Package 'PrInCE'

April 25, 2025

```
Version 1.25.0
BugReports https://github.com/fosterlab/PrInCE/issues
Description PrInCE (Predicting Interactomes from Co-Elution) uses a naive
      Bayes classifier trained on dataset-derived features to recover
      protein-protein interactions from co-elution chromatogram profiles. This
      package contains the R implementation of PrInCE.
Depends R (>= 3.6.0)
Imports purrr (>= 0.2.4), dplyr (>= 0.7.4), tidyr (>= 0.8.99),
      forecast (>= 8.2), progress (>= 1.1.2), Hmisc (>= 4.0),
      naivebayes (\geq 0.9.1), robustbase (\geq 0.92-7), ranger (\geq 0.92-7)
      0.8.0), LiblineaR (>= 2.10-8), speedglm (>= 0.3-2), tester (>=
      0.1.7), magrittr (>= 1.5), Biobase (>= 2.40.0), MSnbase (>=
      2.8.3), stats, utils, methods, Rdpack (>= 0.7)
Suggests BiocStyle, knitr, rmarkdown
biocViews Proteomics, SystemsBiology, NetworkInference
VignetteBuilder knitr
License GPL-3 + file LICENSE
Encoding UTF-8
RdMacros Rdpack
RoxygenNote 7.1.1
git_url https://git.bioconductor.org/packages/PrInCE
git_branch devel
git last commit 76730e5
git_last_commit_date 2025-04-15
Repository Bioconductor 3.22
Date/Publication 2025-04-24
Author Michael Skinnider [aut, trl, cre],
      R. Greg Stacey [ctb],
      Nichollas Scott [ctb],
      Anders Kristensen [ctb],
      Leonard Foster [aut, led]
```

Maintainer Michael Skinnider <michael.skinnider@msl.ubc.ca>

Title Predicting Interactomes from Co-Elution

Contents

adjacency_matrix_from_data_frame	2
adjacency_matrix_from_list	3
aic	4
build_gaussians	4
calculate_autocorrelation	6
calculate_features	7
calculate_precision	8
check_gaussians	9
choose_gaussians	10
clean_profile	11
clean_profiles	12
concatenate_features	13
co_apex	13
detect_complexes	14
filter_profiles	15
fit_curve	15
fit_gaussians	
gold_standard	17
impute_neighbors	18
is_unweighted	18
is_weighted	
kristensen	19
kristensen_gaussians	20
make_feature_from_data_frame	
make_feature_from_expression	
make_initial_conditions	
make_labels	23
match_matrix_dimensions	
predict_ensemble	25
predict_interactions	
PrInCE	27
replace_missing_data	31
scott	31
scott_gaussians	
threshold_precision	33

adjacency_matrix_from_data_frame

Create an adjacency matrix from a data frame

Description

Convert a data frame containing pairwise interactions into an adjacency matrix. The resulting square adjacency matrix contains ones for proteins that are found in interactions and zeroes otherwise.

Usage

Index

```
adjacency_matrix_from_data_frame(dat, symmetric = TRUE, node_columns = c(1, 2))
```

Arguments

dat a data frame containing pairwise interactions

symmetric if true, interactions in both directions will be added to the adjacency matrix

node_columns a vector of length two, denoting either the indices (integer vector) or column

names (character vector) of the columns within the data frame containing the nodes participating in pairwise interactions; defaults to the first two columns of

the data frame (c(1, 2))

Value

an adjacency matrix between all interacting proteins

Examples

```
adjacency_matrix_from_list
```

Create an adjacency matrix from a list of complexes

Description

Convert a list of complexes into a pairwise adjacency matrix. The resulting square adjacency matrix contains ones for proteins that are found in the same complex and zeroes otherwise.

Usage

```
adjacency_matrix_from_list(complexes)
```

Arguments

complexes a list of complexes, with each entry containing complex subunits as a character

vector

Value

an adjacency matrix between all complex subunits

```
data(gold_standard)
adj <- adjacency_matrix_from_list(gold_standard)</pre>
```

4 build_gaussians

aic

Model selection for Gaussian mixture models

Description

Calculate the AIC, corrected AIC, or BIC for a curve fit with a Gaussian mixture model by non-linear least squares optimization. This function permits the calculation of the AIC/AICc/BIC after rejecting some Gaussians in the model, for example because their centres are outside the bounds of the profile.

Usage

```
gaussian_aic(coefs, chromatogram)
gaussian_aicc(coefs, chromatogram)
gaussian_bic(coefs, chromatogram)
```

Arguments

coefs the coefficients of the Gaussian mixture model, output by fit_gaussians chromatogram the raw elution profile

Value

the AIC, corrected AIC, or BIC of the fit model

build_gaussians

Deconvolve profiles into Gaussian mixture models

Description

Identify peaks in co-fractionation profiles by deconvolving peaks in Gaussian mixture models. Models are mixtures of between 1 and 5 Gaussians. Profiles are pre-processed prior to building Gaussians by filtering and cleaning. By default, profiles with fewer than 5 non-missing points, or fewer than 5 consecutive points after imputation of single missing values, are removed. Profiles are cleaned by replacing missing values with near-zero noise, imputing single missing values as the mean of neighboring points, and smoothing with a moving average filter.

Usage

```
build_gaussians(
  profile_matrix,
  min_points = 1,
  min_consecutive = 5,
  impute_NA = TRUE,
  smooth = TRUE,
  smooth_width = 4,
  max_gaussians = 5,
```

build_gaussians 5

```
criterion = c("AICc", "AIC", "BIC"),
max_iterations = 50,
min_R_squared = 0.5,
method = c("guess", "random"),
filter_gaussians_center = TRUE,
filter_gaussians_height = 0.15,
filter_gaussians_variance_min = 0.5,
filter_gaussians_variance_max = 50
```

Arguments

profile_matrix a numeric matrix of co-elution profiles, with proteins in rows, or a MSnSet object

min_points filter profiles without at least this many total, non-missing points; passed to

filter_profiles

min_consecutive

filter profiles without at least this many consecutive, non-missing points; passed

to filter_profiles

impute_NA if true, impute single missing values with the average of neighboring values;

passed to clean_profiles

smooth if true, smooth the chromatogram with a moving average filter; passed to clean_profiles

smooth_width width of the moving average filter, in fractions; passed to clean_profiles

max_gaussians the maximum number of Gaussians to fit; defaults to 5. Note that Gaussian

mixtures with more parameters than observed (i.e., non-zero or NA) points will

not be fit. Passed to choose_gaussians

criterion the criterion to use for model selection; one of "AICc" (corrected AIC, and

default), "AIC", or "BIC". Passed to choose_gaussians

max_iterations the number of times to try fitting the curve with different initial conditions; de-

faults to 50. Passed to fit_gaussians

min_R_squared the minimum R-squared value to accept when fitting the curve with different

initial conditions; defaults to 0.5. Passed to fit_gaussians

method the method used to select the initial conditions for nonlinear least squares op-

timization (one of "guess" or "random"); see make_initial_conditions for

details. Passed to fit_gaussians

filter_gaussians_center

true or false: filter Gaussians whose centres fall outside the bounds of the chro-

matogram. Passed to fit_gaussians

 ${\tt filter_gaussians_height}$

Gaussians whose heights are below this fraction of the chromatogram height will be filtered. Setting this value to zero disables height-based filtering of fit

Gaussians. Passed to fit_gaussians

filter_gaussians_variance_min

Gaussians whose variance falls below this number of fractions will be filtered. Setting this value to zero disables filtering. Passed to fit_gaussians

filter_gaussians_variance_max

Gaussians whose variance is above this number of fractions will be filtered. Setting this value to zero disables filtering. Passed to fit_gaussians

Value

a list of fit Gaussian mixture models, where each item in the list contains the following five fields: the number of Gaussians used to fit the curve; the R^2 of the fit; the number of iterations used to fit the curve with different initial conditions; the coefficients of the fit model; and the curve predicted by the fit model. Profiles that could not be fit by a Gaussian mixture model above the minimum R-squared cutoff will be absent from the returned list.

Examples

```
data(scott)
mat <- clean_profiles(scott[seq_len(5), ])
gauss <- build_gaussians(mat, max_gaussians = 3)</pre>
```

calculate_autocorrelation

Calculate the autocorrelation for each protein between a pair of coelution experiments.

Description

For a given protein, the correlation coefficient to all other proteins in the first condition is calculated, yielding a vector of correlation coefficients. The same procedure is repeated for the second condition, and the two vectors of correlation coefficients are themselves correlated, yielding a metric whereby higher values reflect proteins with unchanging interaction profiles between conditions, while lower values reflect proteins with substantially changing interaction profiles.

Usage

```
calculate_autocorrelation(
  profile1,
  profile2,
  cor_method = c("pearson", "spearman", "kendall"),
  min_replicates = 1,
  min_fractions = 1,
  min_pairs = 0
)
```

Arguments

profile1 a numeric matrix or data frame with proteins in rows and fractions in columns, or a MSnSet object, representing the first co-elution condition

profile2 a numeric matrix or data frame with proteins in rows and fractions in columns, or a MSnSet object, representing the second co-elution condition

cor_method the correlation method to use; one of "pearson", "spearman", or "kendall").

min_fractions filter proteins not quantified in at least this many fractions

remove correlations between protein pairs not co-occurring in at least this many fractions from the autocorrelation calculation

calculate_features 7

Details

Note that all of zero, NA, NaN, and infinite values are all treated equivalently as missing values when applying the min_fractions and min_pairs filters, but different handling of missing values will produce different autocorrelation scores.

Value

a named vector of autocorrelation scores for all proteins found in both matrices.

calculate_features

Calculate the default features used to predict interactions in PrInCE

Description

Calculate the six features that are used to discriminate interacting and non-interacting protein pairs based on co-elution profiles in PrInCE, namely: raw Pearson R value, cleaned Pearson R value, raw Pearson P-value, Euclidean distance, co-peak, and co-apex. Optionally, one or more of these can be disabled.

Usage

```
calculate_features(
  profile_matrix,
  gaussians,
  min_pairs = 0,
  pearson_R_raw = TRUE,
  pearson_P = TRUE,
  euclidean_distance = TRUE,
  co_peak = TRUE,
  co_apex = TRUE,
  n_pairs = FALSE,
  max_euclidean_quantile = 0.9
)
```

Arguments

```
profile_matrix a numeric matrix of co-elution profiles, with proteins in rows, or a MSnSet object
gaussians a list of Gaussian mixture models fit to the profile matrix by link{build_gaussians}
min_pairs minimum number of overlapping fractions between any given protein pair to
consider a potential interaction

pearson_R_raw if true, include the Pearson correlation (R) between raw profiles as a feature

pearson_R_cleaned if true, include the Pearson correlation (R) between cleaned profiles as a feature

pearson_P if true, include the P-value of the Pearson correlation between raw profiles as a feature

euclidean_distance
```

if true, include the Euclidean distance between cleaned profiles as a feature

8 calculate_precision

co_peak if true, include the 'co-peak score' (that is, the distance, in fractions, between

the single highest value of each profile) as a feature

co_apex if true, include the 'co-apex score' (that is, the minimum Euclidean distance

between any pair of fit Gaussians) as a feature

max_euclidean_quantile

very high Euclidean distance values are trimmed to avoid numerical precision issues; values above this quantile will be replaced with the value at this quantile

(default: 0.9)

Value

a data frame containing the calculated features for all possible protein pairs

calculate_precision

Calculate precision at each point in a sequence

Description

Calculate the precision of a list of interactions at each point in the list, given a set of labels.

Usage

```
calculate_precision(labels)
```

Arguments

labels a vector of zeroes (FPs) and ones (TPs)

Value

a vector of the same length giving the precision at each point in the input vector

check_gaussians 9

check_gaussians	Check the format of a list of Gaussians	
-----------------	---	--

Description

Test whether an input list of Gaussians conforms to the format expected by PrInCE: that is, a named list with five fields for each entry, i.e., the number of Gaussians in the mixture model, the r^2 value, the number of iterations used by nls, the coefficients of each model, and the fitted curve.

Usage

```
check_gaussians(
  gaussians,
  proteins = NULL,
  replicate_idx = NULL,
  n_error = 3,
  pct_warning = 0.1
)
```

Arguments

gaussians the list of Gaussians
proteins the complete set of input proteins

replicate_idx the replicate being analyzed, if input proteins are provided; used to throw more

informative error messages

n_error minimum number of proteins that can have fitted Gaussians without throwing

an error

pct_warning minimum fraction of proteins that can have fitted Gaussians without giving a

warning

Details

Optionally, some extra checks will be done on the fraction of proteins in the complete dataset for which a Gaussian mixture model could be fit, if provided. In particular, the function will throw an error if fewer than n_error proteins have a fitted Gaussian, and emit a warning if fewer than pct_warning do.

Value

TRUE if all conditions are met, but throws an error if any is not

```
data(scott_gaussians)
check_gaussians(scott_gaussians)
```

10 choose_gaussians

choose_gaussians

Fit a Gaussian mixture model to a co-elution profile

Description

Fit mixtures of one or more Gaussians to the curve formed by a chromatogram profile, and choose the best fitting model using an information criterion of choice.

Usage

```
choose_gaussians(
  chromatogram,
  points = NULL,
 max_gaussians = 5,
 criterion = c("AICc", "AIC", "BIC"),
 max_iterations = 10,
 min_R_squared = 0.5,
 method = c("guess", "random"),
  filter_gaussians_center = TRUE,
  filter_gaussians_height = 0.15,
  filter_gaussians_variance_min = 0.1,
  filter_gaussians_variance_max = 50
)
```

Arguments

chromatogram a numeric vector corresponding to the chromatogram trace points optional, the number of non-NA points in the raw data the maximum number of Gaussians to fit; defaults to 5. Note that Gaussian max_gaussians mixtures with more parameters than observed (i.e., non-zero or NA) points will not be fit. the criterion to use for model selection; one of "AICc" (corrected AIC, and criterion default), "AIC", or "BIC" max_iterations the number of times to try fitting the curve with different initial conditions; defaults to 10 the minimum R-squared value to accept when fitting the curve with different min_R_squared initial conditions; defaults to 0.5 method the method used to select the initial conditions for nonlinear least squares optimization (one of "guess" or "random"); see make_initial_conditions for details filter_gaussians_center true or false: filter Gaussians whose centres fall outside the bounds of the chro-

matogram

filter_gaussians_height

Gaussians whose heights are below this fraction of the chromatogram height will be filtered. Setting this value to zero disables height-based filtering of fit Gaussians

clean_profile 11

```
filter_gaussians_variance_min
```

Gaussians whose variance is below this threshold will be filtered. Setting this value to zero disables filtering.

```
filter_gaussians_variance_max
```

Gaussians whose variance is above this threshold will be filtered. Setting this value to zero disables filtering.

Value

a list with five entries: the number of Gaussians used to fit the curve; the R^2 of the fit; the number of iterations used to fit the curve with different initial conditions; the coefficients of the fit model; and the curve predicted by the fit model.

Examples

```
data(scott)
chrom <- clean_profile(scott[1, ])
gauss <- choose_gaussians(chrom, max_gaussians = 3)</pre>
```

clean_profile

Preprocess a co-elution profile

Description

Clean a co-elution/co-fractionation profile by (1) imputing single missing values with the average of neighboring values, (2) replacing missing values with random, near-zero noise, and (3) smoothing with a moving average filter.

Usage

```
clean_profile(
  chromatogram,
  impute_NA = TRUE,
  smooth = TRUE,
  smooth_width = 4,
  noise_floor = 0.001
)
```

Arguments

chromatogram a numeric vector corresponding to the chromatogram trace

impute_NA if true, impute single missing values with the average of neighboring values

smooth if true, smooth the chromatogram with a moving average filter

smooth_width width of the moving average filter, in fractions noise_floor mean value of the near-zero noise to add

Value

```
a cleaned profile
```

12 clean_profiles

Examples

```
data(scott)
chrom <- scott[16, ]
cleaned <- clean_profile(chrom)</pre>
```

clean_profiles

Preprocess a co-elution profile matrix

Description

Clean a matrix of co-elution/co-fractionation profiles by (1) imputing single missing values with the average of neighboring values, (2) replacing missing values with random, near-zero noise, and (3) smoothing with a moving average filter.

Usage

```
clean_profiles(
  profile_matrix,
  impute_NA = TRUE,
  smooth = TRUE,
  smooth_width = 4,
  noise_floor = 0.001
)
```

Arguments

profile_matrix a numeric matrix of co-elution profiles, with proteins in rows, or a MSnSet object impute_NA if true, impute single missing values with the average of neighboring values smooth if true, smooth the chromatogram with a moving average filter smooth_width width of the moving average filter, in fractions noise_floor mean value of the near-zero noise to add

Value

a cleaned matrix

```
data(scott)
mat <- scott[c(1, 16), ]
mat_clean <- clean_profiles(mat)</pre>
```

concatenate_features 13

Description

Concatenate features extracted from multiple replicates to a single data frame that will be used as input to a classifier. Doing so allows the classifier to naturally weight evidence for an interaction between each protein pair from each feature in each replicate in proportion to its discriminatory power on known examples.

Usage

```
concatenate_features(feature_list)
```

Arguments

feature_list a list of feature data frames, as produced by calculate_features, with proteins in the first two columns

Value

a data frame containing features for all protein pairs across all replicates

co_apex

Calculate the co-apex score for every protein pair

Description

Calculate the co-apex score for every pair of proteins. This is defined as the minimum Euclidean distance between any two Gaussians fit to each profile.

Usage

```
co_apex(gaussians, proteins = NULL)
```

Arguments

gaussians a list of Gaussian mixture models fit to the profile matrix by link{build_gaussians} proteins all proteins being scored, optionally including those without Gaussian fits

Value

a matrix of co-apex scores

```
data(scott_gaussians)
gauss <- scott_gaussians[seq_len(25)]
CA <- co_apex(gauss)</pre>
```

14 detect_complexes

detect_complexes

Detect significantly interacting complexes in a chromatogram matrix

Description

Use a permutation testing approach to identify complexes that show a significant tendency to interact, relative to random sets of complexes of equivalent size. The function begins by calculating the Pearson correlation or Euclidean distance between all proteins in the matrix, and

Usage

```
detect_complexes(
  profile_matrix,
  complexes,
  method = c("pearson", "euclidean"),
  min_pairs = 10,
  bootstraps = 100,
  progress = TRUE
)
```

Arguments

profile_matrix a matrix of chromatograms, with proteins in the rows and fractions in the columns, or a MSnSet object

complexes a named list of protein complexes, where the name is the complex name and the entries are proteins within that complex

method method to use to calculate edge weights; one of pearson or euclidean

min_pairs the minimum number of pairwise observations to count a correlation or distance towards the z score

bootstraps number of bootstraps to execute to estimate z scores

progress whether to show the progress of the function

Value

a named vector of z scores for each complex in the input list

```
data(scott)
data(gold_standard)
complexes <- gold_standard[lengths(gold_standard) >= 3]
z_scores <- detect_complexes(t(scott), complexes)
length(na.omit(z_scores)) ## number of complexes that could be tested
z_scores[which.max(z_scores)] ## most significant complex</pre>
```

filter_profiles 15

filter_profiles

Filter a co-elution profile matrix

Description

Filter a matrix of co-elution/co-fractionation profiles by removing profiles without a certain number of non-mising or consecutive points.

Usage

```
filter_profiles(profile_matrix, min_points = 1, min_consecutive = 5)
```

Arguments

profile_matrix a numeric matrix of co-elution profiles, with proteins in rows, or a MSnSet object min_points filter profiles without at least this many total, non-missing points min_consecutive

filter profiles without at least this many consecutive, non-missing points

Value

the filtered profile matrix

Examples

```
data(scott)
nrow(scott)
filtered <- filter_profiles(scott)
nrow(scott)</pre>
```

fit_curve

Output the fit curve for a given mixture of Gaussians

Description

For a Gaussian mixture model fit to a curve by fit_gaussians, output the fit curve using the coefficients rather than the nls object. This allows individual Gaussians to be removed from the fit model: for example, if their height is below a certain threshold, or their centres are outside the bounds of the chromatogram.

Usage

```
fit_curve(coef, indices)
```

16 fit_gaussians

Arguments

coef numeric vector of coefficients for a Gaussian mixture model fit by fit_gaussians.

This function assumes that the heights of the Gaussians are specified by coefficients beginning with "A" ("A1", "A2", "A3", etc.), centres are specified by coefficients beginning with "mu", and standard deviations are specified by coef-

ficients beginning with "sigma".

indices the indices, or x-values, to predict a fitted curve for (for example, the fractions

in a given chromatogram)

Value

the fitted curve

Examples

```
data(scott)
chrom <- clean_profile(scott[1, ])
fit <- fit_gaussians(chrom, n_gaussians = 1)
curve <- fit_curve(fit$coefs, seq_along(chrom))</pre>
```

fit_gaussians

Fit a mixture of Gaussians to a chromatogram curve

Description

Fit mixtures of one or more Gaussians to the curve formed by a chromatogram profile, using non-linear least-squares.

Usage

```
fit_gaussians(
  chromatogram,
  n_gaussians,
  max_iterations = 10,
  min_R_squared = 0.5,
  method = c("guess", "random"),
  filter_gaussians_center = TRUE,
  filter_gaussians_height = 0.15,
  filter_gaussians_variance_min = 0.1,
  filter_gaussians_variance_max = 50
)
```

Arguments

chromatogram a numeric vector corresponding to the chromatogram trace

n_gaussians the number of Gaussians to fit

max_iterations the number of times to try fitting the curve with different initial conditions; de-

faults to 10

gold_standard 17

min_R_squared the minimum R-squared value to accept when fitting the curve with different

initial conditions; defaults to 0.5

method the method used to select the initial conditions for nonlinear least squares op-

timization (one of "guess" or "random"); see make_initial_conditions for

details

filter_gaussians_center

true or false: filter Gaussians whose centres fall outside the bounds of the chro-

matogram

filter_gaussians_height

Gaussians whose heights are below this fraction of the chromatogram height will be filtered. Setting this value to zero disables height-based filtering of fit

Gaussians

filter_gaussians_variance_min

Gaussians whose variance falls below this number of fractions will be filtered.

Setting this value to zero disables filtering.

filter_gaussians_variance_max

Gaussians whose variance is above this number of fractions will be filtered. Setting this value to zero disables filtering.

Value

a list with six entries: the number of Gaussians used to fit the curve; the R^2 of the fit; the number of iterations used to fit the curve with different initial conditions; the coefficients of the fit model; and the fit curve predicted by the fit model.

Examples

```
data(scott)
chrom <- clean_profile(scott[1, ])
fit <- fit_gaussians(chrom, n_gaussians = 1)</pre>
```

gold_standard

Reference set of human protein complexes

Description

A reference set of 467 experimentally confirmed human protein complexes, derived from the EBI Complex Portal database.

Usage

```
data(gold_standard)
```

Format

```
a list containing 467 entries (character vectors)
```

is_unweighted

Details

467 protein complexes, ranging in size from 2 to 44 proteins and involving 877 proteins in total, to provide a reference set of true positive and true negative interactions (intra- and inter-complex interactions, respectively) for demonstration in PrInCE analysis of a co-elution dataset. Other "gold standards" are possible in practice, most notably the CORUM database; however, the Complex Portal reference set is included in this package due to its CC-BY license.

Source

https://www.ebi.ac.uk/complexportal/complex/organisms

impute_neighbors

Impute single missing values

Description

Impute single missing values within a chromatogram profile as the average of their neighbors.

Usage

```
impute_neighbors(chromatogram)
```

Arguments

chromatogram a numeric vector corresponding to the chromatogram trace

Value

the imputed chromatogram

Examples

```
data(scott)
chrom <- scott[16, ]
imputed <- impute_neighbors(chrom)</pre>
```

is_unweighted

Test whether a network is unweighted

Description

Test whether a network is unweighted

Usage

```
is_unweighted(network)
```

Arguments

network

the network to analyze

is_weighted 19

Value

true if the input network is a square logical or numeric matrix

Examples

```
data(gold_standard)
adj <- adjacency_matrix_from_list(gold_standard)
is_unweighted(adj) ## returns TRUE</pre>
```

is_weighted

Test whether a network is weighted

Description

Test whether a network is weighted

Usage

```
is_weighted(network)
```

Arguments

network

the network to analyze

Value

true if the input network is a square numeric matrix with more than two values

Examples

```
data(gold_standard)
adj <- adjacency_matrix_from_list(gold_standard)
is_weighted(adj) ## returns FALSE</pre>
```

kristensen

Interactome of HeLa cells

Description

Co-elution profiles derived from size exclusion chromatography (SEC) of HeLa cell lysates.

Usage

```
data(kristensen)
```

Format

a data frame with 1875 rows and 48 columns, with proteins in rows and SEC fractions in columns

Details

Protein quantitation was accomplished by SILAC (stable isotopic labelling by amino acids in cell culture), and is ratiometric, i.e., it reflects the ratio between the intensity of the heavy isotope and the light isotope ("H/L"). The dataset was initially described in Kristensen et al., *Nat. Methods* 2012. The medium isotope channel from replicate 1 (Supplementary Table 1a in the online supplementary information) is included in the PrInCE package. The R script used to generate this matrix from the supplementary materials of the paper is provided in the data-raw directory of the package source code.

Source

https://www.nature.com/articles/nmeth.2131

kristensen_gaussians Fitted Gaussian mixture models for the kristensen dataset

Description

The kristensen dataset consists of protein co-migration profiles derived from size exclusion chromatography (SEC) of unstimulated HeLa cell lysates. The kristensen_gaussians object contains Gaussian mixture models fit by the function build_gaussians; this is bundled with the R package in order to expedite the demonstration code, as the process of Gaussian fitting is one of the more time-consuming aspects of the package.

Usage

data(kristensen_gaussians)

Format

a named list with 1117 entries; names are proteins, and list items conain information about fitted Gaussians in the format that PrInCE expects

Details

As with the kristensen dataset, the code used to generate this data object is provided in the data-raw directory of the package source.

make_feature_from_data_frame

Create a feature vector for a classifier from a data frame

Description

Convert a data frame containing pairwise interactions, and a score or other data associated with each interaction, into a feature vector that matches the dimensions of a data frame used as input to a classifier, such as a naive Bayes, random forests, or support vector machine classifier.

Usage

```
make_feature_from_data_frame(
  dat,
  target,
  dat_node_cols = c(1, 2),
  target_node_cols = c(1, 2),
  feature_col = 3,
  default_value = NA
)
```

Arguments

dat a data frame containing pairwise interactions and a feature to be converted to a

vector in a third column

target the data frame of features that will be provided as input to a classifier

dat_node_cols a vector of length two, denoting either the indices (integer vector) or column

names (character vector) of the columns within the feature data frame; defaults

to the first two columns of the data frame (c(1, 2))

target_node_cols

a vector of length two, denoting either the indices (integer vector) or column names (character vector) of the columns within the target data frame; defaults to

the first two columns of the data frame (c(1, 2))

feature_col the name or index of the column in the first data frame that contains a feature

for each interaction

default_value the default value for protein pairs that are not in the first data frame (set, by

default, to NA)

Value

a vector matching the dimensions and order of the feature data frame, to use as input for a classifier in interaction prediction

```
make_feature_from_expression
```

Create a feature vector from expression data

Description

Convert a gene or protein expression matrix into a feature vector that matches the dimensions of a data frame used as input to a classifier, such as a naive Bayes, random forests, or support vector machine classifier, by calculating the correlation between each pair of genes or proteins.

Usage

```
make_feature_from_expression(expr, dat, node_columns = c(1, 2), ...)
```

Arguments

expr a matrix containing gene or protein expression data, with genes/proteins in columns

and samples in rows

dat the data frame of features to be used by the classifier, with protein pairs in the

columns specified by the node_columns argument

node_columns a vector of length two, denoting either the indices (integer vector) or column

names (character vector) of the columns within the data frame containing the nodes participating in pairwise interactions; defaults to the first two columns of

the data frame (c(1, 2))

... arguments passed to cor

Value

a vector matching the dimensions and order of the feature data frame, to use as input for a classifier in interaction prediction

```
make_initial_conditions
```

Make initial conditions for curve fitting with a mixture of Gaussians

Description

Construct a set of initial conditions for curve fitting using nonlinear least squares using a mixture of Gaussians. The "guess" method ports code from the Matlab release of PrInCE. This method finds local maxima within the chromatogram, orders them by their separation (in number of fractions) from the previous local maxima, and uses the positions and heights of these local maxima (+/some random noise) as initial conditions for Gaussian curve-fitting. The "random" method simply picks random values within the fraction and intensity intervals as starting points for Gaussian curve-fitting. The initial value of sigma is set by default to a random number within +/- 0.5 of two for both modes; this is based on our manual inspection of a large number of chromatograms.

Usage

```
make_initial_conditions(
  chromatogram,
  n_gaussians,
  method = c("guess", "random"),
  sigma_default = 2,
  sigma_noise = 0.5,
  mu_noise = 1.5,
  A_noise = 0.5
)
```

Arguments

chromatogram a numeric vector corresponding to the chromatogram trace

n_gaussians the number of Gaussians being fit

method one of "guess" or "random", discussed above

sigma_default the default mean initial value of sigma

make_labels 23

sigma_noise the amount of random noise to add or subtract from the default mean initial value

of sigma

mu_noise the amount of random noise to add or subtract from the Gaussian centers in

"guess" mode

A_noise the amount of random noise to add or subtract from the Gaussian heights in

"guess" mode

Value

a list of three numeric vectors (A, mu, and sigma), each having a length equal to the maximum number of Gaussians to fit

Examples

```
data(scott)
chrom <- clean_profile(scott[16, ])
set.seed(0)
start <- make_initial_conditions(chrom, n_gaussians = 2, method = "guess")</pre>
```

make_labels

Make labels for a classifier based on a gold standard

Description

Create labels for a classifier for protein pairs in the same order as in a dataset that will be used as input to a classifier, in a memory-friendly way.

Usage

```
make_labels(gold_standard, dat, node_columns = c(1, 2), protein_groups = NULL)
```

Arguments

gold_standard an adjacency matrix of gold-standard interactions

dat a data frame with interacting proteins in the first two columns

node_columns a vector of length two, denoting either the indices (integer vector) or column

names (character vector) of the columns within the data frame containing the nodes participating in pairwise interactions; defaults to the first two columns of

the data frame (c(1, 2))

protein_groups optionally, specify a list linking each protein in the first two columns of the input

data frame to a protein group

Value

a vector of the same length as the input dataset, containing NAs for protein pairs not in the gold standard and ones or zeroes based on the content of the adjacency matrix

Examples

match_matrix_dimensions

Match the dimensions of a query matrix to a profile matrix

Description

Match the row and column names of a square feature matrix to the row names of a profile matrix, adding rows/columns containing NAs when proteins in the profile matrix are missing from the feature matrix.

Usage

```
match_matrix_dimensions(query, profile_matrix)
```

Arguments

```
query a square matrix containing features for pairs of proteins profile_matrix the profile matrix for which interactions are being predicted
```

Value

a square matrix with the same row and column names as the input profile matrix, for use in interaction prediction

```
data(gold_standard)
subset <- adjacency_matrix_from_list(gold_standard[seq(1, 200)])
target <- adjacency_matrix_from_list(gold_standard)
matched <- match_matrix_dimensions(subset, target)
dim(subset)
dim(target)
dim(matched)</pre>
```

predict_ensemble 25

prodict opcomble	Dradiat interactions using an ansamble	of classifiers
predict_ensemble	Predict interactions using an ensemble	oj čiassijiers

Description

Use an ensemble of classifiers to predict interactions from co-elution dataset features. The ensemble approach ensures that results are robust to the partitioning of the dataset into folds. For each model, the median of classifier scores across all folds is calculated. Then, the median of all such medians across all models is calculated.

Usage

```
predict_ensemble(
  dat,
  labels,
  classifier = c("NB", "SVM", "RF", "LR"),
  models = 1,
  cv_folds = 10,
  trees = 500,
  node_columns = c(1, 2)
)
```

Arguments

dat	a data frame containing interacting gene/protein pairs in the first two columns, and the features to use for classification in the remaining columns
labels	labels for each interaction in dat: 0 for negatives, 1 for positives, and NA for interactions outside the reference set
classifier	the type of classifier to use; one of "NB" (naive Bayes), "SVM" (support vector machine), "RF" (random forest), or "LR" (logistic regression)
models	the number of classifiers to train
cv_folds	the number of folds to split the reference dataset into when training each classifier. By default, each classifier uses ten-fold cross-validation, i.e., the classifier is trained on 90% of the dataset and used to classify the remaining 10%
trees	for random forest classifiers only, the number of trees to grow for each fold
node_columns	a vector of length two, denoting either the indices (integer vector) or column names (character vector) of the columns within the input data frame containing the nodes participating in pairwise interactions; defaults to the first two columns of the data frame $(c(1, 2))$

Value

the input data frame of pairwise interactions, ranked by the median of classifier scores across all ensembled models

26 predict_interactions

Examples

predict_interactions Predict interactions given a set of features and examples

Description

Discriminate interacting from non-interacting protein pairs by training a machine learning model on a set of labelled examples, given a set of features derived from a co-elution profile matrix (see calculate_features.

Usage

```
predict_interactions(
   features,
   gold_standard,
   classifier = c("NB", "SVM", "RF", "LR", "ensemble"),
   verbose = FALSE,
   models = 10,
   cv_folds = 10,
   trees = 500
)
```

Arguments

features	a data frame with proteins in the first two columns, and features to be passed to the classifier in the remaining columns
gold_standard	an adjacency matrix of "gold standard" interactions used to train the classifier
classifier	the type of classifier to use: one of "NB" (naive Bayes), "SVM" (support vector machine), "RF" (random forest), "LR" (logistic regression), or "ensemble" (an ensemble of all four)
verbose	if TRUE, print a series of messages about the stage of the analysis
models	the number of classifiers to train and average across, each with a different k-fold cross-validation split
cv_folds	the number of folds to use for k-fold cross-validation
trees	for random forests only, the number of trees in the forest

PrInCE 27

Details

PrInCE implements four different classifiers (naive Bayes, support vector machine, random forest, and logistic regression). Naive Bayes is used as a default. The classifiers are trained on the gold standards using a ten-fold cross-validation procedure, training on 90 that are part of the training data, the held-out split is used to assign a classifier score, whereas for the remaining protein pairs, the median of all ten folds is used. Furthermore, to ensure the results are not sensitive to the precise classifier split used, an ensemble of multiple classifiers (ten, by default) is trained, and the classifier score is subsequently averaged across classifiers.

PrInCE can also ensemble across multiple different types of classifiers, by supplying the "ensemble" option to the classifier argument.

Value

a ranked data frame of pairwise interactions, with the classifier score, label, and cumulative precision for each interaction

Examples

```
## calculate features
data(scott)
data(scott_gaussians)
subset <- scott[seq_len(500), ] ## limit to first 500 proteins
gauss <- scott_gaussians[names(scott_gaussians) %in% rownames(subset)]
features <- calculate_features(subset, gauss)
## load training data
data(gold_standard)
ref <- adjacency_matrix_from_list(gold_standard)
## predict interactions
ppi <- predict_interactions(features, ref, cv_folds = 3, models = 1)</pre>
```

PrInCE

PrInCE: Prediction of Interactomes from Co-Elution

Description

PrInCE is a computational approach to infer protein-protein interaction networks from co-elution proteomics data, also called co-migration, co-fractionation, or protein correlation profiling. This family of methods separates interacting protein complexes on the basis of their diameter or biochemical properties. Protein-protein interactions can then be inferred for pairs of proteins with similar elution profiles. PrInCE implements a machine-learning approach to identify protein-protein interactions given a set of labelled examples, using features derived exclusively from the data. This allows PrInCE to infer high-quality protein interaction networks from raw proteomics data, without bias towards known interactions or functionally associated proteins, making PrInCE a unique resource for discovery.

Usage

```
PrInCE(
  profiles,
  gold_standard,
```

28 PrInCE

```
gaussians = NULL,
 precision = NULL,
  verbose = FALSE,
 min_points = 1,
 min_consecutive = 5,
 min_pairs = 3,
  impute_NA = TRUE,
  smooth = TRUE,
  smooth_width = 4,
 max_gaussians = 5,
 max_iterations = 50,
 min_R_squared = 0.5,
 method = c("guess", "random"),
 criterion = c("AICc", "AIC", "BIC"),
 pearson_R_raw = TRUE,
  pearson_R_cleaned = TRUE,
  pearson_P = TRUE,
  euclidean_distance = TRUE,
  co_peak = TRUE,
  co_apex = TRUE,
  n_pairs = FALSE,
  classifier = c("NB", "SVM", "RF", "LR", "ensemble"),
 models = 1,
  cv_folds = 10,
  trees = 500
)
```

Arguments

profiles

the co-elution profile matrix, or a list of profile matrices if replicate experiments were performed. Can be a single numeric matrix, with proteins in rows and fractions in columns, or a list of matrices. Alternatively, can be provided as a single MSnSet object or a list of objects.

gold_standard

a set of 'gold standard' interactions, used to train the classifier. Can be provided either as an adjacency matrix, in which both rows and columns correspond to protein IDs in the co-elution matrix or matrices, or as a list of proteins in the same complex, which will be converted to an adjacency matrix by PrInCE. Zeroes in the adjacency matrix are interpreted by PrInCE as "true negatives" when calculating precision.

gaussians

optionally, provide Gaussian mixture models fit by the build_gaussians function. If profiles is a numeric matrix, this should be the named list output by build_gaussians for that matrix; if profiles is a list of numeric matrices, this should be a list of named lists

precision

optionally, return only interactions above the given precision; by default, all interactions are returned and the user can subsequently threshold the list using the threshold_precision function

verbose

if TRUE, print a series of messages about the stage of the analysis

min_points

filter profiles without at least this many total, non-missing points; passed to filter_profiles

min_consecutive

filter profiles without at least this many consecutive, non-missing points; passed to filter_profiles

min_pairs	minimum number of overlapping fractions between any given protein pair to consider a potential interaction	
impute_NA	if true, impute single missing values with the average of neighboring values; passed to clean_profiles	
smooth	if true, smooth the chromatogram with a moving average filter; passed to clean_profiles	
smooth_width	width of the moving average filter, in fractions; passed to clean_profiles	
max_gaussians	the maximum number of Gaussians to fit; defaults to 5. Note that Gaussian mixtures with more parameters than observed (i.e., non-zero or NA) points will not be fit. Passed to choose_gaussians	
max_iterations	the number of times to try fitting the curve with different initial conditions; defaults to 50. Passed to fit_gaussians	
min_R_squared	the minimum R-squared value to accept when fitting the curve with different initial conditions; defaults to 0.5. Passed to fit_gaussians	
method	the method used to select the initial conditions for nonlinear least squares optimization (one of "guess" or "random"); see make_initial_conditions for details. Passed to fit_gaussians	
criterion	the criterion to use for model selection; one of "AICc" (corrected AIC, and default), "AIC", or "BIC". Passed to choose_gaussians	
pearson_R_raw	if true, include the Pearson correlation (R) between raw profiles as a feature	
pearson_R_clear		
	if true, include the Pearson correlation (R) between cleaned profiles as a feature	
pearson_P	if true, include the P-value of the Pearson correlation between raw profiles as a feature	
euclidean_distance		
	if true, include the Euclidean distance between cleaned profiles as a feature	
co_peak	if true, include the 'co-peak score' (that is, the distance, in fractions, between the single highest value of each profile) as a feature	
co_apex	if true, include the 'co-apex score' (that is, the minimum Euclidean distance between any pair of fit Gaussians) as a feature	
n_pairs	if TRUE, include the number of fractions in which both of a given pair of proteins were detected as a feature	
classifier	the type of classifier to use: one of "NB" (naive Bayes), "SVM" (support vector machine), "RF" (random forest), "LR" (logistic regression), or "ensemble" (an ensemble of all four)	
models	the number of classifiers to train and average across, each with a different k-fold cross-validation split	
cv_folds	the number of folds to use for k-fold cross-validation	
trees	for random forests only, the number of trees in the forest	

Details

PrInCE takes as input a co-elution matrix, with detected proteins in rows and fractions as columns, and a set of 'gold standard' true positives and true negatives. If replicate experiments were performed, a list of co-elution matrices can be provided as input. PrInCE will construct features for each replicate separately and use features from all replicates as input to the classifier. The 'gold standard' can be either a data frame or adjacency matrix of known interactions (and non-interactions), or a list of protein complexes. For computational convenience, Gaussian mixture models can be

30 PrInCE

pre-fit to every profile and provided separately to the PrInCE function. The matrix, or matrices, can be provided to PrInCE either as numeric matrices or as MSnSet objects.

PrInCE implements three different types of classifiers to predict protein-protein interaction networks, including naive Bayes (the default), random forests, and support vector machines. The classifiers are trained on the gold standards using a ten-fold cross-validation procedure, training on 90 that are part of the training data, the held-out split is used to assign a classifier score, whereas for the remaining protein pairs, the median of all ten folds is used. Furthermore, to ensure the results are not sensitive to the precise classifier split used, an ensemble of multiple classifiers (ten, by default) is trained, and the classifier score is subsequently averaged across classifiers. PrInCE can also ensemble across a set of classifiers.

By default, PrInCE calculates six features from each pair of co-elution profiles as input to the classifier, including conventional similarity metrics but also several features specifically adapted to co-elution proteomics. For example, one such feature is derived from fitting a Gaussian mixture model to each elution profile, then calculating the smallest Euclidean distance between any pair of fitted Gaussians. The complete set of features includes:

- 1. the Pearson correlation between raw co-elution profiles;
- 2. the p-value of the Pearson correlation between raw co-elution profiles;
- 3. the Pearson correlation between cleaned profiles, which are generated by imputing single missing values with the mean of their neighbors, replacing remaining missing values with random near-zero noise, and smoothing the profiles using a moving average filter (see clean_profile);
- 4. the Euclidean distance between cleaned profiles;
- 5. the 'co-peak' score, defined as the distance, in fractions, between the maximum values of each profile; and
- the 'co-apex' score, defined as the minimum Euclidean distance between any pair of fit Gaussians

The output of PrInCE is a ranked data frame, containing the classifier score for every possible protein pair. PrInCE also calculates the precision at every point in this ranked list, using the 'gold standard' set of protein complexes or binary interactions. Our recommendation is to select a threshold for the precision and use this to construct an unweighted protein interaction network.

Value

a ranked data frame of interacting proteins, with the precision at each point in the list

References

Stacey RG, Skinnider MA, Scott NE, Foster LJ (2017). "A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE)." *BMC Bioinformatics*, **18**(1), 457.

Scott NE, Brown LM, Kristensen AR, Foster LJ (2015). "Development of a computational framework for the analysis of protein correlation profiling and spatial proteomics experiments." *Journal of Proteomics*, **118**, 112–129.

Kristensen AR, Gsponer J, Foster LJ (2012). "A high-throughput approach for measuring temporal changes in the interactome." *Nature Methods*, **9**(9), 907–909.

Skinnider MA, Stacey RG, Foster LJ (2018). "Genomic data integration systematically biases interactome mapping." *PLoS Computational Biology*, **14**(10), e1006474.

replace_missing_data 31

Examples

```
data(scott)
data(scott_gaussians)
data(gold_standard)
# analyze only the first 100 profiles
subset <- scott[seq_len(500), ]
gauss <- scott_gaussians[names(scott_gaussians) %in% rownames(subset)]
ppi <- PrIncE(subset, gold_standard,
    gaussians = gauss, models = 1,
    cv_folds = 3
)</pre>
```

Description

Replace missing data within each numeric column of a data frame with the column median, plus or minus some random noise, in order to train classifiers that do not easily ignore missing data (e.g. random forests or support vector machines).

Usage

```
replace_missing_data(dat, noise_pct = 0.05)
```

Arguments

dat the data frame to replace missing data in

noise_pct the standard deviation of the random normal distribution from which to draw

added noise, expressed as a percentage of the standard deviation of the non-

missing values in each column

Value

a data frame with missing values in each numeric column replaced by the column median, plus or minus some random noise

scott

Cytoplasmic interactome of Jurkat T cells during apoptosis

Description

Co-elution profiles derived from size exclusion chromatography (SEC) of cytoplasmic fractions from Jurkat T cells, 4 hours following Fas stimulation.

Usage

```
data(scott)
```

32 scott_gaussians

Format

a data frame with 1560 rows and 55 columns, with proteins in rows and SEC fractions in columns

Details

Protein quantitation was accomplished by SILAC (stable isotopic labelling by amino acids in cell culture), and is ratiometric, i.e., it reflects the ratio between the intensity of the heavy isotope and the light isotope ("H/L"). The dataset was initially described in Scott et al., *Mol. Syst. Biol.* 2017. The heavy isotope channel from replicate 1 is included in the PrInCE package. The R script used to generate this matrix from the supplementary materials of the paper is provided in the data-raw directory of the package source code.

Source

http://msb.embopress.org/content/13/1/906

scott_gaussians

Fitted Gaussian mixture models for the scott dataset

Description

The scott dataset consists of protein co-migration profiles derived from size exclusion chromatography (SEC) of cytoplasmic fractions from Jurkat T cells, 4 hours following Fas stimulation. The scott_gaussians object contains Gaussian mixture models fit by the function build_gaussians; this is bundled with the R package in order to expedite the demonstration code, as the process of Gaussian fitting is one of the more time-consuming aspects of the package.

Usage

```
data(scott_gaussians)
```

Format

a named list with 970 entries; names are proteins, and list items conain information about fitted Gaussians in the format that PrInCE expects

Details

As with the scott dataset, the code used to generate this data object is provided in the data-raw directory of the package source.

threshold_precision 33

threshold_precision Threshold interactions at a given precision cutoff

Description

Threshold interactions at a given precision cutoff

Usage

```
threshold_precision(interactions, threshold)
```

Arguments

interactions the ranked list of interactions output by predict_interactions, including a

precision column

threshold the minimum precision of the unweighted interaction network to return

Value

the subset of the original ranked list at the given precision

```
data(scott)
data(scott_gaussians)
data(gold_standard)
# analyze only the first 100 profiles
subset <- scott[seq_len(500), ]
gauss <- scott_gaussians[names(scott_gaussians) %in% rownames(subset)]
ppi <- PrInCE(subset, gold_standard,
    gaussians = gauss, models = 1,
    cv_folds = 3
)
network <- threshold_precision(ppi, threshold = 0.5)
nrow(network)</pre>
```

Index

```
* datasets
                                                 match_matrix_dimensions, 24
    gold_standard, 17
                                                 MSnSet, 5–7, 12, 14, 15, 28, 30
    kristensen, 19
                                                 nls, 9
    kristensen_gaussians, 20
    scott, 31
                                                 predict_ensemble, 25
    scott_gaussians, 32
                                                 predict_interactions, 26, 33
                                                 PrInCE, 27
adjacency_matrix_from_data_frame, 2
adjacency_matrix_from_list, 3
                                                 replace_missing_data, 31
aic, 4
                                                 scott, 31, 32
build_gaussians, 4, 20, 28, 32
                                                 scott_gaussians, 32
calculate_autocorrelation, 6
                                                 threshold_precision, 28, 33
calculate_features, 7, 13, 26
calculate\_precision, 8
check_gaussians, 9
choose_gaussians, 5, 10, 29
clean_profile, 11, 30
clean_profiles, 5, 12, 29
co_apex, 13
concatenate_features, 13
detect_complexes, 14
filter_profiles, 5, 15, 28
fit_curve, 15
fit_gaussians, 4, 5, 15, 16, 16, 29
gaussian_aic(aic), 4
gaussian_aicc (aic), 4
gaussian_bic (aic), 4
gold_standard, 17
impute\_neighbors, 18
is\_unweighted, 18
is_weighted, 19
kristensen, 19, 20
kristensen_gaussians, 20
make_feature_from_data_frame, 20
make_feature_from_expression, 21
make_initial_conditions, 5, 10, 17, 22, 29
make_labels, 23
```