEpsilon_gamma-method | Class newmodel |
| newEpsilon_W | Returns the vector of regularization parameter for W |
| newEpsilon_W-method | Class newmodel |
| newEpsilon_zeta | Returns the regularization parameter for the dispersion parameter |
| newEpsilon_zeta-method | Class newmodel |
| newFit | Fit a nb regression model |
| newFit-method | Fit a nb regression model |
| newGamma | Returns the matrix of paramters gamma |
| newGamma-method | Class newmodel |
| newloglik | Compute the log-likelihood of a model given some data |
| newloglik-method | Compute the log-likelihood of a model given some data |
| newLogMu | Returns the matrix of logarithm of mean parameters |
| newLogMu-method | Class newmodel |
| newmodel | Initialize an object of class newmodel |
| newmodel-class | Class newmodel |
| newMu | Returns the matrix of mean parameters |
| newMu-method | Class newmodel |
| newpenalty | Compute the penalty of a model |
| newpenalty-method | Compute the penalty of a model |
| newPhi | Returns the vector of dispersion parameters |
| newPhi-method | Class newmodel |
| newSim | Simulate counts from a negative binomial model |
| newSim-method | Simulate counts from a negative binomial model |
| newTheta | Returns the vector of inverse dispersion parameters |
| newTheta-method | Class newmodel |
| newV | Returns the gene-level design matrix for mu |
| newV-method | Class newmodel |
| newW | Returns the low-dimensional matrix of inferred sample-level covariates W |
| newW-method | Class newmodel |
| newWave | Perform dimensionality reduction using a nb regression model with gene and cell-level covariates. |
| newWave-method | Perform dimensionality reduction using a nb regression model with gene and cell-level covariates. |
| newX | Returns the sample-level design matrix for mu |
| newX-method | Class newmodel |
| newZeta | Returns the vector of log of inverse dispersion parameters |
| newZeta-method | Class newmodel |
| numberFactors | Generic function that returns the number of latent factors |
| numberFactors-method | Class newmodel |
| numberFeatures | Generic function that returns the number of features |
| numberFeatures-method | Class newmodel |
| numberParams | Generic function that returns the total number of parameters of the model |
| numberParams-method | Generic function that returns the total number of parameters of the model |
| numberSamples | Generic function that returns the number of samples |
| numberSamples-method | Class newmodel |
| show-method | Class newmodel |