
RnBeads – Comprehensive Analysis of DNA
Methylation Data

Fabian Müller, Yassen Assenov, Pavlo Lutsik, Michael Scherer
Contact: team@rnbeads.org

Package version: 2.10.0

July 23, 2025

RnBeads is an R package for the comprehensive analysis of genome-wide DNA methylation data
with single basepair resolution. Supported assays include the Infinium 450k microarray, whole
genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), other
forms of enrichment bisulfite sequencing, and any other large-scale method that can provide DNA
methylation data at single basepair resolution (e.g. MeDIP-seq after suitable preprocessing). It
builds upon a significant and ongoing community effort to devise effective algorithms for dealing
with large-scale DNA methylation data and implements these methods in a user-friendly, high-
throughput workflow, presenting the analysis results in a highly interpretable fashion.

Contents

1 Getting Started 2
1.1 Installation . 2
1.2 Overview of RnBeads Modules . 3
1.3 Datasets . 5
1.4 Setting Up the Analysis Environment . 5

2 Vanilla Analysis 5

3 Working with RnBSet Objects 7

4 Tailored Analysis: RnBeads Modules 13
4.1 Data Import . 13
4.2 Quality Control . 14

4.2.1 Sex Prediction . 19
4.2.2 CNV estimation . 19

4.3 Preprocessing . 22
4.3.1 Filtering . 22
4.3.2 Normalization . 23

4.4 Covariate Inference . 24
4.4.1 Surrogate Variable Analysis . 24
4.4.2 Inference of Cell Type Contributions . 25

1

RnBeads 2

4.4.3 Age Prediction . 26
4.4.4 Immune Cell Content Estimation . 27

4.5 Exploratory Analysis . 27
4.5.1 Low-dimensional Representation and Batch Effects 27
4.5.2 Clustering . 29

4.6 Differential Methylation Analysis . 30
4.6.1 Differential Variability Analysis . 33
4.6.2 Paired Analysis . 34
4.6.3 Adjusting for Covariates in the Differential Analysis 35
4.6.4 Enrichment Analysis of Differentially Methylated Regions 35

4.7 Tracks and Tables . 36

5 Analyzing Bisulfite Sequencing Data 38
5.1 Data Loading . 38
5.2 Quality Control . 40
5.3 Filtering . 41

6 Advanced Usage 41
6.1 Analysis Parameter Overview . 41
6.2 Annotation Data . 43

6.2.1 Custom Annotation . 44
6.3 Parallel Processing . 45
6.4 Extra-Large Matrices, RAM and Disk Space Management 46
6.5 Some Sugar and Recipes . 47

6.5.1 Plotting Methylation Value Distributions 47
6.5.2 Plotting Low Dimensional representations 47
6.5.3 Generating Locus Profile Plots (aka Genome-Browser-Like Views) 48
6.5.4 Adjusting for Surrogate Variables in Differential Methylation Analysis . . 49
6.5.5 Generating Density-Scatterplots . 50

6.6 Correcting for Cell Type Heterogeneity Effects 51
6.7 Deploying RnBeads on a Scientific Compute Cluster 52
6.8 Genome-wide segmentation of the methylome . 53

7 Beyond DNA Methylation Analysis 54
7.1 HTML Reports . 54
7.2 Logging . 57

1 Getting Started

1.1 Installation

Automatic installation of RnBeads and one or more of its companion data packages is performed
just like any other Bioconductor package. As an example, the following commands install Rn-
Beads and its annotation package for the human genome annotation hg38:

> if (!requireNamespace("BiocManager", quietly=TRUE))
+ install.packages("BiocManager")
> BiocManager::install(c("RnBeads", "RnBeads.hg38"))

RnBeads 3

Alternatively, we also provide a an easy-to-use installation script that ensures all dependencies
are installed. This way, you can install RnBeads by running a single line of code in your R
environment:

> source("http://rnbeads.org/data/install.R")

Note that you might have to install Ghostscript which RnBeads uses for generating plot files.
Ghostscript is included in most Unix/Linux distributions by default, but may require installation
on other operating systems. You can obtain the version corresponding to your operating system
freely from the program’s website1. Follow their installation instructions. You might have to set
path variables as well. Additional hints on installation of Ghostscript can be found on the FAQ
section of the RnBeads website2. The website also describes the installation process in detail.

1.2 Overview of RnBeads Modules

RnBeads implements a comprehensive analysis pipeline from data import via filtering, normaliza-
tion and exploratory analyses to characterizing differential methylation. Its modularized design
allows for conducting simple vanilla types of analysis (with the need to specify only a few pa-
rameters; RnBeads automatically takes care of the rest) as well as targeted, highly customizable
analysis. Multiple input formats are supported. Moreover, advanced code logging capabilities
are integrated into the package. Finally, the output can be presented as comprehensive, inter-
pretable analysis reports in html format. Figure 1 visualizes the standard workflow through
RnBeads modules. Analysis modules include:

Data Import Various input formats are supported both for Infinium and bisulfite sequencing
data.

Quality Control If quality control data is available from the input (e.g. in IDAT format files for
Infinium data), QC based on the various types of QC probes on the Infinium methylation
chip is performed. For bisulfite sequencing experiments, QC analysis is based on coverage
information.

Preprocessing Includes probe and sample filtering. This happens in an automated fashion after
the user specifies filtering criteria in which he is interested. Furthermore, for Infinium 450k
data a number of microarray normalization methods are implemented. The normalization
report helps to assess the effects of the normalization procedure.

Tracks and Tables Methylation profiles can be exported to bed, bigBed and bigWig file formats
and visualized in various genome browsers via the export to track hubs.

Covariate Inference In this optional module, sample covariates potentially confounding the anal-
ysis can be identified and quantified. In consecutive modules, e.g. they can be taken into
account and corrected for during differential methylation analysis.

Exploratory Analysis Dimension reduction, statistical association tests and visualization tech-
niques are applied in order to discover associations of the methylation data with vari-
ous sample characteristics specified in the sample annotation sheet provided by the user.
Methylation fingerprints of samples and sample groups are identified and presented. Un-
supervised learning techniques (clustering) are applied.

1http://www.ghostscript.com/download/gsdnld.html
2https://rnbeads.org/

http://rnbeads.mpi-inf.mpg.de/
http://www.ghostscript.com/download/gsdnld.html
https://rnbeads.org/

RnBeads 4

bed

csv

track hub

iiiii iv vi vii

> rnb.run.analysis()

RnBSet RnBSet

Preprocessingiii

Differential
MethylationviiExploratory

AnalysisviQuality
Controlii

RnBSet

Covariate
Inferencev

Tracks and
Tablesiv

Data Importi

tab

Sequencing-based
assays

Methylation arrays

Sample annotation

idat, GS,
tab, GEO

various bed-
like styles

differential_methylation.html

pdf / png csv

exploratory_analysis.html

pdf / png csv

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●
●●
●●

●

●

●
●

●

●

tracks_and_tables.html

csv bed

sampleName sites_num sites_covgMeansites_covgMediansites_covgPerc25sites_covgPerc75sites_numCovg5sites_numCovg10sites_numCovg30sites_numCovg60tiling_numtiling_covgMeantiling_covgMediantiling_covgPerc25

adult_liver_replicate_124787109 37.35182 34 19 51 24787109 23091625 14643714 4347998 537066 1776.79 1194 684
adult_liver_replicate_225396366 36.33017 36 23 48 25396366 24359133 16104908 2369347 537086 1730.489 1166 654
adult_sorted_CD4_replicate_125463779 35.49288 34 23 47 25463779 24581527 15490958 2235407 537081 1690.608 1172 689
adult_sorted_CD4_replicate_225184394 26.8683 26 17 35 25184394 23338275 10012847 386618 537053 1279.435 890 521
adult_sorted_CD8_replicate_125507068 38.04133 37 25 50 25507068 24868651 16653251 3142988 537086 1812.042 1296 769
adult_sorted_CD8_replicate_225382977 29.94133 29 19 39 25382977 24151401 12242218 710929 537061 1426.01 1017 605
bcell_1 13440377 5.182776 5 3 7 13440377 1693258 23406 8364 536903 241.2219 196 131
bcell_2 1895294 3.216202 2 1 4 1895294 334616 7346 2200 416992 52.35246 35 18
Colon_Primary_Normal 23828345 28.03213 25 14 39 23828345 21271456 10589954 1574453 536989 1328.054 803 421
Colon_Tumor_Primary 24455321 27.24075 25 15 37 24455321 22068602 10213573 976820 537034 1294.745 841 457
colonic_mucosa 23714805 22.39799 20 12 31 23714805 20557996 7081224 291601 537054 1061.522 691 388
fetal_adrenal 22265188 14.95056 13 8 20 22265188 16795545 1940001 69493 536788 705.5297 416 225
fetal_brain 25439717 23.5894 23 17 29 25439717 24341164 6198349 54702 537085 1123.496 842 526
fetal_heart 25531042 34.06072 33 24 43 25531042 24908569 15498368 1074417 537100 1623.161 1167 710
fetal_muscle_leg 22277479 18.23874 16 8 25 22277479 17980095 4459666 129943 536563 856.9688 483 248
fetal_thymus 23969550 21.67552 20 11 29 23969550 20613764 6367261 206569 536971 1028.801 612 334
Frontal_cortex_AD_1 25459909 30.43534 29 21 38 25459909 24688145 12698187 463952 537061 1449.531 1065 657
Frontal_cortex_AD_2 25528135 40.40203 39 28 51 25528135 25220858 18260833 3337824 537082 1924.308 1429 897
Frontal_cortex_normal_125547670 38.77452 38 29 47 25547670 25415490 18564151 1820159 537093 1846.868 1382 876
Frontal_cortex_normal_225415260 28.57481 27 19 36 25415260 24423141 10863088 448725 537082 1360.776 1039 659
H1_derived_mesenchymal_stem_cells18848480 15.50098 11 5 21 18848480 13651143 3314763 360410 536592 702.4883 469 252
H1_derived_neuronal_progenitor_cells24331258 14.5112 14 10 18 24331258 19184480 617320 53928 537060 690.0749 483 287
H1_BMP4_derived_mesendoderm_cells24258658 16.82233 16 11 22 24258658 20393241 1802008 43810 537057 799.0948 678 462
HepG2 19762961 12.53436 10 5 17 19762961 13441361 1280338 91914 534856 581.4041 322 153
hippocampus_middle_replicate_125500692 43.6108 41 27 57 25500692 24895911 18080638 5745253 537097 2077.452 1507 907
hippocampus_middle_replicate_225239113 31.45216 30 19 42 25239113 23761452 12896134 1455871 537073 1497.74 1069 645
HSCP_1 18051934 7.89667 7 4 10 18051934 7068090 159071 19661 537065 370.3336 291 190
HSCP_2 3060416 2.796982 2 1 4 3060416 119296 13274 5686 518213 115.8297 95 63
HUES64_CD184plus_endoderm_replicate_125400978 25.35261 24 17 32 25400978 24142584 8418260 121903 537071 1207.847 937 581
HUES64_CD184plus_endoderm_replicate_225572168 48.59983 47 34 62 25572168 25454095 21073922 7203250 537072 2315.749 1748 1081
HUES64_derived_CD56plus_ectoderm_replicate_125572909 51.95004 51 34 68 25572909 25359734 20847094 9263556 537074 2475.418 1694 978
HUES64_derived_CD56plus_ectoderm_replicate_225298768 34.51101 33 21 46 25298768 23933185 14888109 2185674 537070 1644.171 1081 599
HUES64_derived_CD56plus_mesoderm_replicate_125353490 35.28102 34 22 47 25353490 24117180 15046484 2553697 537073 1680.9 1137 642
HUES64_derived_CD56plus_mesoderm_replicate_224813658 19.57364 19 13 25 24813658 21990554 3359937 59345 537065 931.7906 661 394
HUES64_replicate_1 24106878 25.54379 23 13 35 24106878 21430647 9217373 699902 537032 1212.863 754 410
HUES64_replicate_2 25093619 32.70188 30 18 44 25093619 23377666 13054320 2401959 537062 1557.517 1092 632
human_sperm 13213988 5.532838 5 3 7 13213988 2733390 65300 16479 533981 256.4768 164 95
IMR90 20269734 10.57383 10 5 14 20269734 12597544 244915 35729 535970 495.1896 298 158
mobilized_CD34 25486443 31.81519 31 22 41 25486443 24685979 13931409 649772 537059 1515.46 1082 647
subcutaneous_adipocyte_nuclei20076596 11.44913 10 5 16 20076596 12914761 661574 46808 535994 534.2449 306 164
substantia_nigra 24377127 24.75803 23 14 34 24377127 21752595 8679914 385936 537040 1176.712 761 433

RefSeq Genes

Common SNPs(138)
adult_liver_replicate_1
adult_liver_replicate_2

adult_sorted_CD4_replicate_1
adult_sorted_CD4_replicate_2
adult_sorted_CD8_replicate_1
adult_sorted_CD8_replicate_2

bcell_1
bcell_2

Colon_Primary_Normal
Colon_Tumor_Primary

colonic_mucosa
fetal_adrenal

fetal_brain
fetal_heart

fetal_muscle_leg
fetal_thymus

Frontal_cortex_AD_1
Frontal_cortex_AD_2

Frontal_cortex_normal_1
Frontal_cortex_normal_2

H1_BMP4_derived_mesendoderm_cells
H1_derived_mesenchymal_stem_cells
H1_derived_neuronal_progenitor_cells

HepG2
hippocampus_middle_replicate_1
hippocampus_middle_replicate_2

HSCP_1
HSCP_2

10 kb hg19
27,215,000 27,220,000 27,225,000 27,230,000 27,235,000

HOXA10-HOXA9
HOXA10
HOXA10

HOXA11

HOXA11

HOXA11-AS
LOC402470

HOXA13

track hub

preprocessing.html

pdf / png csv

quality_control.html

pdf / png csv

Figure 1: Workflow and modules in RnBeads

RnBeads 5

Differential Methylation Analysis Provided with categorical sample, differentially methylated
sites and genomic regions are identified, their degree of differential methylation is quantified
and visualized. Furthermore, differentially methylated regions (DMRs) can be annotated,
e.g. with enrichment analysis.

1.3 Datasets

In this vignette, we first describe how to analyze data generated by the Infinium 450k methylation
array. Section 5 describes how to handle bisulfite sequencing data. The general concepts of
RnBeads are shared for array and sequencing data. In fact, for the most part, the same methods
and functions are used. Therefore, the 450k examples will also be very instructive for the
analysis of bisulfite sequencing data. We will introduce basic features of RnBeads using a dataset
of Infinium 450k methylation data from multiple human embryonic stem cells (hESCs) and
induced pluripotent stem cells (hiPSCs) lines. This dataset has been published as a supplement
to a study on non-CpG methylation [1] and can be downloaded as a zip file from the RnBeads
examples website3. Note that while the article [1] focuses on non-CpG methylation, we will
only investigate methylation in the CpG context here. Before working with the data, unzip the
archive to a directory of your choice.

1.4 Setting Up the Analysis Environment

Before we get started, we need to carry out some preparations, such as loading the package and
specifying input and output directories:

> library(RnBeads)
> # Directory where your data is located
> data.dir <- "~/RnBeads/data/Ziller2011_PLoSGen_450K"
> idat.dir <- file.path(data.dir, "idat")
> sample.annotation <- file.path(data.dir, "sample_annotation.csv")
> # Directory where the output should be written to
> analysis.dir <- "~/RnBeads/analysis"
> # Directory where the report files should be written to
> report.dir <- file.path(analysis.dir, "reports")

We will use these variables throughout this vignette whenever we mean to specify input and
output files. Of course, you have to adapt the directories corresponding to your own file system
and operating system. The zip file you downloaded contains a directory that entails a sample
annotation sheet (we store its location in the sample.annotation variable in the code above)
and a directory containing the IDAT files that hold the methylation data (idat.dir).

2 Vanilla Analysis

So, let’s get our hands dirty and perform an analysis. First we may want to specify a few analysis
parameters:

> rnb.options(filtering.sex.chromosomes.removal=TRUE,
+ identifiers.column="Sample_ID")

3https://rnbeads.org/examples.html

https://rnbeads.org/examples.html

RnBeads 6

This tells RnBeads to remove all probes on sex chromosomes for the analysis in the filtering step.
Furthermore, RnBeads will look for a column called “Sample_Name” in the sample annotation
sheet and use its contents as identifiers in the analysis. Feel free to set other options as well (you
can inspect available analysis options using ?rnb.options). More details on analysis options
can be found in Section 6.1 of this vignette.

The main function in RnBeads is rnb.run.analysis(). It executes all analysis modules,
as specified in the package options and generates a dedicated report for each module. The
method has multiple arguments, the most important of which are those specifying the type of
the data to be analyzed, the location of the methylation data and sample annotation, and the
location of the output directory. In this example we are dealing with data from the Infinium
450k microarray and thus, for a simple analysis run we execute rnb.run.analysis using four
arguments. Specifically, data.dir defines the location of the input IDAT intensity files. A
sample annotation sheet is essential for every analysis. It is a tabular file containing sample
information such as sample identifiers, file locations, phenotypic information, batch processing
information and potential confounding factors. Feel free to inspect the sample annotation sheet
provided in the dataset you just downloaded to get an impression on how such annotation
can be structured. rnb.run.analysis() finds the location of the annotation table using the
sample.sheet parameter. report.dir specifies the location of the output directory. Make sure
that this directory is non-existing, as otherwise RnBeads will not be able to create reports there.
Finally, we have to specify the type of the input data which should be "idat.dir" for processing
IDAT files. Now we can run our analysis with our defined options:

> rnb.run.analysis(dir.reports=report.dir, sample.sheet=sample.annotation,
+ data.dir=idat.dir, data.type="infinium.idat.dir")

Note that in the above code we specified the arguments explicitly, i.e. we used the syntax
argument.name=argument.value. It is good practice to stick to this explicit argument statement.

Now, as running through the entire analysis pipeline takes a while, get a cup of coffee. You
might also want to browse through some of the examples on the RnBeads website to get an idea
of what kind of results you can expect once the analysis is done. Anyhow, it might take a while
(on our testing machine, roughly four hours for the complete analysis).

After the analysis has finished, you can find a variety of files in the report directory you
specified. Of particular interest are the html files containing the analysis results and links to
tables and figures which are stored in the output directory structure. Furthermore, analysis.log
is a log file containing status information on your analysis. Here, you can check for potential
errors and warnings that occurred in the execution of the pipeline.

Now, feel free to inspect the actual results of our analysis. All of them are stored as html
report files. A good starting point is the index.html in your reports directory which can be
opened in your favorite web browser. This overview page provides the links to the analysis
reports of the individual modules. You can also access the individual reports directly by opening
the corresponding html files in the reports directory. These reports contain method descriptions
of the conducted analyses as well as the results. The reports are designed to be self-contained
and self-explanatory, therefore, we do not discuss them in detail here. Take your time browsing
through the results of the analysis and getting an idea of what RnBeads can do for you.

The reports provide a convenient way of sharing results and re-inspecting them later. It is
particularly easy to share results over the Internet if you have webspace available somewhere.
Simply upload the entire report directory to a server and send a corresponding link to your
collaborators. If you compress the the analysis report directories you can also share them via

RnBeads 7

cloud services such as Google Drive and Dropbox. You can find more example reports on the
RnBeads website.

In your subsequent analysis runs you might not want to execute the full-scale RnBeads pipeline.
You can deactivate individual modules by setting the corresponding global RnBeads options
before running the analysis. For instance, you could deactivate the differential methylation
module:

> rnb.options(differential=FALSE)

3 Working with RnBSet Objects

Every analysis workflow in RnBeads is centered around a dataset object, which is implemented
as an R object of type RnBSet (an S4 class). This object contains the sample annotation table,
methylation values for individual sites and regions, as well as additional, platform-specific data.
The function rnb.run.analysis, introduced in the previous section, returns such an object
(invisibly) which contains the processed dataset. RnBeads provides a multitude of functions
operating on a dataset; some of these functions retrieve information from the dataset, others
create plots summarizing some of the data contained, or modify the methylation values or sample
annotation. In this section, we introduce the RnBSet class and show a few examples on how to
work with these objects in an interactive R session. The following sections give more details
by describing each of the RnBeads modules. With the exception of the import module, which
prepares such objects from input data files, all of these modules operate directly on RnBSet
objects.
RnBSet objects come in different flavors (subclasses), depending on the data type that was

used to create them: RnBeadSet and RnBeadRawSet objects are derived from processed and
unprocessed array data respectively, while RnBiseqSet objects result from processing bisulfite-
sequencing data.

Here, we use a small example dataset which is contained in the RnBeads.hg19 package and
comprises a subset of probes of the Infnium 450K dataset introduced earlier in this vignette.
Readers are encouraged to try the functions presented here on the full dataset or on their own
datasets. As a first example, by printing a dataset you can see a summary of its type and size.

> library(RnBeads.hg19)
> data(small.example.object)
> rnb.set.example

Object of class RnBeadRawSet
12 samples

1736 probes
of which: 1730 CpG, 6 CpH, 0 rs and 0 nv

Region types:
470 regions of type tiling
184 regions of type genes
184 regions of type promoters
137 regions of type cpgislands

Intensity information is present
Detection p-values are present
Bead counts are present

RnBeads 8

Quality control information is present
Summary of normalization procedures:

The methylation data was not normalized.
No background correction was performed.

As shown in the code snippet above, the example dataset consists of 12 samples × 1,736
probes. In addition to measurements at individual CpGs, it has summarized the methylation
state for 470 genomic tiling regions, 184 gene bodies, 184 gene promoters and 137 CpG islands.
Notice the first line of printed for this dataset, it states that it is an object of type RnBeadRawSet.
These objects denote array-based datasets containing array-specific measurements, such as probe
intensity values, detection p-values, and others.

You can use the following functions in order to obtain the number of CpGs covered and the
sample identifiers of the dataset:

> nsites(rnb.set.example)

[1] 1736

> samples(rnb.set.example)

[1] "hES_HUES13_p47" "hiPS_20b_p43" "hES_HUES1_p29"
[4] "hiPS_11c_p23" "hES_HUES1_p28" "hiPS_20b_p49_TeSR"
[7] "hiPS_20b_p49_KOSR" "hiPS_17b_p35_TeSR" "hiPS_27b_p31"

[10] "hES_HUES64_p19" "hiPS_17b_p35_KOSR" "hES_H9_p58"

The following command shows the the first 4 columns of the sample annotation table:

> pheno(rnb.set.example)[, 1:4]

Sample_ID Sentrix_ID Sentrix_Position Sample_Plate
1 hES_HUES13_p47 5815381013 R03C01 WG0001341-MSA4
2 hiPS_20b_p43 5815381013 R05C02 WG0001341-MSA4
3 hES_HUES1_p29 5815381013 R02C01 WG0001341-MSA4
4 hiPS_11c_p23 5815381013 R04C02 WG0001341-MSA4
5 hES_HUES1_p28 5815381013 R01C01 WG0001341-MSA4
6 hiPS_20b_p49_TeSR 5815381013 R03C02 WG0001341-MSA4
7 hiPS_20b_p49_KOSR 5815381013 R02C02 WG0001341-MSA4
8 hiPS_17b_p35_TeSR 5815381013 R01C02 WG0001341-MSA4
9 hiPS_27b_p31 5815381013 R06C02 WG0001341-MSA4
10 hES_HUES64_p19 5815381013 R04C01 WG0001341-MSA4
11 hiPS_17b_p35_KOSR 5815381013 R06C01 WG0001341-MSA4
12 hES_H9_p58 5815381013 R05C01 WG0001341-MSA4

Methylation values for individual CpGs can be obtained using the meth command:

> mm <- meth(rnb.set.example)

Let’s take look at the distribution of methylation values in sample number 5 of our dataset:

> hist(mm[,5], col="steelblue", breaks=50)

RnBeads 9

RnBSet objects also contain summarized methylation levels for various region types. To inspect
which region types are represented in an object use summarized.regions:

> summarized.regions(rnb.set.example)

[1] "tiling" "genes" "promoters" "cpgislands"

The next commands instruct RnBeads that the first column in the annotation table denotes
sample identifiers, and extract the methylation beta values at the first five gene promoters for
the first three samples:

> rnb.options(identifiers.column="Sample_ID")
> meth(rnb.set.example, type="promoters", row.names=TRUE, i=1:5, j=1:3)

hES_HUES13_p47 hiPS_20b_p43 hES_HUES1_p29
ENSG00000131591 0.05520151 0.06547974 0.05503473
ENSG00000117069 0.05308049 0.04594461 0.05725949
ENSG00000162694 0.06312758 0.06848181 0.07229479
ENSG00000273204 0.11724093 0.12067451 0.09609808
ENSG00000162695 0.07275482 0.07489990 0.07031157

Similarly, the method mval is used to extract M values:

> mval(rnb.set.example, type="promoters", row.names=TRUE)[1:5, 1:3]

hES_HUES13_p47 hiPS_20b_p43 hES_HUES1_p29
ENSG00000131591 -4.097227 -3.835106 -4.101847
ENSG00000117069 -4.156988 -4.376105 -4.041274
ENSG00000162694 -3.891510 -3.765791 -3.681703
ENSG00000273204 -2.912543 -2.865276 -3.233587
ENSG00000162695 -3.671836 -3.626574 -3.724913

To get the coordinates and additional annotation for sites or regions contained in the dataset,
use the annotation function:

> annot.sites <- annotation(rnb.set.example)
> head(annot.sites)

Chromosome Start End Strand Strand.1 AddressA AddressB Design
cg24488772 chr1 1017318 1017319 - - 72623496 28718406 I
cg24378253 chr1 1017383 1017384 - - 48673390 38614336 I
cg04794393 chr1 1018118 1018119 - - 65630381 22788466 I
cg17840536 chr1 1018254 1018255 + + 67655486 26703405 I
cg19758750 chr1 1018479 1018480 + + 46688365 46688365 II
cg18024260 chr1 1019860 1019861 - - 59711429 42807375 I

Color Context Random HumanMethylation27 Mismatches A Mismatches B
cg24488772 Red CG FALSE FALSE 0 0
cg24378253 Red CG FALSE FALSE 0 0
cg04794393 Red CG FALSE FALSE 0 1
cg17840536 Grn CG FALSE FALSE 0 0

RnBeads 10

cg19758750 Both CG FALSE FALSE 0 0
cg18024260 Red CG FALSE FALSE 0 0

CGI Relation CpG GC SNPs 3 SNPs 5 SNPs Full Cross-reactive
cg24488772 Island 4 64 0 0 0 0
cg24378253 Island 10 74 0 0 1 0
cg04794393 Island 8 72 0 0 0 0
cg17840536 Island 9 71 0 0 0 0
cg19758750 North Shore 4 66 0 0 0 0
cg18024260 Island 8 67 0 0 0 0

> annot.promoters <- annotation(rnb.set.example, type="promoters")
> head(annot.promoters)

Chromosome Start End Strand symbol entrezID CpG
ENSG00000131591 chr1 1051242 1053241 - C1orf159 54991 187
ENSG00000117069 chr1 77331626 77333625 + ST6GALNAC5 81849 60
ENSG00000162694 chr1 101361055 101363054 - EXTL2 2135 79
ENSG00000273204 chr1 101358984 101360983 + <NA> <NA> 52
ENSG00000162695 chr1 101360132 101362131 + SLC30A7 148867 113
ENSG00000240386 chr1 152747348 152749347 + LCE1F 353137 21

GC C G
ENSG00000131591 1367 727 640
ENSG00000117069 847 420 427
ENSG00000162694 1043 519 524
ENSG00000273204 825 456 369
ENSG00000162695 1123 588 535
ENSG00000240386 992 461 531

Furthermore, indices of overlapping regions can be added to each annotated methylation site.

> annot.sites.with.rgns <- annotation(rnb.set.example, include.regions=TRUE)
> head(annot.sites.with.rgns)

Chromosome Start End Strand Strand.1 AddressA AddressB Design
cg24488772 chr1 1017318 1017319 - - 72623496 28718406 I
cg24378253 chr1 1017383 1017384 - - 48673390 38614336 I
cg04794393 chr1 1018118 1018119 - - 65630381 22788466 I
cg17840536 chr1 1018254 1018255 + + 67655486 26703405 I
cg19758750 chr1 1018479 1018480 + + 46688365 46688365 II
cg18024260 chr1 1019860 1019861 - - 59711429 42807375 I

Color Context Random HumanMethylation27 Mismatches A Mismatches B
cg24488772 Red CG FALSE FALSE 0 0
cg24378253 Red CG FALSE FALSE 0 0
cg04794393 Red CG FALSE FALSE 0 1
cg17840536 Grn CG FALSE FALSE 0 0
cg19758750 Both CG FALSE FALSE 0 0
cg18024260 Red CG FALSE FALSE 0 0

CGI Relation CpG GC SNPs 3 SNPs 5 SNPs Full Cross-reactive tiling
cg24488772 Island 4 64 0 0 0 0 1

RnBeads 11

cg24378253 Island 10 74 0 0 1 0 1
cg04794393 Island 8 72 0 0 0 0 1
cg17840536 Island 9 71 0 0 0 0 1
cg19758750 North Shore 4 66 0 0 0 0 1
cg18024260 Island 8 67 0 0 0 0 1

genes promoters cpgislands
cg24488772 1 0 1
cg24378253 1 0 1
cg04794393 1 0 2
cg17840536 1 0 2
cg19758750 1 0 0
cg18024260 1 0 3

You can manipulate RnBSet objects using several methods. Here, we show you how to remove
samples and sites from the dataset and how to add columns to the sample annotation table:

> # Remove samples
> rnb.set2 <- remove.samples(rnb.set.example, samples(rnb.set.example)[c(2, 6, 10)])
> setdiff(samples(rnb.set.example), samples(rnb.set2))

[1] "hiPS_20b_p43" "hiPS_20b_p49_TeSR" "hES_HUES64_p19"

> # Remove probes which are not in CpG context
> notCpG <- annot.sites[,"Context"]!="CG"
> rnb.set.example <- remove.sites(rnb.set.example, notCpG)
> nsites(rnb.set.example)

[1] 1730

> # Add a sample annotation column indicating whether the given
> # sample represents an iPS cell line
> is.hiPSC <- pheno(rnb.set.example)[, "Sample_Group"]=="hiPSC"
> rnb.set.example <- addPheno(rnb.set.example, is.hiPSC, "is_hiPSC")
> pheno(rnb.set.example)[, c("Sample_ID", "Cell_Line", "is_hiPSC")]

Sample_ID Cell_Line is_hiPSC
1 hES_HUES13_p47 hES_HUES13 FALSE
2 hiPS_20b_p43 hiPS_20b TRUE
3 hES_HUES1_p29 hES_HUES1 FALSE
4 hiPS_11c_p23 hiPS_11c TRUE
5 hES_HUES1_p28 hES_HUES1 FALSE
6 hiPS_20b_p49_TeSR hiPS_20b TRUE
7 hiPS_20b_p49_KOSR hiPS_20b TRUE
8 hiPS_17b_p35_TeSR hiPS_17b TRUE
9 hiPS_27b_p31 hiPS_27b TRUE
10 hES_HUES64_p19 hES_HUES64 FALSE
11 hiPS_17b_p35_KOSR hiPS_17b TRUE
12 hES_H9_p58 hES_H9 FALSE

RnBeads 12

Since the example object was derived from an Infinium 450k experiment it also stores low-
level information about the corresponding experiment, such as measured intensities in each of
the color channels, out-of-band intensities, number of beads, detection p-values etc:

> # Methylated ...
> Mint <- M(rnb.set.example, row.names=TRUE)
> Mint[1:5,1:3]

hES_HUES13_p47 hiPS_20b_p43 hES_HUES1_p29
cg24488772 16781 17096 15753
cg24378253 20360 20248 18280
cg04794393 18826 19608 16931
cg17840536 21972 24487 20954
cg19758750 20029 24664 19166

> # ...and unmethylated probe intensities
> Uint <- U(rnb.set.example, row.names=TRUE)
> Uint[1:5,1:3]

hES_HUES13_p47 hiPS_20b_p43 hES_HUES1_p29
cg24488772 2358 1579 2090
cg24378253 592 387 921
cg04794393 978 477 1045
cg17840536 3193 1441 3071
cg19758750 4271 2916 3872

> # Infinium bead counts
> nbead <- covg(rnb.set.example, row.names=TRUE)
> nbead[1:5,1:3]

hES_HUES13_p47 hiPS_20b_p43 hES_HUES1_p29
cg24488772 10 14 8
cg24378253 14 8 13
cg04794393 14 10 6
cg17840536 6 12 13
cg19758750 16 15 11

> # detection P-values
> pvals <- dpval(rnb.set.example, row.names=TRUE)
> pvals[1:5,1:3]

hES_HUES13_p47 hiPS_20b_p43 hES_HUES1_p29
cg24488772 0 0 0
cg24378253 0 0 0
cg04794393 0 0 0
cg17840536 0 0 0
cg19758750 0 0 0

Moreover, the object also contains quality control information. RnBeads offers a number of
diagnostic plots visualizing this information:

RnBeads 13

> # boxplot of control probes
> rnb.plot.control.boxplot(rnb.set.example)
> # barplot of a selected control probe
> control.meta.data <- rnb.get.annotation("controls450")
> ctrl.probe<-paste0(unique(control.meta.data[["Target"]])[4], ".1")
> rnb.plot.control.barplot(rnb.set.example, ctrl.probe)

Finally, the full control probe intensities can be retrieved using method qc:

> qc_data<-qc(rnb.set.example)

qc_data is a list with elements Cy3 and Cy5 containing all Infinium control probe intensities for
the green and red color channels respectively. It can be used for more advanced QC procedures.

4 Tailored Analysis: RnBeads Modules

In this section, we show how the package’s modules can be invoked individually given suitable
options and input data. Most modules operate on the RnBSet objects introduced in the previous
section. Some modules depend on data generated by other modules (c.f. Figure 1). We also
introduce useful parameter settings and report-independent stand-alone methods for methylation
analysis.

Note that the examples in this section operate on the complete dataset and therefore potentially
take longer to execute than the operations that were executed on the reduced dataset introduced
in the previous section.

To get started, let us initialize a new report directory prior to our analysis. Keep in mind that
RnBeads does not overwrite existing reports and thus the analysis fails when a report’s HTML
file or subdirectory already exists.

> report.dir <- file.path(analysis.dir, "reports_details")
> rnb.initialize.reports(report.dir)

Additionally, as we do not need to store the logging messages in a file and just want them printed,
we restrict logging to the console:

> logger.start(fname=NA)

4.1 Data Import

RnBeads supports multiple input formats for microarray-based and bisulfite sequencing data.
The following paragraphs focus on Infinium 450k methylation data sets. Section 5 describes in
details how bisulfite sequencing data can be loaded.

Here, we use a more standardized way to specify the input location compared to the one
in Section 2: the data.source argument. Its value is dependent on the nature of the input
data. Table 4.1 lists all supported data types together with the recommended format for the
data.source argument. Since the input data in our example consists of IDAT files, data.source
should be a vector of two elements, containing (1) the directory the IDAT files are stored in and
(2) the file containing the sample annotation table.

> data.source <- c(idat.dir, sample.annotation)

RnBeads 14

We can load the dataset into an RnBeadSet object:

> result <- rnb.run.import(data.source=data.source,
+ data.type="infinium.idat.dir", dir.reports=report.dir)
> rnb.set <- result$rnb.set

The new variable result is a list with two elements: the dataset (rnb.set) and a report ob-
ject (see Section 7.1). Every rnb.run.*() method creates a report. The generated import
report (import.html) contains information on the loaded dataset including data type, number
of loaded samples and sites, description of the parsed annotation table etc. If you wish to parse
a methylation dataset into an RnBSet object without producing an analysis report, you can use
rnb.execute.import:

> rnb.set <- rnb.execute.import(data.source=data.source,
+ data.type="infinium.idat.dir")

rnb.set is an object of class RnBeadRawSet. This S4 class inherits from class RnBSet which is
the main data container class in RnBeads and serves as input for many methods of the analysis
pipeline. Just like other RnBSet objects, the RnBeadRawSet class contains slots for sample anno-
tation (pheno) and methylation values of sites and predefined genomic regions (accessible by the
meth function). In addition, it contains raw microarray intensities (M and U functions), detection
p-values (dpval) and quality control information (qc):

> rnb.set
> summary(pheno(rnb.set))
> dim(M(rnb.set))
> summary(M(rnb.set))
> dim(meth(rnb.set))
> summary(meth(rnb.set))
> dim(meth(rnb.set, type="promoters"))
> summary(meth(rnb.set, type="promoters"))
> summary(dpval(rnb.set))
> str(qc(rnb.set))

Notably, RnBeads accepts GEO accession numbers as input. Here is an example of a somewhat
larger dataset, from another study on pluripotent and differentiated cells [2]:

> rnb.set.geo <- rnb.execute.import(data.source="GSE31848",
+ data.type="infinium.GEO")

As the dataset is fairly large, downloading and import might take a while. Note that data
sets loaded from GEO typically do not include detection p-values and QC probe information.
Therefore, most of the normalization methods and some of the subsequent reports and analyses
cannot be carried out. Examples include parts of the Quality Control module or probe filtering
based on detection p-values as performed by the Preprocessing module.

4.2 Quality Control

RnBeads generates quality control plots both for Infinium 450k and bisulfite sequencing data.
Experimental quality control for the Infinium 450k data is performed using the microarray control

RnBeads 15

Table 1: RnBeads input data types.

data.type data.source recommended formata

Infinium 450k data
infinium.idat.dir A character vector of length 1 or 2 containing the directory in

which the IDAT files are stored and (optionally) the filename of
the sample annotation table (if the latter is located in a different
directory)

infinium.GS.report A character vector of length 1 containing the filename of a Genome
Studio report

infinium.GEO A character vector of length 1 containing the GEO accession num-
ber

infinium.data.dir A character vector of length 1 giving the name of the target di-
rectory. The filenames in the directory should contain key words:
sample for the sample information table, beta for the table with
beta-values, pval for p-values table, and beads for bead counts

infinium.data.files A character vector of length 2 to 4. At minimum paths to the sam-
ple annotation table and to a table containing beta-values should
be given. Additionally, paths to a table with detection p-values,
and bead counts can be specified

Bisulfite Sequencing data
bs.bed.dir A character vector of length 3. It contains [1] the directory where

the methylation bed files can be found, [2] the filename of the
sample annotation table, and optionally [3] the index of the sample
annotation file column, which contains the file names

aAlternative formats of the data.source argument are possible; please refer to the R documentation of the
rnb.execute.import function

probe information which should be present in the input data. We recommend starting out from
the IDAT files which contain this information. Table 4.2 gives short description of each control
probe type represented on the array. The following paragraphs describe some QC plots targeting
Infinium 450k datasets only. For the quality control of bisulfite sequencing data, sequencing
coverage is taken into account and its distribution is visualized in a series of plots. For more
details see Section 5.

> rnb.run.qc(rnb.set, report.dir)

is the command which generates the QC report (qc.html). For Infinium data, this report
contains three major quality control plots: control boxplot, control barplot and negative control
boxplot that are briefly explained below.

Control Boxplot is a diagnostic plot showing the distribution of signal intensity for each of the
quality control probes in both of the channels (Figure 2). The expected intensity level (high,
medium, low or background) is given in the plot labels. The boxplots provide a useful tool for
detecting experimentally failed assays. Low quality samples, if any, will appear as outliers. When
examining the boxplot pay attention to the intensity scale.

Control Barplot focuses on individual samples. In case problematic behavior has been spotted
in the control boxplots, the low quality samples can be identified by inspecting the barplots. Here

RnBeads 16

Table 2: Types of Infinium 450k control probes.

Control type Purpose
Sample-independent controls

STAINING Monitor the efficiency of the staining step. These controls
are independent of the hybridization and extension step.

HYBRIDIZATION Monitor overall hybridization performance using synthetic
targets as a reference. The targets are present in the hy-
bridization buffer at three concentrations: low, medium and
high, which should result in three well separable intensity
intervals.

EXTENSION Monitor the extension efficiency of A, T, C, and G nu-
cleotides from a hairpin probe

TARGET REMOVAL Monitor efficiency of the stripping step after the extension
reaction

Sample-dependent controls
BISULFITE CONVERSION I Monitor bisulfite conversion efficiency as reported by In-

finium I design probes. Converted (C) and unconverted (U)
probes are present

BISULFITE CONVERSION II Monitor bisulfite conversion efficiency as reported by the In-
finium II design probes

SPECIFICITY I Monitor allele-specific extension for Infinium I probes. PM
probes should give high signal, while the MM probes should
give background signal levels

SPECIFICITY II Monitor allele-specific extension for Infinium II probes
NON-POLYMORPHIC Monitor the efficiency of all steps of the procedure by query-

ing a non-polymorphic base in the genome – one probe for
each nucleotide

NEGATIVE Monitor signal at bisulfite-converted sequences that do not
contain CpGs. Used to estimate the overall background of
the signal in both channels. Moreover, the detection p-value
for each probe are estimated based on the intensities of the
negative control probes

NORM Normalization controls are used to calculate the scaling fac-
tor for the Illumina default normalization

the intensity for each sample measured by each of the control probe types is shown (Figure 3).
The problematic samples should be excluded from the analysis by modifying the supplied sample
annotation sheet or RnBeadSet object (see Section 4.1).

Negative Control Boxplots show distributions of intensities for the approximately 600 negative
control probes which are present on the Infinium 450k array. The negative control probes are
specifically designed for estimating the background signal level in both channels. In both channels
the negative control probe intensities are expected to be normally distributed around a relatively
low mean (as a simple rule, the 0.9 quantile should be below 1000). Any strong deviations from
such a picture in one or more samples may indicate quality issues; discarding such samples could
be beneficial for downstream analyses.

RnBeads 17

For a loaded dataset stored in variable rnb.set, one can generate quality control plots directly.
For instance you can generate a boxplot specifying the type of quality control probe as the second
argument:

> rnb.plot.control.boxplot(rnb.set, "BISULFITE CONVERSION I")

To get a quality barplot, the second argument should be the unique identifier of the quality
control probe:

> rnb.plot.control.barplot(rnb.set, "BISULFITE CONVERSION I.2")

Negative control boxplots are generated with the following command:

> rnb.plot.negative.boxplot(rnb.set)

The quality control report of the example dataset indicates high experimental quality. The
quality boxplots for most of the controls show very compact intensity distributions. Let us,
however, consider an example of quality control output where the experimental quality of the
assay is suboptimal. In Figure 2 a boxplot of intensity measured by bisulfite conversion control
probes is given for a data set of 17 samples. It is easy to spot the outliers which show quite
high intensity in the green channel at probes for which background level intensities are expected
(probes 4, 5 and 6). In order to identify problematic samples, let us examine the control barplot
for one of the problematic probes BISULFITE COVERSION I.6 (Figure 3). Note that sample
CellLineA_1 has an intensity which is at least four times higher than that of any other sample.
This might indicate problems with bisulfite conversion and the problematic sample should be
discarded. Since the quality information-based filtering of the Infinium 450k samples is as a rule
performed via the inspection by the wet-lab researcher, low-quality samples could be removed,
for example, by manual editing of the sample annotation file and restarting the analysis on the
high-quality samples only.

Sample mixups The Infinium 450k BeadChip also contains a small number (65) of genotyping
probes. Their dbSNP identifiers and additional information can be obtained using the following
commands:

> annot450 <- rnb.annotation2data.frame(rnb.get.annotation("probes450"))
> annot450[grep("rs", rownames(annot450)),]

Despite a certain level of technical variation, each SNP takes one of the three possible β-value
levels: low (homozygous state, first allele), high (homozygous state, second allele) or intermediate
(heterozygous). Examining these values can be very useful for the identification of sample mixups,
especially in case of studies with genetically matched design. In this case, samples with the same
genetic background should have very similar values for each of the 65 SNPs. Clustered heatmaps
for the SNP-values are useful to obtain a global overview of genotype-related sample grouping
and similarities and thus provide an efficient way of detecting sample-mixups. Figure 4.2 gives
an example of such a heatmap. Such heatmaps are included into the quality control report by
default, but can also be individually generated with the following command:

> rnb.plot.snp.heatmap(rnb.set.unfiltered)

SNP distance heatmap is an alternative way to get an overview of the SNP probes. The
heatmap is a diagonal matrix visualizing coherence between each of the samples with respect to
their SNP probe patterns.

SNP barplots visualize the SNP-probe beta-values directly:

RnBeads 18

●
●

●

●
●●●●

●
●●

●

●●● ●●● ●●● ●●●0

20000

40000

60000

80000

Probe 1:
High

Probe 2:
High

Probe 3:
High

Probe 4:
Bgnd

Probe 5:
Bgnd

Probe 6:
Bgnd

Probe 7:
Bgnd

Probe 8:
Bgnd

Probe 9:
Bgnd

Probe10:
Bgnd

Probe11:
Bgnd

Probe12:
Bgnd

Probe

In
te

ns
ity

BISULFITE CONVERSION I: green channel

● ● ● ●● ●

●

●

●

●●●●●
●●● ●●●0

25000

50000

75000

100000

Probe 1:
Bgnd

Probe 2:
Bgnd

Probe 3:
Bgnd

Probe 4:
Bgnd

Probe 5:
Bgnd

Probe 6:
Bgnd

Probe 7:
High

Probe 8:
High

Probe 9:
High

Probe10:
Bgnd

Probe11:
Bgnd

Probe12:
Bgnd

Probe

In
te

ns
ity

BISULFITE CONVERSION I: red channel

Figure 2: An example quality control boxplot.

0

2000

4000

6000

CellLineA_1

CellLineA_2

CellLineA_3

CellLineA_4

CellLineA_5

CellLineA_6

CellLineA_7

CellLineA_8

CellLineA_9

CellLineA_10

CellLineA_11

CellLineA_12

CellLineA_13

CellLineA_14

CellLineA_15

CellLineA_16

CellLineA_17

CellLineA_18

CellLineA_19

CellLineA_20

CellLineA_21

CellLineA_22

CellLineB_1

CellLineB_2

Individual_1

Individual_2

Individual_3

Individual_4

Ind.Treated_1

Ind.Treated_2

Ind.Treated_3

Ind.Treated_4

In
te

ns
ity

BISULFITE CONVERSION I.6: BS Conversion I U3: green channel: Background

0

500

1000

1500

CellLineA_1

CellLineA_2

CellLineA_3

CellLineA_4

CellLineA_5

CellLineA_6

CellLineA_7

CellLineA_8

CellLineA_9

CellLineA_10

CellLineA_11

CellLineA_12

CellLineA_13

CellLineA_14

CellLineA_15

CellLineA_16

CellLineA_17

CellLineA_18

CellLineA_19

CellLineA_20

CellLineA_21

CellLineA_22

CellLineB_1

CellLineB_2

Individual_1

Individual_2

Individual_3

Individual_4

Ind.Treated_1

Ind.Treated_2

Ind.Treated_3

Ind.Treated_4

In
te

ns
ity

BISULFITE CONVERSION I.6: BS Conversion I U3: red channel: Background

Figure 3: An example quality control barplot.

RnBeads 19

> rnb.plot.snp.barplot(rnb.set.unfiltered, samples(rnb.set)[1])

Note that when executing rnb.run.preprocessing in the earlier example, we removed the SNP
probe information from the RnBSet object. Hence, these plots have to be done based on the
unfiltered object.

Finally, an optional SNP boxplot gives a global picture of the SNP probes and are helpful for
the cases in which all the analyzed samples have the same genetic background (e.g. samples
of of the same cell line). To include the SNP boxplot into the quality control report use the
corresponding option:

> rnb.options(qc.snp.boxplot=TRUE)

4.2.1 Sex Prediction

RnBeads includes a method for inferring the sex of methylation samples. It is accessible using the
function rnb.execute.sex.prediction. Currently, the classifier is applicable for Infinium 450k,
EPIC and bisulfite sequencing datasets with either signal intensity or coverage information. Sex
prediction is automatically executed when loading those datasets from IDAT/BED files; it can
be disabled using the corresponding options, as shown below:

> rnb.options(import.sex.prediction = FALSE)

The methods for inferring sexes from Infinium datsets are different from those for bisulfite
sequencing data sets. For Infinium datasets, the assumption made in RnBeads is that the quan-
tity (number) of X and Y chromosomes in a sample is reflected in the signal intensities on the
array. The measurements used in the prediction are MIX : mean increase in X and MIY : mean
increaase in Y. These metrics are defined as IX − Ia and IY − Ia, where IX , IY and Ia denote
the average probe signal intensity on the X chromosome, the Y chromosome and all autosomes,
respectively. Probes known to be cross-reactive, as well as those overlapping with known SNPs,
are ignored in the calculations presented here. RnBeads uses these metrics in a logistic regression
classifier to predict sex of a sample, MIY > 3MIX+3 indicates male sex. Figure 4.2.1 shows the
mean increase values for over 9,200 samples with known sex, as well as the decision boundary of
the classifier applied in RnBeads.
For bisulfite sequencing (RRBS or WGBS) datasets, RnBeads compares the sequencing cover-
ages for the sex chromosomes to those of the autosomes. From these values, a logistic regression
classifier is employed to predict class probabilities of each sample for the male and female cate-
gory. Both the predicted probability and the predicted class are added to the RnBSet’s sample
annotation. Coefficients for the logistic regression classifier were trained on a large dataset (c.f.
Figure 3) containing sex annotated samples.

4.2.2 CNV estimation

Copy number variation (CNV) can be estimated from signal intensity values of BeadArray
data sets. RnBeads’ CNV estimation module comes with two flavors: a reference-based and
a reference-free approach. We recommend to use the reference-free approach, since validation of
the reference data set is still to be conducted. CNV estimation is only to be executed within the
QC module and not individually. It is activated by:

> rnb.options(qc.cnv=TRUE)
> result <- run.run.qc(rnb.set.unfiltered,dir.reports=report.dir)

RnBeads 20

In
d.

Tr
ea

te
d_

1

In
di

vi
du

al
_1

In
di

vi
du

al
_3

In
d.

Tr
ea

te
d_

3

In
di

vi
du

al
_4

In
d.

Tr
ea

te
d_

4

In
di

vi
du

al
_2

In
d.

Tr
ea

te
d_

2

C
el

lL
in

eB
_2

C
el

lL
in

eB
_1

C
el

lL
in

eA
_1

C
el

lL
in

eA
_2

C
el

lL
in

eA
_3

C
el

lL
in

eA
_7

C
el

lL
in

eA
_4

C
el

lL
in

eA
_6

C
el

lL
in

eA
_8

C
el

lL
in

eA
_1

0

C
el

lL
in

eA
_5

C
el

lL
in

eA
_9

C
el

lL
in

eA
_1

6

C
el

lL
in

eA
_1

5

C
el

lL
in

eA
_1

4

C
el

lL
in

eA
_2

2

C
el

lL
in

eA
_2

1

C
el

lL
in

eA
_1

9

C
el

lL
in

eA
_1

8

C
el

lL
in

eA
_1

7

C
el

lL
in

eA
_2

0

C
el

lL
in

eA
_1

2

C
el

lL
in

eA
_1

1

C
el

lL
in

eA
_1

3

rs2804694
rs348937
rs10936224
rs4742386
rs5936512
rs11034952
rs739259
rs6546473
rs213028
rs2032088
rs10846239
rs1467387
rs877309
rs1019916
rs6982811
rs1040870
rs1520670
rs1495031
rs845016
rs1484127
rs939290
rs3818562
rs951295
rs2385226
rs5987737
rs10882854
rs133860
rs7746156
rs6426327
rs1414097
rs264581
rs9363764
rs6991394
rs5926356
rs2235751
rs5931272
rs11249206
rs1416770
rs2857639
rs2468330
rs7660805
rs2521373
rs10774834
rs2208123
rs13369115
rs1510189
rs1941955
rs10033147
rs654498
rs4331560
rs1510480
rs472920
rs2959823
rs9292570
rs10796216
rs1945975
rs9839873
rs6626309
rs10457834
rs2125573
rs798149
rs6471533
rs3936238
rs966367
rs715359

0.2 0.4 0.6 0.8
Value

0
20

40
60

80
10

0

Color Key
and Histogram

C
ou

nt

Figure 4: SNP heatmap

RnBeads 21

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−15

−10

−5

0

−6 −3 0 3
Increase of mean signal on X chromosome (thousand)

In
cr

ea
se

 o
f m

ea
n

si
gn

al
 o

n
Y

 c
hr

om
os

om
e

(t
ho

us
an

d)

●

●

female

male

Figure 5: Mean signal increase in the X and Y chromosomes of 4587 female and 4633 male sam-
ples, represented by red and blue points, respectively. The presented dataset includes
tumor and normal samples from 30 tumor types, downloaded from The Cancer Genome
Atlas (TCGA). The solid black line shows the decision boundary in the classifier ap-
plied by RnBeads. Training a logistic regression model on the presented data produces
an almost identical decision boundary.

RnBeads 22

Table 3: Dataset used to train coefficients of the sex prediction logistic regression model for
bisulfite sequencing datasets.

Dataset Source Organism Method #total #female #male
BLUEPRINT
(08/2016 release)

BLUEPRINT human WGBS 188 99 89

DEEP data (ver-
sion 11/2016)

DEEP human WGBS 31 14 17

Kiel Cohort IKMB Kiel human RRBS 239 106 133
Ewing sarcoma
tumor samples

GEO GSE88826 human RRBS 96 53 42

Reizel GEO GEO GSE60012 mouse RRBS 152 94 58
Complete 706 366 339

The estimation is based on the GLAD package. We obtained the reference data set from two
published twin studies (GSE85647 and GSE100940) as the median signal intensity for the probes.
To activate the reference-based mode, you need to set:

> rnb.options(qc.cnv.refbased=TRUE)

In the default mode, RnBeads computes median signal intensities for all samples in the data
set and uses this as the reference to detect potential outliers with respect to signal intensity.

4.3 Preprocessing

Several steps might be required to prepare the data for downstream analysis. Importantly, probe
and sample filtering is carried out according to default or user specified criteria. Furthermore,
for Infinium data, it is usually recommended to normalize the data. The Preprocessing module
takes care of this. In a first filtering step, probes and samples that could bias the normaliza-
tion procedure are removed. Subsequently, normalization is conducted for microarray datasets.
Finally, additional filtering steps are potentially executed. The following commands run these
steps and return a preprocessed RnBSet object:

> rnb.set.unfiltered <- rnb.set
> result <- rnb.run.preprocessing(rnb.set.unfiltered, dir.reports=report.dir)
> rnb.set <- result$rnb.set

The following two subsections contain details on the filtering and normalization steps, respec-
tively.

4.3.1 Filtering

RnBeads facilitates filtering of sites and samples according to a variety of criteria. As noted above,
the filtering steps are executed in two stages: one before and the other after data normalization4.
In the default pipeline, these steps exclude Infinium probes overlapping with too many SNPs

4Note: for bisulfite sequencing date, no normalization is performed and hence the two filtering stages are executed
consecutively.

http://www.blueprint-epigenome.eu/
http://www.deutsches-epigenom-programm.de/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE88826
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60012
http://bioconductor.org/packages/release/bioc/html/GLAD.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85647
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100940

RnBeads 23

and sites with too many missing values. Additionally, if detection p-values are available, both
sites and samples are filtered using a greedy approach (see the generated report for details).

You can also invoke individual filtering steps explicitly using the corresponding rnb.execute.*
functions:

> nrow(meth(rnb.set.unfiltered)) # the number of sites in the unfiltered object
> # Remove probes outside of CpG context
> rnb.set.filtered <- rnb.execute.context.removal(rnb.set.unfiltered)$dataset
> nrow(meth(rnb.set.filtered)) # the number of CpG sites in the unfiltered object
> # SNP filtering allowing no SNPs in the probe sequence
> rnb.set.filtered <-
+ rnb.execute.snp.removal(rnb.set.filtered, snp="any")$dataset
> # the number of CpG sites in the unfiltered object
> # that do not contain a SNP
> nrow(meth(rnb.set.filtered))
> # Remove CpGs on sex chromosomes
> rnb.set.filtered <- rnb.execute.sex.removal(rnb.set.filtered)$dataset
> nrow(meth(rnb.set.filtered))
> # Remove probes and samples based on a greedy approach
> rnb.set.filtered <- rnb.execute.greedycut(rnb.set.filtered)$dataset
> nrow(meth(rnb.set.filtered))
> # Remove probes containing NA for beta values
> rnb.set.filtered <- rnb.execute.na.removal(rnb.set.filtered)$dataset
> nrow(meth(rnb.set.filtered))
> # Remove probes for which the beta values have low standard deviation
> rnb.set.filtered <-
+ rnb.execute.variability.removal(rnb.set.filtered, 0.005)$dataset
> nrow(meth(rnb.set.filtered))

Some of these filtering criteria do not apply to bisulfite sequencing data while others are added.
See Section 5 for more details.

4.3.2 Normalization

For Infinium 450k data RnBeads includes possibilities for normalization of the microarray sig-
nals in order to decrease the level of technical noise and eliminate the systematic biases of the
microarray procedure.

Currently, RnBeads supports several normalization methods:

• manufacturer-recommended scaling to the internal controls, implemented in the methylumi
R-package [8],

• SWAN-normalization [4], as implemented in the minfi package [9],

• data-driven normalization methods [6] implemented in the wateRmelon package,

• the BMIQ procedure [10].

In addition, background subtraction methods implemented in the methylumi package – e.g.
NOOB and Lumi – can be applied in combination with any of the above normalization meth-
ods [11]. Table 4.3.2 summarizes supported normalization and background correction methods.

RnBeads 24

Table 4: Infinium 450k normalization and background subtraction methods.

Method Backend package Option Reference
Normalization (normalization.method=)

Normalization to internal controls methylumi "illumina" [11, 8]
SWAN minfi "swan" [4, 9]
"Data-driven" normalization wateRmelon "wm.*" a [6]
Functional normalization minfi minfi.funnorm [21, 9]
BMIQ BMIQ "bmiq" b [10]

Background correction (normalization.background.method=)
NOOB methylumi "methylumi.noob" [11, 8]
Lumi methylumi "methylumi.lumi" [11, 8]

a* is a placeholder for the wateRmelon normalization methods, e.g. "dasen", "nanet" etc.
bunlike other normalization and background subtraction methods BMIQ is applied to the summarized methy-

lation calls, so it can be used even if raw intensity data were not loaded, like in case of GEO or data.dir data
types

The preprocessing report includes a number of diagnostic plots that visualize the effects of the
normalization procedure: density plots of the methylation values prior and subsequent to the
normalization procedure, histograms of the per-data point beta-value differences, and others.

Note that the data contained within a loaded RnBeadRawSet object can be normalized without
generating a report:

> rnb.set.norm <- rnb.execute.normalization(rnb.set.unfiltered, method="illumina",
+ bgcorr.method="methylumi.noob")

4.4 Covariate Inference

This optional module facilitates the inference of additional dataset covariates. For instance,
surrogate variables can be estimated to detect and adjust for possible hidden confounders in the
dataset. Additionally, the effects of cell type contributions can be assessed.

Note that this module is disabled by default. You can enable it for the rnb.run.analysis
command using the following option setting:

> rnb.options(inference=TRUE)

The annotation inference module can be executed individually using its dedicated function:

> rnb.set <- rnb.run.inference(rnb.set, report.dir)$rnb.set

4.4.1 Surrogate Variable Analysis

Surrogate Variable Analysis (SVA) [12] has become a popular tool to adjust for hidden con-
founders in expression microarray analysis and can also be employed in the DNA methylation
setting. RnBeads uses the sva package [13] to infer surrogate variables which can be related to
other sample annotation and can be used to adjust differential methylation analysis using the
limma method. In order to compute SVs for given target variables, to add the covariates to an
RnBSet and to generate a corresponding report, consider the following example:

RnBeads 25

> rnb.options(
+ inference.targets.sva=c("Sample_Group"),
+ inference.sva.num.method="be"
+)
> rnb.set.new <- rnb.run.inference(rnb.set, report.dir)$rnb.set

If you just want to conduct the analysis without generating a report, you can compute the
SVs and add the information to an RnBSet the following way:

> sva.obj <- rnb.execute.sva(rnb.set, cmp.cols="Sample_Group", numSVmethod="be")
> rnb.set <- set.covariates.sva(rnb.set, sva.obj)

Section 6.5.4 contains a recipe on how these covariates can be used for adjustment during
differential methylation detection.

4.4.2 Inference of Cell Type Contributions

RnBeads is capable of tackling cell type heterogeneity of the analyzed samples. In case methy-
lomes of reference cell types are available, the annotation inference module will try to estimate
the relative contributions of underlying cell types in target data. RnBeads applies the method by
Houseman et al. [14]. The following paragraphs give details on how this algorithm is incorporated
in RnBeads. Section 6.6 describes the usage of an alternative reference-free approach.

Methylation profiles of reference cell types should be processed together with the target data.
Assignment of the samples to cell types is done via a special column of the sample annotation file
set by the inference.reference.methylome.column. The column should map each reference
sample to one of the cell types, while the target samples should be assigned with missing (NA)
values. As an example, let the reference methylome column be called "CellType". After setting
the option:

> rnb.options(inference.reference.methylome.column="CellType")

RnBeads will automatically activate the cell type section of the annotation inference module.
The estimation procedure from [14] consists of two major steps. First, the marker model is fit
to the reference methylome data, to identify CpG sites, methylation level of which is associated
with the cell type. To limit computational load at this step, RnBeads by default uses only
50,000 CpGs with highest variance across all samples. Alternative number can be set via the
inference.max.cell.type.markers option. The final number of selected cell type markers is
controlled by inference.top.cell.type.markers which is 500 by default. The report visualizes
the selection by plotting the F-statitistics of the marker model fit. In the second step, the marker
model coefficients for selected markers CpGs are used for estimation of cell type contributions
by solving a (constrained) quadratic optimization problem for corresponding vectors of each of
the target methylomes a.k.a. the projection. The inferred contributions will be plotted in the
annotation inference report and saved in the RnBSet object and later used as covariates in the
association analysis to adjust for the variation in cell type composition. The latter option is only
available in case "limma" method is used for the testing differential methylation.

Alternatively, the reference-based analysis of cell type contributions can be performed without
report generation:

> ct.obj<-rnb.execute.ct.estimation(rnb.set, cell.type.column="CellType",
+ test.max.markers=10000, top.markers=500)

RnBeads 26

The returned S3 object of class CellTypeInferenceResult contains all information about the
estimation procedure and can be supplied as an argument to functions rnb.plot.marker.fstat
and rnb.plot.ct.heatmap. Cell type contributions are available by direct slot access:

> ct.obj$contributions

for raw coefficients of the projection model,

> ct.obj$contributions.constr

to get constrained (non-negative) coefficients which resemble cell type counts and sum up to a
small value < 1 .

4.4.3 Age Prediction

In addition to the inference possibilities mentioned before, RnBeads is capable of predicting
human age from DNA methylation data. The prediction was initially performed by building
an elastic net regression model on the methylation values of the CpG sites. Performance was
evaluated by testing the prediction on several independent test data sets.

Basically, the age prediction section of RnBeads is activated by setting:

> rnb.options(inference.age.prediction=TRUE)

Or by performing the command

> rnb.execute.age.prediction(rnb.set)

The difference between the first and the second option is that the first one creates a report,
whereas the second modifies the rnb.set object by adding additional columns predicted_ages
and age_increase. The first one corresponds to the predicted age by the prediction algorithm
and the second to the difference between predicted and annotated age.

Then, the age prediction section is able to run in two different modes. The default mode runs
the prediction by loading a predefined predictor in the form of a CSV-file, which then is used to
predict human age from DNA methylation data. More specifically, the predefined predictor con-
sists of coefficients of an elastic net regression run for 761 CpG sites used in the final age predic-
tion. As a second possibility, the user can set the option inference.age.prediction.predictor
to a path to a predictor that was previously trained in a RnBeads run. For instance, this predictor
could be trained by running the second mode of the age prediction, which is the training mode.
Training is performed by either one of these commands:

> rnb.execute.training(rnb.set,predictor.path)
> rnb.options(inference.age.prediction.training=TRUE)

In the first case, a new predictor is trained based on the methylation information in the rnb.set
object and written as a CSV-file at the given predictor.path, which has to be a full path. The
second option requires running rnb.run.inference to create a new predictor that then is written
into the RnBeads data folder and sets the option inference.age.prediction.predictor to the
corresponding one.

Additionally, by setting the option inference.age.prediction.cv, a 10-fold cross-validation
is performed to serve as an accuracy measure for the training functionality. Setting the option
inference.age.column enables RnBeads to read the corresponding age annotation column of
the data set, which enables the creation of evaluation plots. These include scatterplots of the
deviation between annotated and predicted age as well as density plots for the differences between
predicted and annotated ages. On default, inference.age.column is set to age.

RnBeads 27

4.4.4 Immune Cell Content Estimation

The LUMP algorithm for estimating immune cell content was developed by Dvir Aran, Marina
Sirota and Atul J. Buttea for Infinium 450k data [22]. It is implemented in RnBeads for all sup-
ported platforms in the genome assembly hg19: Infinium 27k, Infinium 450k, MethylationEPIC
and sequencing-based data.

By default, immune cell content estimation is attempted when the Covariate Inference module
is run. Upon successful completion of the LUMP algorithm, the sample annotation table receives
a column named Immune Cell Content (LUMP) that lists the estimated immune cell fractions
for the samples. If such a column already exists, its contents will be overwritten. LUMP can be
disabled using the following option:

> rnb.options(inference.immune.cells=FALSE)

The dedicated function to obtain LUMP estimates expects a methylation dataset as a parameter:

> immune.content <- rnb.execute.lump(rnb.set)

If none of the CpGs used in LUMP is measured in the dataset of interest, the return value
is NULL. Otherwise, the function returns a numeric vector with immune cell fractions for every
sample, that is, values between 0 and 1. The vector also has an integer attribute named "sites"
that stores the number of CpGs or probes used in estimating immume cell proportions for the
specific dataset.

4.5 Exploratory Analysis

You guessed it: the command for running the exploratory analysis module is

> rnb.run.exploratory(rnb.set, report.dir)

Note that depending on the options settings and types of enabled plots, this might take a while.
It creates a report that lets you inspect the association of various sample traits with each other,
with quality control probes (if available), as well as with sparse representations of the methylation
profiles. This module also contains sections dedicated to inspecting methylation profiles of sample
groups, as well as unsupervised learning techniques to cluster samples. The corresponding report
file is exploratory.html.

4.5.1 Low-dimensional Representation and Batch Effects

The following series of commands calculates the sparse representations, i.e. by Principal Compo-
nent Analysis (PCA) and Multidimensional Scaling (MDS) for single CpG sites and promoters
and plots them:

> dred.sites <- rnb.execute.dreduction(rnb.set)
> dred.promoters <- rnb.execute.dreduction(rnb.set, target="promoters")
> dred <- list(sites=dred.sites, promoters=dred.promoters)
> sample.colors <- ifelse(pheno(rnb.set)$Sample_Group=="hESC", "red", "blue")
> plot(dred[[1]]mdseuclidean, col=sample.colors,
+ xlab="Dimension 1", ylab="Dimension 2")

The resulting plot can be seen in Figure 6. Subsequently, let us investigate associations of
sample annotations:

RnBeads 28

●

●

●

●

●

●

●

●

●

●

●

●

−40 −20 0 20 40

−
30

−
20

−
10

0
10

20

Dimension 1

D
im

en
si

on
 2

Figure 6: Multidimensional scaling applied to the example dataset. Points are colored according
to cell type: Blue: iPSCs, Red: ESCs

> assoc <- rnb.execute.batcheffects(rnb.set, pcoordinates=dred)
> str(assoc)

The initiated object contains slots for the association of sample annotations with each other
(assoc$traits) and with the principal components calculated in the previous step (assoc$pc:
a list containing elements for each region type; here: sites and promoters). Each of these
slots summarizes whether a test could be conducted (failures), which kind of test was ap-
plied (tests), the resulting p-value (pvalues) and, if calculated, a table of correlations.
The batch.dreduction.columns option determines which sample annotations are processed
(see Section 6.2). By default, these are all columns in the table pheno(rnb.set) which have
a sufficient number of samples per group and not too many resulting groups (controlled by the
min.group.size and max.group.count parameters). However, you can restrict the analysis to
certain columns via commands like:

> rnb.options(exploratory.columns=c("Sample_Group", "Passage_No"))

Next, one can compute associations of the principal components with the Infinium control probes
(if that information is available):

> assoc.qc <- rnb.execute.batch.qc(rnb.set, pcoordinates=dred)

A good example for useful visualizations is the so-called deviation plots. These plots show the
median β values and their percentiles in a “snake-like” curve. The plot can be annotated with
coloring according to site or region features. The code snippet below creates Figure 7 which
illustrates the beta value distributions according to probe design type:

> probe.types <- as.character(annotation(rnb.set)[, "Design"])
> pdf(file="deviationPlot_probeType.pdf", width=11)
> deviation.plot.beta(meth(rnb.set), probe.types,
+ c.legend=c("I"="blue", "II"="red"))
> dev.off()

RnBeads 29

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β

Figure 7: Deviation plot of the example dataset. The blue line corresponds to the median methy-
lation value among all samples, the yellow bands to the 5-th and 95-th percentiles.
Coloring below the horizontal axis indicates probe types (Blue: Infinium Design Type
I, Red: Infinium Design Type II).

Note that creating such a plot requires a few minutes.

4.5.2 Clustering

Use the following command to apply all combinations of clustering parameter settings and con-
duct the corresponding clusterings on the DNA methylation levels of individual CpGs as well as
promoter regions:

> clusterings.sites <- rnb.execute.clustering(rnb.set, region.type="sites")
> clusterings.promoters <-
+ rnb.execute.clustering(rnb.set, region.type="promoters")

The values returned by the commands above are lists of clustering results. Each element in
the list is an object of type RnBeadClustering. Currently, RnBeads performs agglomerative
hierarchical clustering in conjunction with three distance metrics and three linkage methods.
The distance metrics are correlation-based (1 − ρ(x, y)), Manhattan and Euclidean distances.
The agglomeration methods are average, complete and median-based linkages. Here’s a little
recipe which lets you create a clustered heatmap of the methylation values according to the first
clustering of the first 100 promoters (Figure 8) using the following commands:

> # Get the methylation values
> X <- meth(rnb.set, type="promoters")[1:100,]
> # Convert the clustering result to a dendrogram
> # Index 7 holds euclidean distance, average linkage clustering
> cresult <- clusterings.promoters[[7]]@result
> attr(cresult, "class") <- "hclust"
> cresult <- as.dendrogram(cresult)

RnBeads 30

58
15

38
10

13
_R

05
C

01

58
15

38
10

13
_R

02
C

01

58
15

38
10

13
_R

01
C

01

58
15

38
10

13
_R

06
C

02

58
15

38
10

13
_R

01
C

02

58
15

38
10

13
_R

06
C

01

58
15

38
10

13
_R

03
C

01

58
15

38
10

13
_R

04
C

02

58
15

38
10

13
_R

04
C

01

58
15

38
10

13
_R

03
C

02

58
15

38
10

13
_R

05
C

02

58
15

38
10

13
_R

02
C

02

31
2858160141565754658645374845689325479495099872388942498683625286362778234929118177172831289
3167
52217047433797451011595309680193557592646942907620936627514038398644224855337341291378611667100

0.2 0.6
Value

0
20

0
40

0
Color Key

and Histogram
C

ou
nt

Figure 8: Clustered heatmap of 100 promoters.

> # Save the heatmap as pdf file
> pdf(file="promoter_heatmap.pdf")
> heatmap.2(X, Rowv=TRUE, Colv=cresult, dendrogram="both",
+ scale="none", trace="none")
> dev.off()

4.6 Differential Methylation Analysis

Differential methylation analysis in RnBeads can be conducted on the site level as well as on the
genomic region level. Genomic regions are inferred from the annotation data (see Section 6.2).
As seen before, a comprehensive analysis can be obtained by the corresponding rnb.run.*.
command:

> rnb.run.differential(rnb.set, report.dir)

Note that this analysis module requires more runtime than other modules. Specifically computing
differential methylation can be achieved using the following steps:

> # Specify the sample annotation table columns for which
> # differential methylation is to be computed

RnBeads 31

> cmp.cols <- "Sample_Group"
> # Specify the region types
> reg.types <- c("genes", "promoters")
> # Conduct the analysis
> diffmeth <- rnb.execute.computeDiffMeth(rnb.set, cmp.cols,
+ region.types=reg.types)

Differential methylation for each selected annotation column is performed in a one-vs-all manner,
i.e. samples in each group are compared to all samples not in the group. This is done for
each group and annotation column. Depending on the number of comparisons, this can take a
while. The differential.comparison.columns.all.pairwise option facilitates conducting
all pairwise group comparisons on the specified columns. Handle this option with care, as
the number of comparisons can explode very quickly if the number of groups specified in an
annotation column is large. In order to define custom comparisons between groups you can edit
the sample annotation sheet before data loading. For instance, if you want to carry out a specific
comparison in addition to the already defined comparisons, consider adding a column containing
the labels "Group1" and "Group2" for specific samples and "NA" for the others. Alternatively,
you can use addPheno() to add sample annotation to the RnBSet object as seen before.

Let us inspect the resulting RnBDiffMeth object (an S4 class) more closely.

> str(diffmeth)

It contains tables storing the differential methylation information for each comparison for both
site and region level. You can see the comparisons that were conducted using
get.comparisons(diffmeth). The regions that were compared can be seen with
get.region.types(diffmeth). Information on which groups have been compared in each com-
parison can be obtained by get.comparison.grouplabels(diffmeth). For a given comparison
and region type you can get get a table containing information on differential methylation using
get.table():

> comparison <- get.comparisons(diffmeth)[1]
> tab.sites <- get.table(diffmeth, comparison, "sites", return.data.frame=TRUE)
> str(tab.sites)
> tab.promoters <- get.table(diffmeth, comparison, "promoters",
+ return.data.frame=TRUE)
> str(tab.promoters)

Below you can find the most important columns of the differential methylation tables on the site
level
(tab.sites from the code above):

mean.g1, mean.g2: mean methylation in each of the two groups

mean.diff: difference in methylation means between the two groups: mean.g1-mean.g2. In
case of paired analysis, it is the mean of the pairwise differences.

mean.quot.log2: log2 of the quotient in methylation: log2
mean.g1+ε
mean.g2+ε , where ε = 0.01. In case

of paired analysis, it is the mean of the pairwise quotients

diffmeth.p.val: p-value obtained from a two-sided Welch t-test or alternatively from linear
models employed in the limma package (which type of p-value is computed is specified in

RnBeads 32

the differential.site.test.method option). In case of paired analysis, the paired Student’s
t-test is applied.

max.g1, max.g2: maximum methylation level in group 1 and 2 respectively

min.g1, min.g2: minimum methylation level in group 1 and 2 respectively

sd.g1, sd.g2: standard deviation of methylation levels

min.diff: minimum of 0 and the smallest pairwise difference between samples of the two groups

diffmeth.p.adj.fdr: FDR adjusted p-values of all the sites

combinedRank: mean.diff, mean.quot and t.test.p.val are ranked for all sites. This aggre-
gates them using the maximum, i.e. worst rank of a probe among the three measures

and the region level (e.g. tab.promoters):

mean.mean.g1, mean.mean.g2: mean of mean methylation levels for group 1 and 2 across all
probes in a region

mean.mean.diff: mean difference in means across all sites in a region

mean.mean.quot.log2: log2 of the mean quotient in means across all sites in a region

comb.p.val: combined p-value using a generalization of Fisher’s method [3]

comb.p.adj.fdr FDR adjusted combined p-value

num.sites: number of sites associated with the region

combinedRank: mean.mean.diff, mean.mean.quot.log2 and comb.p.val are ranked for all re-
gions. This column aggregates them using the maximum, i.e. worst rank of a probe among
the three measures

For explanations on additional columns and more details be referred to the corresponding re-
port (differential.html) and the help pages (?computeDiffTab.site,?computeDiffTab.region).
In an RnBeads analysis, we recommend to conduct differential methylation analysis based on the
combined ranking score. It combines absolute and relative effect sizes as well as p-values from
statistical modeling into a single score. The lower the combined rank, the higher is the degree of
differential methylation. I.e. when you sort the list according to their combined rank, the best
ranking sites will be at the top of the list, and when you work your way towards the bottom of
the list, false positives become more likely.

> dmps <- tab.sites[order(tab.sites[, "combinedRank"]),]
> summary(dmps[1:100,])
> summary(dmps[1:1000,])

However, traditional, cutoff-based approaches are also possible:

> which.diffmeth <- abs(dmps[, "mean.diff"])>0.2 & dmps$diffmeth.p.adj.fdr<0.05
> dmps.cutoff <- dmps[which.diffmeth,]

RnBeads 33

Figure 9: Volcano plots for promoter differential methylation comparing hESCs against hiPSCs.

Note that you can specify how p-values are computed by using RnBeads’
’differential.site.test.method’ option. Currently supported are linear modeling using the
limma package and regular t-tests.

The following code creates a volcano plot comparing effect size and significance for all promoter
regions (see Figure 9):

> dmrs <- get.table(diffmeth, comparison, "promoters")
> plot(dmrs[, "mean.mean.diff"], -log10(dmrs[, "comb.p.val"]),
+ xlab="mean difference", ylab="-log10(combined p-value)", col="blue")

4.6.1 Differential Variability Analysis

In addition to comparing mean methylation levels inside groups with each other, the variances
inside each group can be used to detect differences among them. For this purpose, RnBeads
employs a similar approach to the one used for differential methylation. To conduct differential
variability (together with differential methylation) analysis, execute the following lines of code:

> rnb.options("differential.variability"=TRUE)
> rnb.run.differential(rnb.set,report.dir)

To conduct solely differential variability analysis (without report generation), one can call:

> cmp.cols <- "Sample_Group"
> reg.types <- c("genes","promoters")
> diff.var <- rnb.execute.diffVar(rnb.set,cmp.cols,region.types=reg.types)
> comparison <- get.comparisons(diff.var)[1]
> tab.sites <- get.table(diff.var,comparison,"sites",return.data.frame=TRUE)
> tab.genes <- get.table(diff.var,comparison,"genes",return.data.frame=TRUE)

RnBeads 34

After this operation, the tables contained in the diff.var object (of class RnBDiffMeth)
possess different columns in comparison to differential methylation. Those columns are (from
tab.sites above):

var.g1, var.g2: variances in each of the two groups

var.diff: differences between the variances found is the two groups: var.g1-var.g2.

var.log.ratio: log2 of the quotient of variances: log2
var.g1+ϵ
var.g2+ϵ , with ϵ = 0.01.

diffVar.p.val: p-value resulting from employing the differential variability test specified in
the option differential.variability.method. Those are either ‘diffVar’ from the ‘missMethyl’
package or the iEVORA algorithm.

diffVar.p.adj.fdr: FDR adjustment of the above p-value.

combinedRank.var: var.diff, var.log.ratio and diffVar.p.val for all sites. The rank is
computed as the maximum, i.e. worst rank among these values.

For the table tab.genes (i.e. the region level), the columns are:

mean.var.g1, mean.var.g2: mean of variances for both groups across all sites in the region.

mean.var.diff: mean difference between the probe variances in the two groups.

mean.var.log.ratio: mean difference between the probe quotients in the two groups.

comb.p.val.var: combined p-value for the region, combined as for differential methylation.

comb.p.adj.var.fdr: FDR adjustment of the above p-value.

combinedRank.var: mean.var.diff, mean.var.log.ratio and comb.p.val.var for all regions.
The rank is computed as the worst rank among those.

Similar to differential methylation, the differential variability module adds diagnostic plots to
the RnBeads report in differential.html. Enrichment analysis is performed analogously to
differential methylation (see below).

4.6.2 Paired Analysis

Upon specifying the corresponding options, RnBeads can also take into account sample pairing
information when computing p-values. Suppose you have a sample annotation table like this one5:

sample individual diseaseState
sample_1 Bruce normal
sample_2 Bruce tumor
sample_3 Clark normal
sample_4 Clark tumor
sample_5 Peter normal
sample_6 Peter tumor

Further suppose, you want to compare tumor vs normal but with the pairing information by
the patient/individual. Then you would apply the following option setting before running the
analysis:

5Note: while we use the first names of super-heroes in this table for instructive purposes, you should never reveal
patient names that have not been pseudonymized in your analysis

RnBeads 35

> rnb.options("differential.comparison.columns"=c("diseaseState"),
+ "columns.pairing"=c("diseaseState"="individual"))

Note, that since the dataset used in this vignette has no column called diseaseState, the option
settings above will cause some the examples in the next sections to fail. So, revert the option
setting before continuing:

> rnb.options("differential.comparison.columns"=NULL,
+ "columns.pairing"=NULL)

4.6.3 Adjusting for Covariates in the Differential Analysis

When the ’differential.site.test.method’ option is set to ’limma’ (default), you can spec-
ify columns of potential confounding factors that should be taken into account when computing
the site specific p-values. Again, setting the corresponding option prior to analysis is the key
here:

> rnb.options("covariate.adjustment.columns"=c("Passage_No"))
> diffmeth.adj <- rnb.execute.computeDiffMeth(rnb.set, cmp.cols,
+ region.types=reg.types)

4.6.4 Enrichment Analysis of Differentially Methylated Regions

RnBeads allows you to characterize differentially methylated regions by computing enrichments
for Gene Ontology (GO) [16] terms and for custom genomic annotations using the LOLA tool [17].
You can active these analyses for your RnBeads runs using the corresponding options:

> rnb.options("differential.enrichment.go"=TRUE)
> rnb.options("differential.enrichment.lola"=TRUE)

If you want to manually extract the enrichment results, you can use RnBeads’ build-in functions.
To compute GO enrichments from the computed differential methylation results you can use the
following commands (takes a while because an online GO database is queried for each comparison,
region type and for different differential methylation rank cutoffs):

> enrich.go <- performGoEnrichment.diffMeth(rnb.set, diffmeth, verbose=TRUE)

The result is a nested list storing enrichment tables for each comparison, ontology, differential
methylation rank cutoff and direction of differential methylation. Each element in this nested
list corresponds to a result computed using the GOStats package [18]. It contains enrichment
odds ratios and p-values. For instance, let us inspect the enrichment of the 500 highest ranking
hypomethylated promoters (in ESCs compared to iPSCs) for biological process (BP) ontology
terms:

> enrich.table.go <-
+ enrich.go[["region"]][[comparison]][["BP"]][["promoters"]][["rankCut_500"]][["hypo"]]
> class(enrich.table.go)
> summary(enrich.table.go)

In addition, RnBeads supports enrichment analyses of differential methylation results using the
LOLA tool [17]. This tool facilitates enrichment analyses of arbitrary genomic and epigenomic
annotations using Fisher’s exact test. To run a LOLA analysis manually, you first need to obtain
a corresponding database. For instance, to download the core database from the tool website to
a temporary destination, execute the following code:

RnBeads 36

> lolaDest <- tempfile()
> dir.create(lolaDest)
> lolaDirs <- downloadLolaDbs(lolaDest, dbs="LOLACore")

This database currently contains annotations for transcription factor binding sites and motifs,
DNase accessible regions and genomic features. For more detailed information on the LOLA tool,
available precomputed databases and instructions on how to assemble your own database, please
be referred to the LOLA documentation6. You can now compute the enrichment of differentially
methylated regions to reference region sets in the database:

> enrich.lola <-
+ performLolaEnrichment.diffMeth(rnb.set, diffmeth, lolaDirs[["hg19"]])

The result is a structured object containing enrichment tables for different comparisons, region
types and rank cutoffs as well as information on the reference database. These objects are best
explored using RnBeads’ utility functions. Here we plot the enrichment results of the 500 highest
ranking hypermethylated promoter regions in ESCs compared to iPSCs.

> enrich.table.lola <- enrich.lola$region[[comparison]][["promoters"]]
> enrich.table.lola <-
+ enrich.table.lola[enrich.table.lola$userSet=="rankCut_500_hyper",]
> lolaBarPlot(enrich.lola$lolaDb, enrich.table.lola, scoreCol="oddsRatio",
+ orderCol="maxRnk", pvalCut=0.05)
> lolaBoxPlotPerTarget(enrich.lola$lolaDb, enrich.table.lola, scoreCol="pValueLog",
+ orderCol="maxRnk", pvalCut=0.05)

Figures 10 and 11 show the results as bar and boxplots. Interpreting the results, we find pat-
terns associated with pluripotency hypermethylated in ESCs compared to iPSCs: enriched region
sets are associated with reprogramming factors (POU5F1, SOX2, NANOG) and accessible chro-
matin (DNase) in stem cells. Additionally, signatures of gene repression (repressed state in
the ENCODE segmentation and the associated H3K27me3 histone mark) are present in more
differentiated cells.

4.7 Tracks and Tables

By default, methylation tracks are exported in bed format. They contain genomic locations and
beta values for each site in the filtered RnBSet for each sample in the dataset. Additionally, track
hubs7 for the UCSC or Ensembl Genome browsers can be generated. For using the track hubs
in conjunction with a genome browser you will need a server that can be reached via a URL to
provide the data. The command to convert the RnBSet to the desired output and to generate
the corresponding report is

> rnb.options(export.to.csv=TRUE)
> rnb.run.tnt(rnb.set, report.dir)

The report contains specific instructions on how to visualize the data in the genome browser.
Additionally, by default the Tracks and Tables report will also contain a sample summary table.
In this particular example, prior to starting the module, we enable the option export.to.csv.
Hence, the generated report contains also single-site methylation value matrices, exported to
comma-separated value files.

6http://databio.org/lola/
7http://genome.ucsc.edu/goldenPath/help/hgTrackHubHelp.html

http://databio.org/lola/
http://genome.ucsc.edu/goldenPath/help/hgTrackHubHelp.html

RnBeads 37

cistrome_epigenome codex encode_segmentation encode_tfbs sheffield_dnase

H
3K

27
m

e3
 −

 A
P

L1
64

 c
el

ls
 [d

b1
50

]
H

3K
27

m
e3

 −
 A

P
L1

64
 c

el
ls

 [d
b1

49
]

H
3K

27
m

e3
 −

 M
C

F
−

7
[d

b1
76

]
H

3K
27

m
e3

 −
 M

C
F

−
7

[d
b1

77
]

H
3K

27
m

e3
 −

 N
B

4
ce

lls
 [d

b1
95

]
H

3K
27

m
e3

 −
 L

nC
aP

 [d
b1

59
]

H
3K

27
m

e3
 −

 L
nC

aP
 [d

b1
58

]

P
O

U
5F

1
−

 E
m

br
yo

ni
c

S
te

m
 C

el
l [

db
26

2]
N

A
N

O
G

 −
 E

m
br

yo
ni

c
S

te
m

 C
el

l [
db

26
6]

N
A

N
O

G
 −

 E
m

br
yo

ni
c

S
te

m
 C

el
l [

db
26

5]
E

Z
H

2
−

 E
m

br
yo

ni
c

S
te

m
 C

el
l [

db
37

1]
S

U
Z

12
 −

 E
m

br
yo

ni
c

S
te

m
 C

el
l [

db
37

8]
S

O
X

2
−

 E
m

br
yo

ni
c

S
te

m
 C

el
l [

db
26

4]
S

U
Z

12
 −

 E
ry

th
ro

cy
tic

 le
uk

ae
m

ia
 c

el
ls

 [d
b3

69
]

R
N

F
2

−
 E

ry
th

ro
cy

tic
 le

uk
ae

m
ia

 c
el

ls
 [d

b3
66

]

R
ep

re
ss

ed
 −

 H
ep

g2
 [d

b4
37

]
R

ep
re

ss
ed

 −
 H

uv
ec

 [d
b4

44
]

W
ea

k
E

nh
an

ce
r

−
 H

1h
es

c
[d

b4
26

]
R

ep
re

ss
ed

 −
 K

56
2

[d
b4

51
]

R
ep

re
ss

ed
 −

 G
M

12
87

8
[d

b4
16

]
R

ep
re

ss
ed

 −
 H

1h
es

c
[d

b4
23

]
C

T
C

F
 −

 H
uv

ec
 [d

b4
41

]
C

T
C

F
 −

 H
eL

a−
S

3
[d

b4
27

]
C

T
C

F
 −

 H
ep

g2
 [d

b4
34

]
R

ep
re

ss
ed

 −
 H

eL
a−

S
3

[d
b4

30
]

E
nh

an
ce

rs
 −

 H
1h

es
c

[d
b4

21
]

C
T

C
F

 −
 G

M
12

87
8

[d
b4

13
]

C
T

C
F

 −
 K

56
2

[d
b4

48
]

C
T

C
F

 −
 H

1h
es

c
[d

b4
20

]
E

nh
an

ce
rs

 −
 H

ep
g2

 [d
b4

35
]

W
ea

k
E

nh
an

ce
r

−
 H

uv
ec

 [d
b4

47
]

E
Z

H
2_

(3
98

75
)

−
 N

H
E

K
 [d

b4
95

]
E

Z
H

2_
(3

98
75

)
−

 N
H

LF
 [d

b4
98

]
E

Z
H

2_
(3

98
75

)
−

 H
U

V
E

C
 [d

b4
76

]
E

Z
H

2_
(3

98
75

)
−

 N
H

−
A

 [d
b4

91
]

E
Z

H
2_

(3
98

75
)

−
 H

1−
hE

S
C

 [d
b4

61
]

R
ad

21
 −

 H
1−

hE
S

C
 [d

b8
10

]
E

Z
H

2_
(3

98
75

)
−

 H
M

E
C

 [d
b4

70
]

E
Z

H
2_

(3
98

75
)

−
 H

S
M

M
tu

be
 [d

b4
74

]
S

U
Z

12
 −

 H
1−

hE
S

C
 [d

b8
13

]
S

U
Z

12
 −

 N
T

2−
D

1
[d

b1
03

2]
P

O
U

5F
1_

(S
C

−
90

81
)

−
 H

1−
hE

S
C

 [d
b6

03
]

E
Z

H
2_

(3
98

75
)

−
 H

S
M

M
 [d

b4
72

]

D
N

as
e

−
 S

te
m

 c
el

l s
pe

ci
fic

 (
w

ea
k)

 [d
b1

14
4]

D
N

as
e

−
 W

ea
k

st
em

 a
nd

 e
nd

ot
he

lia
l [

db
25

25
]

D
N

as
e

−
 W

ea
k

[d
b1

21
6]

D
N

as
e

−
 P

ro
st

at
e

C
an

ce
r

[d
b2

21
8]

D
N

as
e

−
 P

rim
iti

ve
;H

em
at

op
oi

et
i..

.te
;B

ra
in

 [d
b2

80
0]

D
N

as
e

−
 L

iv
er

;B
ra

in
 [d

b2
68

5]
D

N
as

e
−

 S
te

m
 [d

b2
03

7]

0.0

2.5

5.0

7.5

10.0

od
ds

R
at

io

Figure 10: Bar plot of odds ratios for LOLA region sets significantly enriched in promoters hy-
permethylated in ESCs compared to iPSCs. The bars are grouped by category in
the LOLA core database. The coloring indicates different features (chromatin marks,
states, transcription factors, etc.).

●

●●

●
●

●

●
●● ●

●

●

●

●
●● ●

●

●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●●

●●
●

●

●

●

● ●●●●
●●●
●●

●

●

●●

cistrome_epigenome codex encode_segmentation encode_tfbs sheffield_dnase

H
3K

27
m

e3

N
A

N
O

G

P
O

U
5F

1

S
O

X
2

E
Z

H
2

S
M

A
D

3

S
U

Z
12

R
N

F
2

R
ep

re
ss

ed

W
ea

k
E

nh
an

ce
r

E
nh

an
ce

rs

C
T

C
F

P
O

U
5F

1_
(S

C
−

90
81

)

E
Z

H
2_

(3
98

75
)

S
U

Z
12

R
ad

21

D
N

as
e

5

10

15

20

pV
al

ue
Lo

g

Figure 11: Box plot of log p-values for LOLA region sets significantly enriched in promoters
hypermethylated in ESCs compared to iPSCs. Each bar summarizes a given feature
across experiments in the LOLA core database.

RnBeads 38

5 Analyzing Bisulfite Sequencing Data

RnBeads also facilitates the analysis of bisulfite data obtained from experiments such as whole
genome, reduced representation or locus specific bisulfite sequencing. The general structure for
analyzing bisulfite sequencing data with RnBeads is the same as for Infinium data. However, the
devil is in the details. Here are the key differences:

• In addition to human methylation data, RnBeads also supports mouse and rat methylome
analysis through its companion packages (RnBeads.mm9,RnBeads.mm10,RnBeads.rn5).

• Loading is performed with bed file input.

• No normalization will be conducted during preprocessing.

• There are no control probes in bisulfite sequencing that are incorporated in the QC and
batch effect reports. Instead, coverage information is used to assess experimental quality.

• Certain types of analysis would take significantly longer when using bisulfite sequencing
data and are therefore disabled in standard analysis. Among them are the greedycut
algorithm for filtering unreliable samples and sites and deviation plots as obtained in the
profiles module for Infinium datasets.

5.1 Data Loading

RnBeads expects sequencing data to be bed-formatted or have a similar coordinate file format.
The data.source argument of the rnb.run.import() and rnb.run.analysis() functions for
analyzing bisulfite sequencing data requires a vector or list of length 1, 2 or 3 containing:

1. the directory where the methylation bed files are located;

2. the sample annotation sheet

3. the index of the column of the sample annotation sheet that contains the names or full
paths to the bed files

In case only the first element of data.source is given, RnBeads expects the bed files and sample
annotation to be located in the same directory. The sample annotation file should contain token
"sample" in the file name. The sample annotation should contain the names of the bed files
relative to the specified directory. There should be exactly one bed file for each sample in the
directory. One of the first two elements have to be present. In case only the sample sheet is
specified, one column should be giving full absolute paths of the BED-like files with sequencing
information. If both elements (1) and (2) are specified, the files should reside in the directory,
specified as element (1). If the third element is missing, RnBeads attempts to find the file name-
containing column automatically.

The bed files are expected to contain methylation and localization information for each in-
dividual site (CpG), where information includes the chromosome, coordinates (start and end
coordinates) and genomic strand. Methylation information should contain any two numbers
that indicate how many methylation events (#M – number of cytosines sequenced for a par-
ticular position), unmethylation events (#U – number of thymines sequenced) and total events
(#T = #U + #M) were measured for a particular location. This can be specified in any of the
following forms:

RnBeads 39

• any two measurements among #M, #U and #T;

• #T and the methylation percentage: #M
#U+#M × 100

The package option ’import.bed.columns’ controls how RnBeads interprets the bed files.
Since there is no clear standard available for this type of methylation data, specification can be
tricky. Examples for possible uncertainties are: Are the coordinates 0-based or 1-based? What
chromosome and strand notation is used? Are the CpGs listed for both strands or just one?
Are the coordinates on the reverse strand shifted? Is the methylation percentage specified in
the interval [0,100] or [0,1]? Many more questions may arise. Hence, there is no guarantee that
RnBeads correctly loads each and every format. Probably the most convenient and safe way to
load bisulfite sequencing data is to use the format presets which are tailored to particular tools
and pipelines. These presets are specified in the package option ’import.bed.style’. Here are
examples of the presets currently available:

’BisSNP’ The bed files are assumed to have been generated by the methylation calling tool
BisSNP [5]. A tab-separated file contains the chromosome name, start coordinate, end
coordinate, methylation value in percent, the coverage, the strand, as well as additional
information not taken into account by RnBeads. The file should contain a header line.
Coordinates are 0-based, spanning the first and the last coordinate in a site (i.e. end-start
= 1 for a CpG). Sites on the negative strand are shifted by +1. Here are some example
lines (genome assembly hg19):
t rack name=f i l e_ s o r t e d . r e a l i g n . r e c a l . cpg . f i l t e r e d . s o r t .CG. bed type=bedDeta i l d e s c r i p t i o n="CG methylat ion
chr1 10496 10497 79 .69 64 + 10496 10497 180 ,60 ,0 0 0
chr1 10524 10525 90 .62 64 + 10524 10525 210 ,0 ,0 0 0
chr1 864802 864803 58 .70 46 + 864802 864803 120 ,120 ,0 0 5
chr1 864803 864804 50 .00 4 − 864803 864804 90 ,150 ,0 1 45
. . .

’EPP’ The bed files are assumed to have the format as output files from the Epigenome Pro-
cessing Pipeline developed by Fabian Müller and Christoph Bock. A tab-separated file
contains: the chromosome name, start coordinate, end coordinate, methylation value and
coverage as a string (’#M/#T’), methylation level scaled to the interval 0 to 1000, strand,
and additional information not taken into account by RnBeads. The file should not contain
a header line. Coordinates are 0-based, spanning the first coordinate in a site and the first
coordinate outside the site (i.e. end-start = 2 for a CpG). Here are some example lines
(genome assembly mm9):
chr1 3010957 3010959 ’27/27 ’ 1000 +
chr1 3010971 3010973 ’10/20 ’ 500 +
chr1 3011025 3011027 ’57/70 ’ 814 −
. . .

’bismarkCov’ The cov files are assumed to have the format as defined by Bismark’s coverage
file output converted from its bedGraph output (Bismark’s bismark2bedGraph module; see
the section “Optional bedGraph output” in the Bismark User Guide). A tab-separated file
contains: the chromosome name, cytosine coordinate, cytosine coordinate (again), methy-
lation value in percent, number of methylated reads (#M) and the number of unmethylated
reads (#U). The file should not contain a header line. Coordinates are 1-based. Strand
information does not need to be provided, but is inferred from the coordinates: Coordi-
nates on the negative strand specify the cytosine base position (G on the positive strand).
Coordinates referring to cytosines not in CpG content are automatically discarded. Here
are some example lines (genome assembly hg19):
. . .
chr9 73252 73252 100 1 0
chr9 73253 73253 0 0 1
chr9 73256 73256 100 1 0
chr9 73260 73260 0 0 1
chr9 73262 73262 100 1 0
chr9 73269 73269 100 1 0
. . .

RnBeads 40

’bismarkCytosine’ The bed files are assumed to have the format as defined by Bismark’s
cytosine report output (Bismark’s coverage2cytosine module; see the section “Optional
genome-wide cytosine report output” in the Bismark User Guide). A tab-separated file
contains: the chromosome name, cytosine coordinate, strand, number of methylated reads
(#M), number of unmethylated reads (#U), and additional information not taken into
account by RnBeads. The file should not contain a header line. Coordinates are 1-based.
Coordinates on the negative strand specify the cytosine position (G on the positive strand).
CpG without coverage are allowed, but not required. Here are some example lines (genome
assembly hg19):
. . .
chr22 16050097 + 0 0 CG CGG
chr22 16050098 − 0 0 CG CGA
chr22 16050114 + 0 0 CG CGG
chr22 16050115 − 0 0 CG CGT
. . .
chr22 16115591 + 1 1 CG CGC
chr22 16117938 − 0 2 CG CGT
chr22 16122790 + 0 1 CG CGC
. . .

’Encode’ The bed files are assumed to have the format as the ones that can be downloaded
from UCSC’s ENCODE data portal. A tab-separated file contains: the chromosome name,
start coordinate, end coordinate, some identifier, read coverage (#T), strand, start and
end coordinates again (RnBeads discards this duplicated information), some color value,
read coverage (#T) and the methylation percentage. The file should contain a header line.
Coordinates are 0-based. Note that this file format is very similar but not identical to the
’BisSNP’ one. Here are some example lines (genome assembly hg19):
t rack name="SL1815 MspIRRBS" de s c r i p t i o n="HepG2_B1__GC_" v i s i b i l i t y =2 itemRgb="On"
chr1 1000170 1000171 HepG2_B1__GC_ 62 + 1000170 1000171 55 ,255 ,0 62 6
chr1 1000190 1000191 HepG2_B1__GC_ 62 + 1000190 1000191 0 ,255 ,0 62 3
chr1 1000191 1000192 HepG2_B1__GC_ 31 − 1000191 1000192 0 ,255 ,0 31 0
chr1 1000198 1000199 HepG2_B1__GC_ 62 + 1000198 1000199 55 ,255 ,0 62 10
chr1 1000199 1000200 HepG2_B1__GC_ 31 − 1000199 1000200 0 ,255 ,0 31 0
chr1 1000206 1000207 HepG2_B1__GC_ 31 − 1000206 1000207 55 ,255 ,0 31 10
. . .

Note, that in all of the formats above, CpGs may be listed on both strands individually
to indicate strand-specific methylation. However, by default, RnBeads will merge methylation
information for both strands for each CpG.

If you have a format that you feel should be supported by a preset in RnBeads or you have
trouble loading a certain format, do not hesitate to contact the RnBeads developers.

Assuming input file locations and annotation stored in the variable data.source, and report.dir
specifies a valid report directory, the entire analysis pipeline can be conducted analogously to
Infinium data:

> rnb.run.analysis(dir.reports=report.dir, data.source=data.source,
+ data.type="bs.bed.dir")

Modules can also be started individually. After executing rnb.run.import with "bed.dir"
as data type, the resulting object is of class RnBSet. This object is very similar to objects of its
child class (RnBeadSet) but does not contain Infinium-specific information.

5.2 Quality Control

Sequencing depth/coverage is currently the only metric used by RnBeads’ quality control reports
for bisulfite sequencing. Other quality control steps such as estimating the bisulfite conversion
rate using spike-in controls, assessing the alignment rate, etc. are typically done as part of the
preprocessing prior to an RnBeads analysis. Several control plots are available. For example, the
histogram of coverage, genomic coverage plot (see example in Figure 12) and violin plot, each

RnBeads 41

visualizes coverage information for individual samples. The coverage thresholds plot gives an
overview of how many sites meet the criteria for a deep coverage in a minimal fraction of the
samples in the whole dataset.

5.3 Filtering

The code snippet below shows an example sequence of filtering steps on a bisulfite sequencing
dataset.

> # Remove CpGs on sex chromosomes
> rnb.set.filtered <- rnb.execute.sex.removal(rnb.set.unfiltered)$dataset
> # Remove sites that have an exceptionally high coverage
> rnb.set.filtered <-
+ rnb.execute.highCoverage.removal(rnb.set.filtered)$dataset
> # Remove sites containing NA for beta values
> rnb.set.filtered <- rnb.execute.na.removal(rnb.set.filtered)$dataset
> # Remove sites for which the beta values have low standard deviation
> rnb.set.filtered <-
+ rnb.execute.variability.removal(rnb.set.filtered, 0.005)$dataset

Executing Greedycut on large bisulfite sequencing datasets is not recommended because of its
long running time.

6 Advanced Usage

RnBeads contains a variety of other useful methods and annotations that are used throughout the
standard pipeline run, but that can be executed individually as well. We also present methods
and functionality beyond the standard analysis pipeline. This section provides instructive code
examples for RnBeads functions that you might consider helpful. If you are curious concerning
the functions used, don’t hesitate to use R’s help functionality (?functionName). In addition,
RnBeads’s annotation data is briefly described here. For more information refer to the RnBeads
– Annotations document.

6.1 Analysis Parameter Overview

RnBeads offers a multitude of options that let you configure your analysis. They are introduced
in this section. You can obtain an overview on the option values by the following command:

> rnb.options()

If you want to inquire about a specific option, you can also use:

> rnb.getOption("analyze.sites")

To set options to specific values use:

> rnb.options(filtering.sex.chromosomes.removal=TRUE,
+ colors.category=rainbow(8))

A complete list of available options is contained in the help pages for rnb.options:

> ?rnb.options

RnBeads 42

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

chr1
chr2

chr3
chr4

chr5
chr6

chr7
chr8

chr9
chr10

chr11
chr12

chr13
chr14

chr15
chr16

chr17
chr18

chr19
chr20

chr21
chr22

chrX
chrY

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08

Figure 12: Sequencing coverage along the genome position

RnBeads 43

6.2 Annotation Data

There are four companion data packages of RnBeads, named RnBeads.hg19, RnBeads.mm10,
RnBeads.mm9 and RnBeads.rn5. They contain annotations for CpG sites, array probes and
predefined genomic elements. These annotation tables are used throughout the analysis. User-
defined annotations can be added to focus the analysis on specific genomic regions.

In this section, we show how to access the available annotation tables. Note that the first time
annotations are requested (e.g., by calling one of the functions presented here), a set of tables is
loaded. This inevitably leads to a slight delay. Subsequent calls to these functions are faster.

Annotations used by RnBeads (provided by separate packages listed above) can be accessed
using the rnb.get.annotation() command:

> library(RnBeads)
> rnb.get.annotation(type="CpG") # all CpGs in the human genome
> rnb.get.annotation(type="probes450") # all Infinium 450k probes

By default they are provided as GRangesList objects (see the GenomicRanges package for
more details). However, you can convert them to regular data frames:

> probes.450k <- rnb.annotation2data.frame(rnb.get.annotation(type="probes450"))
> head(probes.450k)

Annotation is also available on the genomic region level. Available region types are revealed
by:

> rnb.region.types()

[1] "tiling" "genes" "promoters" "cpgislands"

The default gene-related regions are of Ensembl genes (defined as the whole locus from tran-
scription start site to transcription end site) and promoters (defined as the regions 1.5 kb up-
stream and 0.5 kb downstream of transcription start sites). Furthermore, CpG island and tiling
regions (5kb windows) are supported. Region annotation tables can be accessed similarly to the
probe annotation data:

> rnb.get.annotation("promoters",assembly="mm9")

Annotation of sites and regions represented by an rnb.set object can be accessed via the
annotation() function:

> head(annotation(rnb.set, type="sites"))
> head(annotation(rnb.set, type="genes"))

Here we use our example RnBeadSet from the previous sections. Note that the rows in the
resulting dataframe are in the same order as the rows returned by the meth() and
rnb.execute.computeDiffMeth() functions. Hence you can use the annotation command in
order to annotate obtained methylation or differential methylation values:

> aa <- annotation(rnb.set, type="promoters")
> annotated.dmrs <- data.frame(aa, dmrs)
> head(annotated.dmrs)

The code above uses the rnb.set object and the differential methylation table (dmrs) defined
in Section 4.6.

RnBeads 44

6.2.1 Custom Annotation

Custom annotations can be included using the function rnb.set.annotation. For instance,
the code below retrieves annotation data for genomic enhancers as specified by a chromatin
state segmentation approach employed in the ENCODE project. We retrieve the state segmen-
tation annotations for the H1 embryonic stem cell line from the UCSC Table Browser using
the rtracklayer package. Then we restrict the resulting table to enhancer states and set the
annotation for RnBeads:

> # Retrieve the chromHMM state segmentation from UCSC
> library(rtracklayer)
> mySession <- browserSession()
> genome(mySession) <- "hg19"
> tab.chromHMM.h1 <- getTable(ucscTableQuery(mySession,
+ track="wgEncodeBroadHmm", table="wgEncodeBroadHmmH1hescHMM"))
> # Filter for enhancer states
> tab.enhancers <- tab.chromHMM.h1[grep("Enhancer", tab.chromHMM.h1$name),]
> # Select the interesting parts of the table and rename columns
> tab.enhancers <- tab.enhancers[, c("chrom", "chromStart", "chromEnd", "name")]
> colnames(tab.enhancers) <- c("Chromosome", "Start", "End", "name")
> # Create RnBeads annotation by providing a data.frame
> rnb.set.annotation("enhancersH1EscChromHMM", tab.enhancers, assembly="hg19")
> # Set the options to include the enhancer annotation
> rnb.options(region.types=c(rnb.getOption("region.types"),
+ "enhancersH1EscChromHMM"))
> # Parse the input again, this time with the enhancer annotation added
> rnb.set.enh <-
+ rnb.execute.import(data.source=data.source, data.type="idat.dir")
> rnb.set.enh
> # Annotation and methylation levels of enhancer regions in this object
> annot.enh <- annotation(rnb.set.enh, "enhancersH1EscChromHMM")
> head(annot.enh)
> meth.enh <- meth(rnb.set.enh, "enhancersH1EscChromHMM")
> head(meth.enh)

Note that the included genomic regions remain available to RnBeads in the current R session
only. If you later want to reuse custom annotation data, use the rnb.save.annotation() and
rnb.load.annotation() functions:

> annotation.filename <- file.path(analysis.dir,
+ "annotation_hg19_enhancersH1EscChromHMM.RData")
> # Save the enhancer annotation to disk
> rnb.save.annotation(annotation.filename, "enhancersH1EscChromHMM",
+ assembly="hg19")
> # Load the enhancer annotation as a duplicate
> rnb.load.annotation(annotation.filename, "enhancersH1EscChromHMM_duplicate")
> # Check that the annotation has been successfully loaded
> rnb.region.types()

RnBeads 45

On the RnBeads website8, we also provide a resource of region sets that are of general use.
These include tiling regions of various window sizes, alternative gene models, variably methylated
regions and putative regulatory regions derived from epigenome segmentation data. The code
below shows how tiling regions of size 1kb can be loaded.

> rnb.load.annotation.from.db("tiling1kb", assembly="hg19")
> rnb.region.types()

6.3 Parallel Processing

If you run RnBeads on a computational environment that supports parallel processing (e.g. a
computer using multiple cores), enabling parallel computation can speed up some of the analysis
modules quite significantly. Particularly the exploratory analysis and differential methylation
modules profit from this as they operate on large tables and generate a large number of plots.
Prior to any analysis, parallel processing can be enabled by the following command:

> logger.start(fname=NA)
> parallel.isEnabled()

[1] FALSE

> num.cores <- 2
> parallel.setup(num.cores)

2025-07-23 17:25:56 1.6 STATUS STARTED Setting up Multicore
2025-07-23 17:25:56 1.6 INFO Using 2 cores
2025-07-23 17:25:56 1.6 STATUS COMPLETED Setting up Multicore

> parallel.isEnabled()

[1] TRUE

where num.cores specifies the number of compute cores you would like to use. If successful,
parallel.getNumWorkers() returns the number of cores used:

> if (parallel.isEnabled()) parallel.getNumWorkers()

[1] 2

You can disable parallel processing again using

> parallel.teardown()

Note, that it is good programming practice to always disable parallel processing again, after the
computation is done.

8http://rnbeads.mpi-inf.mpg.de/regions.html

http://rnbeads.mpi-inf.mpg.de/regions.html

RnBeads 46

6.4 Extra-Large Matrices, RAM and Disk Space Management

RnBeads can perform analysis on much larger data sets than those presented in the examples
above. Starting from several hundred of Infinium450k samples or already a few dozen WGBS
profiles the data matrices in the RnBeads objects become too large to keep them in main memory
(RAM). To handle large amounts of data RnBeads makes use of the disk-backed objects provided
by the ff package [7]. In other words, rather than carrying around the huge matrices in main
memory, they are stored on the hard drive. This enables large analysis also on machines with
an intermediate amount of RAM, but comes at the cost of slightly increased runtimes (accessing
matrices on the hard drive is not as fast as accessing them from the main memory). In order to
enable this feature use:

> rnb.options(disk.dump.big.matrices=TRUE, disk.dump.bigff=TRUE)

The file system location which will be used by the ff objects is controlled by a global R option
(notice that it is not an RnBeads option!):

> options(fftempdir="/path/to/a/very/large/directory/")

By default, the ff files will be saved to the current R temporary directory, which is usually a
subdirectory of the systems global temporary directory and can be found by executing:

> tempdir()

In case of Infinium 450k data sets the package will need roughly 10 GB of hard drive space per
100 samples. So make sure that you have enough space for your analysis. You can monitor the
amount of hard drive space occupied by the RnBeads objects in the logger statements by setting:

> rnb.options(logging.disk=TRUE)

In order to ensure that the disk-backed objects are effectively cleaned up during the pipeline
execution use the following option:

> rnb.options(enforce.memory.management=TRUE)

This will force RnBeads to use garbage collection so that no obsolete ff files remain on the
hard drive.

After setting these memory tweaking options, you can load data into RnBSet objects in the
same ways that you already know:

> rnb.set.disk <- rnb.execute.import(data.source=data.source, data.type="idat.dir")

Data handling is exactly the same way as before. You can execute all functions that also work
non-disk-backed RnBSet objects.

The RnBSet objects created while the disk.dump.big.matrices option is enabled cannot be
saved using standard save and load methods in R. Saving should be performed as follows:

> save.dir <- file.path(report.dir, "analysis")
> save.rnb.set(rnb.set.disk, path=save.dir, archive=TRUE)

After that you should be able to find a file analysis15.zip in the report.dir directory. This
object can be reloaded into another R session, possibly on a different machine:

> rns <- load.rnb.set(path=paste0(save.dir, ".zip"))

RnBeads 47

0

1

2

3

0.00 0.25 0.50 0.75 1.00
β

D
en

si
ty ESC or iPSC

hESC

hiPSC

Figure 13: Density plots of probe beta values comparing hESCs to hiPSCs.

The ff files behind an RnBeads object can be deleted completely from the hard disk by
executing the destructor method:

> destroy(rnb.set.disk)

Overall, when applied to data sets with a large number of samples or to whole-genome bisul-
fite sequencing data, RnBeads can become computationally demanding, so one should consider
running the package in an high-performance environment, e.g. on dedicated compute servers or
clusters.

6.5 Some Sugar and Recipes

This section introduces a few examples on how to work with RnBSet objects once they have been
computed. RnBeads contains various functions that cater to downstream analysis.

6.5.1 Plotting Methylation Value Distributions

This example produces beta density distributions for groups of samples as in Figure 13

> rnb.plot.betadistribution.sampleGroups(meth(rnb.set),
+ rnb.sample.groups(rnb.set)[["Sample_Group"]], "ESC or iPSC")

6.5.2 Plotting Low Dimensional representations

As mentioned in Section 4.5, RnBeads creates figures that show the high-dimensional methylation
data transformed to two dimensions only, by applying the techniques MDS and PCA. Such plots
can be created using the function rnb.plot.dreduction. This function provides even greater
flexibility in the visualization than what can be seen in the reports. For example, the code snippet
below modifies the default colors denoting different categories and then displays the second and

RnBeads 48

●

●

●
● ●●

●

●

●

●

●

●

−20

−10

0

10

20

−20 −10 0 10 20 30
Principal component 2

P
rin

ci
pa

l c
om

po
ne

nt
 5

●

●

female

male

Figure 14: The second and fifth principal components of the (unnormalized) dataset. Point
colors denote sex information.

Chromosome 2

177.015 mb 177.02 mb 177.025 mb 177.03 mb 177.035 mb
5' 3'
3' 5'

E
N

S
E

M
B

L
ge

ne
s

HOXD3 HOXD4

MIR10B HOXD3

HOXD−AS1

HOXD3

hES_H9_p58
hES_HUES64_p19
hES_HUES1_p28
hES_HUES1_p29

hES_HUES13_p47

m
et

h:

 h
E

S
C

hiPS_17b_p35_KOSR
hiPS_27b_p31

hiPS_17b_p35_TeSR
hiPS_20b_p49_KOSR
hiPS_20b_p49_TeSR

hiPS_11c_p23
hiPS_20b_p43

m
et

h:

 h
iP

S
C

0.2

0.4

0.6

0.8

m
et

hy
la

tio
n

●

●
●

●

●

●●●●
●

●●●●●●●●●●

●
●
●
●● ●●●●●

●●●
●●

●

●●
●
●

●

●
●

●
●

●

●●
●
●

●

●
●
●
●

●●
●●●

●
●
●
●●
●●
●
●
●

●●●●● ●●●●●

●

●●

●
●

●●●
●●●

●
●
●●●●●
●●

●
●
●●●

●

●

●

●
●

●●●
●●●●●●●

●
●●●●

●●●●●

●
●
●●●

●●●●●

●

●
●

●●

●
●●●●

●

●
●

●

●
●

●●

●

●

●
●
●●●

●●●●●

●

●

●●●

●

●●

●

●

●

●●●●

●
●
●
●●

●●●●●

●●●
●●
●
●●
●
●

●●●
●

●

●●●
●●

●●●●●

●

●

●

●

●

●

●

●
●
●

●

●●

●●

●●●●●

●●●
●
●

●●●●● ●●●●●
●●●●●

●
●●

●
●

●

●●

●

●
●
●●

●●

●

●
●

●●

●
●●

●●

●●●●●

●

●●●

●

●

●
●
●●

●●●●●

●●●
●●

●
●●
●

●

●●●●●

●

●●●●

●●●●
●

●
●
●
●
●

●

●●

●
●

●
●
●
●●

●

●

●

●

●

●●●
●●

●●●●●

●

●●●

●

●●●
●● ●●●

●●
●●●●●

●●●●●

●
●
●

●●

●

●

●
●
●

●●●
●●

●
●

●
●●

●
●●●●

●●●
●
●

●●●●●

●

●

●

●

●

●●●●
●●

●
●

●

●

●

●
●

●

●

●
●●
●●

●

●

●

●

●

●●●
●● ●

●
●
●●

●
●
●

●
●

●●●
●
●

●●●
●
●

●●●
●●

●●●●●

●

●

●
●
● ●●●

●●

●●●

●
●

●●●●●

●●

●

●●

●●
●●

●

●
●

●●●●●●●
●●●●●●●●●●●●●●

●●●●●●● ●
●●●●●●●

●●●
●
●
●

●●●●●
●●

●

●
●

●
●

●

●

●●

●
●
●●
●

●
●

●
●
●

●

●

●

●
●●

●
●●

●
●●●●
●
●

●●●●●●●

●●●●●●● ●●●●●●●

●●●●●●●

●●●●●
●●●●●●●●●
●●●●●●●

●●●
●

●

●
●
●

●

●●●

●

●

●●●●●●●●●●●●
●●

●
●
●
●●
●●

●●●●●●●

●
●
●●●●●

●●●●●
●●
●
●●

●

●

●●

●●●
●●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●●
●●●

●●●●●●●

●●●●●
●
●

●
●

●

●

●

●

●

●
●
●●●●●

●●
●

●●●
●

●●
●
●●●●

●●●
●
●●●●
●

●

●●●
●

●

●

●
●
●

●

●

●●●●●●●

●●●
●●●●

●

●

●

●

●●

●

●

●
●●●●
●

●

●

●
●

●●●

●●●●●●●

●●●●●●●

●●●●●●● ●●●●●●●

●
●●●●●
●

●

●

●
●●

●

●

●●●●●●
●
●
●
●●

●
●
●

●●
●

●

●●
●

●●●●●●●

●●●
●●●●

●●

●
●

●
●●

●●

●

●

●

●

●

●●
●
●
●●
●

●●
●●●●●

●●
●●●
●●

●●●●

●

●● ●

●

●●●●●

●●●●●
●
●

●●●
●●

●●

●

●

●

●
●

●

●

●●
●●
●
●
●

●
●

●

●

●

●

●

●
●●●●
●
●

●●●●●●●

●

●

●

●
●

●

●

●●●●●●●
●
●
●●●●
●●●●●●●●

●●●●●●●

●

●

●●
●

●
●

●
●●
●
●

●
●

●●●●●●●

●●

●

●
●
●●

●●●●●●●

●
●●●
●
●

●

●●●
●
●●●

●

●●

●

●●

●

●
●●●●
●●●●●●●
●
●

●

●

●
●●

●
●

●●●
●●
●●

●

●

●●●●● ●●●●
●
●●

●●

●●
●●
● ●●

●●●●●

●
●●●●
●

●

●
●
●●●
●●

●●●●●
●●

●●●●●●●

●●●●●
●●

●●●●●●● ●
●
●●

●

●
●

●●●●●●●

●

●

●

●

●

●

●

Figure 15: Methylation profile for the HOXB3 locus

fifth principal components of the example dataset. Sex information is mapped to colors. The
resulting plot is shown in Figure 14.

> theme_set(theme_bw())
> rnb.options(colors.category = c("red", "blue", "grey"))
> print(rnb.plot.dreduction(rnb.set, dimensions = c(2, 5),
+ point.colors="Predicted Sex"))

6.5.3 Generating Locus Profile Plots (aka Genome-Browser-Like Views)

RnBeads provides functionality for generating plots of methylation levels in custom genomic
intervals similarly as in current genome browsers. It makes use of the popular ggbio package for
this. The following code produces the plot depicted in Figure 15:

> # Coordinates around the HOXD3 locus
> chrom <- "chr2"

RnBeads 49

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●

●●
●●

●●
●●

●●●●●●●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

0

1

2

3

4

5

0 1 2 3 4 5
neg.log10.p.val.base

ne
g.

lo
g1

0.
p.

va
l.s

va

0.00

0.25

0.50

0.75

1.00
quantile

Figure 16: QQ-plot comparing the negative log10 p-values for the unadjusted and the SV-
adjusted analysis of differential methylation.

> start <- 177010000
> end <- 177040000
> sample.grouping <- rnb.sample.groups(rnb.set)[[1]]
> rnb.plot.locus.profile(rnb.set, chrom, start, end, grps=sample.grouping)

The rnb.section.locus.profiles() function is very useful if you are interested in a whole
set of genomic regions and want to create a corresponding RnBeads report for easy browsing of
multiple genomic locations.

6.5.4 Adjusting for Surrogate Variables in Differential Methylation Analysis

In section 4.4.1 you learned how you can use RnBeads to infer Surrogate Variables (SVs). Here,
we see an example on how these inferred SVs can be adjusted for in differential methylation
analysis and how the results can differ compared to an unadjusted analysis. In the code below,
we first infer the SVs. Then we compute tables containing metrics of differential methylation for
the unadjusted and the SVA-adjusted case. Finally, we compare the p-values obtained from the
limma method using a qq-plot (see Figure 16).

> # set the target comparison column and region types for
> # differential methylation analysis
> cmp.cols <- "Sample_Group"
> cmp.name <- "hESC vs. hiPSC (based on Sample_Group)"
> reg.types <- c("cpgislands", "promoters")
> # if you have not done so yet, compute the SVs and add them to the RnBSet object
> sva.obj <- rnb.execute.sva(rnb.set,cmp.cols=cmp.cols,numSVmethod="be")

RnBeads 50

> rnb.set.sva <- set.covariates.sva(rnb.set, sva.obj)
> # compute differential methylation tables: unadjusted and SVA adjusted
> diffmeth.base <- rnb.execute.computeDiffMeth(
+ rnb.set.sva, cmp.cols, region.types=reg.types,
+ adjust.sva=FALSE
+)
> diffmeth.sva <- rnb.execute.computeDiffMeth(
+ rnb.set.sva, cmp.cols, region.types=reg.types,
+ adjust.sva=TRUE, pheno.cols.adjust.sva=cmp.cols
+)
> dm.tab.base <- get.table(diffmeth.base, cmp.name, "sites",
+ return.data.frame=TRUE)
> dm.tab.sva <- get.table(diffmeth.sva, cmp.name, "sites",
+ return.data.frame=TRUE)
> # compute quantiles of -log10 p-values and prepare a data.frame for plotting
> p.val.perc.base <- quantile(-log10(dm.tab.base$diffmeth.p.val),
+ probs = seq(0, 1, 0.01))
> p.val.perc.sva <- quantile(-log10(dm.tab.sva$diffmeth.p.val),
+ probs = seq(0, 1, 0.01))
> df <- data.frame(
+ neg.log10.p.val.base=p.val.perc.base,
+ neg.log10.p.val.sva=p.val.perc.sva,
+ quantile=seq(0, 1, 0.01)
+)
> # plot using ggplot2
> library(ggplot2)
> ggplot(df,aes(x=neg.log10.p.val.base,y=neg.log10.p.val.sva,color=quantile)) +
+ geom_point() + geom_abline(intercept=0, slope=1) + xlim(0, 5) + ylim(0, 5)

The resulting Figure 16 shows a slight inflation of the unadjusted p-values when compared to
the SVA-adjusted case.

6.5.5 Generating Density-Scatterplots

The Differential Methylation reports generated by RnBeads contain scatterplots indicating point
density and highlight the most likely candidates for differential methylation. You can easily
produce these plots on your own using RnBeads’ create.densityScatter function. The following
example visualizes the differences between ESCs and iPSCs you have seen in section 4.6 assuming
you have already computed the diffmeth object (see Figure 17).

> comparison <- "hESC vs. hiPSC (based on Sample_Group)"
> dframe <- get.table(diffmeth, comparison, "sites", return.data.frame=TRUE)
> # define the probes with an FDR corrected p-value below 0.05
> # as differentially methylated
> isDMP <- dframe[,"diffmeth.p.adj.fdr"] < 0.05
> create.densityScatter(dframe, is.special=isDMP, sparse.points=0.001,
+ add.text.cor=TRUE) + labs(x="mean beta: hESC", y="mean beta: hiPSC") +
+ coord_fixed()

RnBeads 51

Figure 17: Density-scatterplot showing probes differentially methylated between ESCs and iP-
SCs.

6.6 Correcting for Cell Type Heterogeneity Effects

Cell type heterogeneity of the profiled samples is a widely recognized source of confounding in
DNA methylation profiling studies. Several methods have been proposed to tackle it in large
data sets, some of which rely upon availability of reference methylomes [14, 15], while the other
can be applied directly [19, 20]. RnBeads supports several approaches for cell type heterogeneity
inference and adjustment. In case the reference methylomes are available, they can be used to
estimate the relative contributions of each cell type (see Section 4.4.2). Next, the contribution
estimates can be used as covariates in the limma-based differential methylation analysis.

For the case when reference methylomes are absent, differential methylation analysis in RnBeads
can be corrected using the reference-free method by Houseman et al. [19]. RefFreeEWAS analysis
is fully integrated with differential methylation module of RnBeads, and, similarly to limma-based
analysis, can adjust for covariates. It can be activated using a single option:

> rnb.options(differential.site.test.method="refFreeEWAS")

Keep in mind that RefFreeEWAS uses bootstrapping to estimate the variance of the model
coefficients, and thus may take a lot of computational time already on moderate-sized data sets.

Finally, RnBeads also provides an option to export the data ready to be processed by the
EWASHER tool [20]. The input files as well as a brief guidance on how to start the EWASHER, are
prepared in a specialized section of the inference module report. The EWASHER export can is
controlled via a dedicated option:

> rnb.options(export.to.ewasher=TRUE)

RnBeads 52

6.7 Deploying RnBeads on a Scientific Compute Cluster

This section is intended for advanced users only
RnBeads can be deployed on a scientific compute cluster. We have implemented the necessary

configurations for a Sun Grid Engine (SGE) environment. However, the required classes can
be easily extended to fit any cluster environment. To run an RnBeads analysis on the cluster,
it is necessary that the analysis options and data source are specified in an XML file. You can
find examples for such files in the “Methylome Resource” section of the RnBeads website. The
following example illustrates how you can submit the RnBeads jobs for an analysis to the cluster.
Log on to a machine which runs R and which can submit jobs to the cluster. Run R and then
submit an analysis using the following commands:

> library(RnBeads)
> # specify the xml file for your analysis
> xml.file <- "MY_ANALYSIS_SETTINGS.XML"
> # set the cluster architecture specific to your environment. We use SGE here
> arch <- new("ClusterArchitectureSGE")
> # initialize the object containing the RnBeads specific cluster configuration
> rnb.cr <- new("RnBClusterRun",arch)
> # set up the cluster so that 32GB of memory are required
> # (SGE resource is called "mem_free")
> rnb.cr <- setModuleResourceRequirements(rnb.cr,c(mem_free="32G"),"all")
> # set up the cluster to use 4 cores on each node for all modules
> rnb.cr <- setModuleNumCores(rnb.cr,4L,"all")
> # set up the cluster to use 2 cores for the exploratory analysis module
> rnb.cr <- setModuleNumCores(rnb.cr,2L,"exploratory")
> # run the actual analysis
> run(rnb.cr, "rnbeads_analysis", xml.file)

If you want to configure your own cluster environment, all you have to do is to extend RnBeads’
ClusterArchitecture S4 class. Here, all that you really need to define is the getSubCmdTokens
method, which returns a vector of command line tokens required for submitting a cluster job
in your environment. The following example illustrates the specification of a new class for a
hypothetical environment which submits jobs to the cluster using the submission syntax
iSubmit –myParameter 5 –waitForJobs [job1,job2] –jobName [MY_JOB_NAME] –logFile

[LOGFILE] ’[COMMAND_TO_RUN]’

> # Define the new class, extending RnBeads ClusterArchitecture class
> setClass("ClusterArchitectureMyEnv",
+ contains = "ClusterArchitecture"
+)
> #define the getSubCmdTokens method
> setMethod("getSubCmdTokens",
+ signature(
+ object="ClusterArchitectureMyEnv"
+),
+ function(
+ object,
+ cmd.tokens,

RnBeads 53

+ log,
+ job.name = "",
+ res.req = character(0),
+ depend.jobs = character(0)
+) {
+ dependency.token <- NULL
+ if (length(depend.jobs)>0){
+ dependency.token <- c("--waitForJobs", paste(depend.jobs,collapse=","))
+ }
+ job.name.token <- NULL
+ if (nchar(job.name)>0) {
+ job.name.token <- c("--jobName",job.name)
+ }
+ result <- c(
+ "iSubmit", "--myParamter", "5",
+ dependency.token, job.name.token,
+ "--logFile",log,
+ paste0("'",paste(cmd.tokens,collapse=" "),"'")
+)
+ return(result)
+ }
+)

If you now want to submit an RnBeads analysis using your brand new environment all you
have to do is to to replace "ClusterArchitectureSGE" by "ClusterArchitectureMyEnv" in the
previous example.

For the SGE example, see

> ?`getSubCmdTokens,ClusterArchitectureSGE-method`

It might also be helpful to have a look at the source code for the SGE class. You can find it in
the source files of RnBeads (location: R/clusterArchitectureSGE.R).

6.8 Genome-wide segmentation of the methylome

Global DNA methylation has been shown to be organized into larger domains using whole-
genome bisulfite sequencing data [23]. The strategy is based on a hidden-markov model that first
classifies the regions into either partially methylated domains (PMDs) and into the remaining.
The latter is then further classified into fully methylated domains (FMDs), lowly methylated
regions (LMRs), and unmethylated regions (UMRs) according to overall methylation state and
CpG content [24]. Each of these categories is annotated to a distinct biological function. RnBeads
support segmentation according to this proposed MethylSeekR approach.

MethylSeekR is only applicable to larger WGBS datasets and produces a segmentation for
each sample individually. Such a dataset is too large to be shiped together with RnBeads, thus
we assume we loaded a larger, preprocessed RnBiseqSet object obtained from WGBS data called
rnb.set.

> ?rnb.execute.segmentation
> rnb.set <- rnb.execute.segmentation(rnb.set=rnb.set,

RnBeads 54

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●
●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●
●

●

●
●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●●
●
●●

●

●
●

●

●
●
●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●
●

●

●
●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●●
●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●
●
●

●●

●

●
●
●

●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●●

●

●●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●
●●●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●●

●

●

●

●
●
●
●

●
●

●
●

●

●

●

●●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●●

●

●

●
●●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●●
●

●

●

●●●

●

●

●

●

●

●

●

●
●

●●●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●
●

●

●

●
●
●

●
●●

●●

●

●
●●

●

●

●●
●
●
●●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●●●
●●

●●●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●●●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

HMR PMD LMR UMR
Segment

Av
gM

et
h

Segment
HMR

PMD

LMR

UMR

Figure 18: An example BED files (left) and methylation distribution (right) according to the
different segments defined by the MethylSeekR approach.

+ sample.name=samples(rnb.set)[1])
> rnb.set

The dataset now contains further regions types representing the segmentation described above.
This segmentation can now be exported to BED files or the methylation values of the CpGs in
the different segments can be plotted.

> segmentation.results <- "~/segmentation"
> rnb.bed.from.segmentation(rnb.set = rnb.set,
+ sample.name = samples(rnb.set)[1], store.path = segmentation.results)
> plot <- rnb.boxplot.from.segmentation(rnb.set = rnb.set,
+ sample.name = samples(rnb.set)[1])+theme_bw()

The resulting BED file and plots will look as shown in Figure 18, but might vary from sample
to sample.

7 Beyond DNA Methylation Analysis

RnBeads’ extensive logging features and functions which let you generate flexible hypertext re-
ports extend the package’s usefulness beyond DNA methylation analysis.

7.1 HTML Reports

You can easily create entire report websites containing analysis results from within R using
RnBeads. The reports’ format is html and they thus provide a useful way of keeping track of
your research results and share them with collaborators.

Reports need to be initialized, i.e. the directory for the report needs to be specified and
stylesheets and other configuration settings need to be copied to the target directory.

RnBeads 55

> report.dir <- "RnBeads_report"
> rnb.initialize.reports(report.dir)
> report <- createReport(file.path(report.dir, "myreport.html"), "An Eye Opener",
+ page.title="Fascinating Report", authors=c("Me", "You"))

The last command in the above example creates an object of class Report:

> str(report)

The command rnb.initialize.reports creates the configuration directory (usually shared
among several reports), containing common icons, as well as files that define the behaviour,
visual style and layout of the report pages. Also, notice that the RnBeads_report directory now
contains other subdirectories according to the following slots of the report object:

dir.data Directory in which data is placed that is linked to in the report. This can be any data.

dir.pngs Directory in which image files in png format are placed. These are files that are
generated by methods like createReportPlot(). They should be relatively small in file
size such that they can easily displayed on the web.

dir.pdf Directory in which pdf versions of plots will be stored.

dir.high Directory in which high resolution versions of plots will be stored. They can be larger
in terms of file sizes.

If you view myreport.html in your favorite browser you will notice that it contains titles, but
no real content as of yet. So, let us change that by adding a section with some paragraphs:

> stext <- "Here is some text for our awesome report"
> report <- rnb.add.section(report, "Adding a text section", stext)
> lorem1 <- c("Lorem ipsum dolor sit amet, consectetur adipiscing elit.
+ Maecenas vestibulum placerat lobortis. Ut viverra fringilla
+ urna at rutrum. In hac habitasse platea dictumst. Vestibulum
+ adipiscing rutrum libero et interdum. Etiam sed odio ac nibh
+ ullamcorper congue. Proin ac ipsum elit. Ut porta lorem sed
+ lorem molestie pharetra.",
+ "Vestibulum ante ipsum primis in faucibus orci luctus et
+ ultrices posuere cubilia Curae; Cras ac augue eu turpis
+ dignissim aliquam. Vivamus at arcu ligula, vel scelerisque nisi.
+ Vivamus ac lorem libero, quis venenatis metus. Fusce et lectus
+ at lectus vestibulum faucibus ac id sem.")
> report <- rnb.add.section(report, "A subsection", lorem1, level=2)
> lorem2 <- "Nunc congue molestie fringilla. Aliquam erat volutpat.
+ Integer consequat turpis nec dolor pulvinar et vulputate magna
+ adipiscing. Curabitur purus dolor, porttitor vel dapibus quis,
+ eleifend at lacus. Cras at mauris est, quis aliquam libero.
+ Nulla facilisi. Nam facilisis placerat aliquam. Morbi in odio
+ non ligula mollis rhoncus et et erat. Maecenas ut dui nisl.
+ Mauris consequat cursus augue quis euismod."
> rnb.add.paragraph(report, lorem2)
> rnb.add.paragraph(report, "TODO: Add content here", paragraph.class="task")
> rnb.add.paragraph(report, "To be or not to be, that is the question",
+ paragraph.class="note")

RnBeads 56

Again, view myreport.html and notice that it has been filled with content. Other objects, like
lists and tables can be added as well:

> report <- rnb.add.section(report, "Lists and Tables", "")
> ll <- lapply(LETTERS[1:10], function(x) { paste(rep(x, 3), collapse="") })
> rnb.add.list(report, ll, type="o")
> tt <- matrix(sapply(LETTERS[1:24],
+ function(x) { paste(rep(x, 3), collapse="") }), ncol=4)
> colnames(tt) <- paste("Col", 1:4)
> rownames(tt) <- paste("Row", 1:6)
> rnb.add.table(report, tt, row.names=TRUE, first.col.header=TRUE,
+ tcaption="A table")

Note that text will be placed in the report as html text. Hence you can format text and add it
to the report:

> stext <- c('<p>Some German umlauts:
+
+ Ä
+ Ö
+ Ü
+
+ </p>',
+ '<p> A link:
+ RnBeads website</p>')
> report <- rnb.add.section(report, "HTML code", stext)

Now, only text is boring. So, let us add some eye candy, i.e. some plots:

> report <- rnb.add.section(report, "Plots", "")
> report.plot <- createReportPlot("hist_normal", report, create.pdf=TRUE,
+ high.png=200)
> hist(rnorm(1000), breaks=50, col="blue")
> off(report.plot)
> desc <- 'A histogramm of samples drawn from the normal distribution
+ Click
+ here for the pdf version.'
> report <- rnb.add.figure(report, desc, report.plot)

Now, myreport.html will contain a figure. If created as in the case above, the high resolution
version of it is accessible by clicking on the figure or in the myreport_images directory. A pdf
version will be available in the myreport_pdfs directory.

In bioinformatics analysis, inspecting plots with multiple parameter settings is a common
task. RnBeads’ reports can handle these using dropdown menus for possible values of different
parameters and showing the corresponding plot file. Here’s an example:

> # Plot a sine curve
> plotSine <- function(a, b, fname) {
+ report.plot <- createReportPlot(fname, report, create.pdf=FALSE,

RnBeads 57

+ high.png=200)
+ curve(sin(a*x)+b, -2*pi, 2*pi, ylim=c(-2, 2), col="blue", lwd=2)
+ return(off(report.plot))
+ }
> # Set parameters for different sine curves
> period.params <- c(a05=0.5, a1=1, a2=2)
> intercept.params <- c(im1=-1, i0=0, i1=1)
> plot.list <- list()
> for (aa in names(period.params)){
+ for (bb in names(intercept.params)){
+ fname <- paste("sinePlot", aa, bb, sep="_")
+ current.plot <- plotSine(period.params[aa], intercept.params[bb],
+ fname)
+ plot.list <- c(plot.list, current.plot)
+ }
+ }
> setting.names <- list('period parameter'=period.params,
+ 'intercept parameter'=intercept.params)
> description <- 'Sine for various parameters'
> report <- rnb.add.figure(report, description, plot.list, setting.names,
+ selected.image=5)

Finally, close the report, which adds the footer to the page:

> off(report)

7.2 Logging

In order to keep track of what your program is doing, logging is often essential. RnBeads’ logging
functionality is implemented via a few easy-to-handle methods that can be integrated in any
code (not just bioinformatics). In this section, we introduce a few examples on how to use the
logging capabilities.

First, a logger needs to be initialized:

> logger.start("Logging tutorial", fname=NA)

2025-07-23 17:25:56 1.6 STATUS STARTED Logging tutorial

will initialize a logger with its standard output being the console. You can also specify a file
name for fname to redirect the logging output to a file.

> logger.isinitialized()

[1] TRUE

will tell you whether a logger has been initialized. Whenever you start a particular task, you
can tell the logger to initialize a new section:

> logger.start("Some tedious task")

2025-07-23 17:25:56 1.6 STATUS STARTED Some tedious task

RnBeads 58

By default, the logging message is automatically appended to the initialized logger. When you
complete your task, just tell the logger:

> logger.completed()

2025-07-23 17:25:56 1.6 STATUS COMPLETED Some tedious task

Notice the indentation of “Some tedious task”. You can nest as many subtasks as you like:

> f <- function(){
+ logger.start("Another tedious task")
+ Sys.sleep(2)
+ logger.start("Some tedious subtask")
+ Sys.sleep(2)
+ logger.completed()
+ logger.start("Another, more tedious subtask")
+ Sys.sleep(2)
+ logger.start("Some tedious subsubtask")
+ Sys.sleep(2)
+ logger.completed()
+ logger.start("Some even more tedious subsubtask")
+ Sys.sleep(3)
+ logger.completed()
+ logger.completed()
+ logger.completed()
+ }
> f()

2025-07-23 17:25:57 1.6 STATUS STARTED Another tedious task
2025-07-23 17:25:59 1.6 STATUS STARTED Some tedious subtask
2025-07-23 17:26:01 1.6 STATUS COMPLETED Some tedious subtask
2025-07-23 17:26:01 1.6 STATUS STARTED Another, more tedious subtask
2025-07-23 17:26:03 1.6 STATUS STARTED Some tedious subsubtask
2025-07-23 17:26:05 1.6 STATUS COMPLETED Some tedious subsubtask
2025-07-23 17:26:05 1.6 STATUS STARTED Some even more tedious subsubtask
2025-07-23 17:26:08 1.6 STATUS COMPLETED Some even more tedious subsubtask
2025-07-23 17:26:08 1.6 STATUS COMPLETED Another, more tedious subtask
2025-07-23 17:26:08 1.6 STATUS COMPLETED Another tedious task

The logging capabilities also include status messages in various flavors:

info informs the user of a particular program setting, e.g. the current value of a particular
variable. The information in the message is typically dependent on the program input.

status informs the user of which part of a program has been reached. These messages are
typically fixed strings.

warning warns the user that something did not go as expected.

error a more severe form of a warning: something went terribly wrong. Causes an error to be
thrown which terminates the program if not caught.

RnBeads 59

Here is an example function that uses the logging functionality

> draw.lotto <- function(count=6) {
+ urn <- 1:49
+ primes <- c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47)
+ logger.start(c("Drawing", count, "numbers from", length(urn)))
+ for (i in 1:count) {
+ if (i > 9) {
+ msg <- "Too many numbers drawn"
+ logger.error(msg, terminate=FALSE)
+ stop(msg)
+ }
+ drawn <- sample(urn, 1)
+ urn <- setdiff(urn, drawn)
+ logger.info(c("The next number is", drawn))
+ if (drawn %in% primes) {
+ logger.warning("A prime number was drawn")
+ }
+ }
+ logger.completed()
+ }
> draw.lotto()

2025-07-23 17:26:09 1.6 STATUS STARTED Drawing 6 numbers from 49
2025-07-23 17:26:09 1.6 INFO The next number is 28
2025-07-23 17:26:09 1.6 INFO The next number is 6
2025-07-23 17:26:09 1.6 INFO The next number is 36
2025-07-23 17:26:09 1.6 INFO The next number is 42
2025-07-23 17:26:09 1.6 INFO The next number is 30
2025-07-23 17:26:09 1.6 INFO The next number is 32
2025-07-23 17:26:09 1.6 STATUS COMPLETED Drawing 6 numbers from 49

> #draw.lotto(15)

Note that setting the parameter terminate in logger.error() to TRUE will cause R to terminate.
The logger does not automatically generate R warnings and errors.

References

[1] Ziller, M. J., Müller, F., Liao, J., Zhang, Y., Gu, H., Bock, C., Boyle, P., et al. (2011).
Genomic Distribution and Inter-Sample Variation of Non-CpG Methylation across Human
Cell Types. PLoS Genetics, 7(12)

[2] Nazor, K.L., Altun, G., Lynch, C., Tran, H., Harness, J.V., Slavin, I., Garitaonandia, I. et
al. (2012), Recurrent Variations in DNA Methylation in Human Pluripotent Stem Cells and
Their Differentiated Derivatives. Cell Stem Cell, 10(5),620-634

[3] Makambi, K. (2003). Weighted inverse chi-square method for correlated significance tests.
Journal of Applied Statistics, 30(2), 225-234

RnBeads 60

[4] Maksimovic, J., Gordon, L., Oshlack, A. (2012). SWAN: Subset quantile Within-Array
Normalization for Illumina Infinium Infinium 450k BeadChips. Genome Biology, 13(6),
R44

[5] Liu, J., Siegmund, K., Laird, P., Berman, B. (2012). Bis-SNP: combined DNA methylation
and SNP calling for Bisulfite-seq data Genome Biology, 13(7), R44

[6] Pidsley, R., Wong, C., Volta, M., Lunnon, K., Mill, J., and Schalkwyk, L. (2013) A
data-driven approach to preprocessing Illumina 450K methylation array data. BMC Ge-
nomics,14(1), 293

[7] Adler, D., Gläser, C., Nenadic, O., Oehlschlägel, J. and Zucchini, W. (2012) ff: memory-
efficient storage of large data on disk and fast access functions. R package version 2.2-12.
http://ff.r-forge.r-project.org

[8] Davis, S., Du, P., Bilke, S., Triche, T., Bootwalla, M. (2013) methylumi: Handle Illumina
methylation data. R package version 2.6.1.

[9] Hansen, K.D., Aryee, M minfi: Analyze Illumina’s 450k methylation arrays. R package
version 1.6.0.

[10] Teschendorff, A.,Marabita, F., Lechner, M., Bartlett, T., Tegner, J., Gomez-Cabrero, D.,
and Beck, S. (2013).A beta-mixture quantile normalization method for correcting probe design
bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics, 29(2),189-196

[11] Triche, T.J., Jr., Weisenberger, D.J., Van Den Berg, D., Laird, P.W., and Siegmund, K.D.
(2013). Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic
Acids Res, 41(7), e90

[12] Leek, J. T., Storey, J. D. (2007). Capturing Heterogeneity in Gene Expression Studies by
Surrogate Variable Analysis. PLoS Genetics, 3(9), 1724-1735.

[13] Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., Storey, J. D. (2012). The sva package
for removing batch effects and other unwanted variation in high-throughput experiments.
Bioinformatics, 28(6), 882-883.

[14] Houseman, E.A., Accomando W.P., Koestler D.C.,Christensen B.C., Marsit C.J., Nelson
H.H., Wiencke J.K., Kelsey K.T. (2012). DNA methylation arrays as surrogate measures of
cell mixture distribution. BMC Bioinformatics 13:86.

[15] Guintivano J., Aryee M.J., Kaminsky Z.A. (2013). A cell epigenotype specific model for the
correction of brain cellular heterogeneity bias and its application to age, brain region and
major depression. Epigenetics, 8(3), 290-302.

[16] Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al.
(2000). Gene ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29

[17] Sheffield, N. C., and Bock, C. (2016). LOLA: enrichment analysis for genomic region sets
and regulatory elements in R and Bioconductor. Bioinformatics, 32(4), 587-589

[18] Falcon, S., and Gentleman, R. (2007). Using GOstats to test gene lists for GO term associ-
ation. Bioinformatics, 23(2), 257-258

RnBeads 61

[19] Houseman, E. A., Molitor, J., and Marsit, C. J. (2014). Reference-Free Cell Mixture Ad-
justments in Analysis of DNA Methylation Data. Bioinformatics, btu029.

[20] Zou, J., Lippert, C., Heckerman, D., Aryee, M., and Listgarten, J. (2014). Epigenome-wide
association studies without the need for cell-type composition. Nature Methods. 11, 309-311.

[21] Fortin, J.-P., Labbe, A., Lemire, M., Zanke, B. W., Hudson, T. J., Fertig, E. J., et al.
(2014). Functional normalization of 450k methylation array data improves replication in
large cancer studies. Genome Biology, 15(12), 503

[22] Aran, D., Sirota, M., Butte, A.J. (2014). Systematic pan-cancer analysis of tumour purity.
Nature Communications, 6, 8971

[23] Salhab, A., Nordström, K., Gasparoni, G., Kattler, K., Ebert, P., et.al. (2018) A compre-
hensive analysis of 195 DNA methylomes reveals shared and cell-specific features of partially
methylated domains. Genome Biology, 19(1), 9-11.

[24] Burger, L., Gaidatzis, D., Schübeler, D., and Stadler, M. B. (2013). Identification of ac-
tive regulatory regions from DNA methylation data. Nucleic Acids Research, 41(16), e155.
https://doi.org/10.1093/nar/gkt599

	Getting Started
	Installation
	Overview of RnBeads Modules
	Datasets
	Setting Up the Analysis Environment

	Vanilla Analysis
	Working with RnBSet Objects
	Tailored Analysis: RnBeads Modules
	Data Import
	Quality Control
	Sex Prediction
	CNV estimation

	Preprocessing
	Filtering
	Normalization

	Covariate Inference
	Surrogate Variable Analysis
	Inference of Cell Type Contributions
	Age Prediction
	Immune Cell Content Estimation

	Exploratory Analysis
	Low-dimensional Representation and Batch Effects
	Clustering

	Differential Methylation Analysis
	Differential Variability Analysis
	Paired Analysis
	Adjusting for Covariates in the Differential Analysis
	Enrichment Analysis of Differentially Methylated Regions

	Tracks and Tables

	Analyzing Bisulfite Sequencing Data
	Data Loading
	Quality Control
	Filtering

	Advanced Usage
	Analysis Parameter Overview
	Annotation Data
	Custom Annotation

	Parallel Processing
	Extra-Large Matrices, RAM and Disk Space Management
	Some Sugar and Recipes
	Plotting Methylation Value Distributions
	Plotting Low Dimensional representations
	Generating Locus Profile Plots (aka Genome-Browser-Like Views)
	Adjusting for Surrogate Variables in Differential Methylation Analysis
	Generating Density-Scatterplots

	Correcting for Cell Type Heterogeneity Effects
	Deploying RnBeads on a Scientific Compute Cluster
	Genome-wide segmentation of the methylome

	Beyond DNA Methylation Analysis
	HTML Reports
	Logging

