
Package ‘CAGEfightR’
January 15, 2026

Type Package

Title Analysis of Cap Analysis of Gene Expression (CAGE) data using
Bioconductor

Version 1.31.0

Author Malte Thodberg

Maintainer Malte Thodberg <maltethodberg@gmail.com>

Description CAGE is a widely used high throughput assay for measuring
transcription start site (TSS) activity. CAGEfightR is an R/Bioconductor
package for performing a wide range of common data analysis tasks for CAGE and 5'-
end data in general.
Core functionality includes: import of CAGE TSSs (CTSSs), tag
(or unidirectional) clustering for TSS identification,
bidirectional clustering for enhancer identification, annotation with
transcript and gene models, correlation of TSS and enhancer expression, calcula-
tion of TSS shapes, quantification of
CAGE expression as expression matrices and genome brower visualization.

URL https://github.com/MalteThodberg/CAGEfightR

BugReports https://github.com/MalteThodberg/CAGEfightR/issues

Depends R (>= 3.5), GenomicRanges (>= 1.61.1), rtracklayer (>=
1.69.1), SummarizedExperiment (>= 1.39.1)

Imports pryr(>= 0.1.3), assertthat(>= 0.2.0), methods(>= 3.6.3),
Matrix(>= 1.2-12), BiocGenerics(>= 0.24.0), S4Vectors(>=
0.16.0), IRanges(>= 2.12.0), Seqinfo, GenomicFeatures(>=
1.61.4), GenomicAlignments(>= 1.45.1), BiocParallel(>= 1.12.0),
GenomicFiles(>= 1.14.0), Gviz(>= 1.22.2), InteractionSet(>=
1.9.4), GenomicInteractions(>= 1.15.1)

License GPL-3 + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, BiocStyle, org.Mm.eg.db,
TxDb.Mmusculus.UCSC.mm9.knownGene

1

https://github.com/MalteThodberg/CAGEfightR
https://github.com/MalteThodberg/CAGEfightR/issues

2 Contents

VignetteBuilder knitr

biocViews Software, Transcription, Coverage, GeneExpression,
GeneRegulation, PeakDetection, DataImport, DataRepresentation,
Transcriptomics, Sequencing, Annotation, GenomeBrowsers,
Normalization, Preprocessing, Visualization

git_url https://git.bioconductor.org/packages/CAGEfightR

git_branch devel

git_last_commit c45462c

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-15

Contents
assignGeneID . 3
assignMissingID . 5
assignTxID . 6
assignTxType . 8
balanceBC . 10
balanceD . 11
bwCommonGenome . 11
bwGenomeCompatibility . 12
bwValid . 13
calcBidirectionality . 14
calcComposition . 16
calcPooled . 17
calcShape . 18
calcSupport . 19
calcTotalTags . 20
calcTPM . 21
checkCTSSs . 22
checkPeaked . 23
checkPooled . 24
clusterBidirectionally . 24
clusterUnidirectionally . 26
combineClusters . 27
convertBAM2BigWig . 28
convertBED2BigWig . 29
convertGRanges2GPos . 31
exampleDesign . 32
findLinks . 33
findStretches . 34
quantifyClusters . 36
quantifyCTSSs . 37
quantifyCTSSs2 . 39
quantifyGenes . 40

assignGeneID 3

quickEnhancers . 41
quickGenes . 42
quickTSSs . 43
shapeEntropy . 43
shapeIQR . 44
shapeMean . 45
shapeMultimodality . 46
subsetByBidirectionality . 46
subsetByComposition . 47
subsetBySupport . 49
swapRanges . 50
swapScores . 51
trackBalance . 51
trackClusters . 53
trackCTSS . 54
trackLinks . 55
trimToPeak . 56
trimToPercentiles . 58
tuneTagClustering . 59
utilsAggregateRows . 61
utilsDeStrand . 62
utilsScoreOverlaps . 63
utilsSimplifyTxDb . 64

Index 66

assignGeneID Annotate ranges with gene ID.

Description

Annotate a set of ranges in a GRanges object with gene IDs (i.e. Entrez Gene Identifiers) based
on their genic context. Features overlapping multiple genes are resolved by distance to the nearest
TSS. Genes are obtained from a TxDb object, or can manually supplied as a GRanges.

Usage

assignGeneID(object, geneModels, ...)

S4 method for signature 'GenomicRanges,GenomicRanges'
assignGeneID(
object,
geneModels,
outputColumn = "geneID",
swap = NULL,
upstream = 1000,
downstream = 100

)

4 assignGeneID

S4 method for signature 'RangedSummarizedExperiment,GenomicRanges'
assignGeneID(object, geneModels, ...)

S4 method for signature 'GenomicRanges,TxDb'
assignGeneID(
object,
geneModels,
outputColumn = "geneID",
swap = NULL,
upstream = 1000,
downstream = 100

)

S4 method for signature 'RangedSummarizedExperiment,TxDb'
assignGeneID(object, geneModels, ...)

Arguments

object GRanges or RangedSummarizedExperiment: Ranges to be annotated.

geneModels TxDb or GRanges: Gene models via a TxDb, or manually specified as a GRanges-
List.

... additional arguments passed to methods.

outputColumn character: Name of column to hold geneID values.

swap character or NULL: If not NULL, use another set of ranges contained in object
to calculate overlaps, for example peaks in the thick column.

upstream integer: Distance to extend annotated promoter upstream.

downstream integer: Distance to extend annotated promoter downstream.

Value

object with geneID added as a column in rowData (or mcols).

See Also

Other Annotation functions: assignMissingID(), assignTxID(), assignTxType()

Examples

data(exampleUnidirectional)

Obtain gene models from a TxDb-object:
library(TxDb.Mmusculus.UCSC.mm9.knownGene)
txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

Assign geneIDs
assignGeneID(exampleUnidirectional,

geneModels=txdb,

assignMissingID 5

outputColumn='geneID')

Assign geneIDs using only TC peaks:
assignGeneID(exampleUnidirectional,

geneModels=txdb,
outputColumn='geneID',
swap='thick')

assignMissingID Annotate ranges with missing IDs.

Description

This function can relabel ranges with missing IDs (i.e. returned by assignTxID and assignGeneID),
in case they need to be retained for further analysis.

Usage

assignMissingID(object, ...)

S4 method for signature 'character'
assignMissingID(object, prefix = "Novel")

S4 method for signature 'GenomicRanges'
assignMissingID(object, outputColumn = "geneID", prefix = "Novel")

S4 method for signature 'RangedSummarizedExperiment'
assignMissingID(object, outputColumn = "geneID", prefix = "Novel")

Arguments

object character, GRanges or RangedSummarizedExperiment: IDs to have NAs re-
places with new IDs.

... additional arguments passed to methods.

prefix character: New name to assign to ranges with missing IDs, in the style prefix1,
prefix2, etc.

outputColumn character: Name of column to hold txID values.

Value

object with NAs replaced in outputColumn

See Also

Other Annotation functions: assignGeneID(), assignTxID(), assignTxType()

6 assignTxID

Examples

data(exampleUnidirectional)

Obtain gene models from a TxDb-object:
library(TxDb.Mmusculus.UCSC.mm9.knownGene)
txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

Assign geneIDs using only TC peaks:
exampleUnidirectional <- assignGeneID(exampleUnidirectional,

geneModels=txdb,
outputColumn='geneID',
swap='thick')

Replace NAs with 'Novel'
assignMissingID(exampleUnidirectional)

Replace NAs with 'NovelTSS'
assignMissingID(exampleUnidirectional, prefix = 'NovelTSS')

assignTxID Annotate ranges with transcript ID.

Description

Annotate a set of ranges in a GRanges object with transcript IDs based on their genic context. All
overlapping transcripts are returned. Transcripts are obtained from a TxDb object, or can manually
supplied as a GRanges.

Usage

assignTxID(object, txModels, ...)

S4 method for signature 'GenomicRanges,GenomicRanges'
assignTxID(object, txModels, outputColumn = "txID", swap = NULL)

S4 method for signature 'RangedSummarizedExperiment,GenomicRanges'
assignTxID(object, txModels, ...)

S4 method for signature 'GenomicRanges,TxDb'
assignTxID(
object,
txModels,
outputColumn = "txID",
swap = NULL,
upstream = 1000,
downstream = 0

)

assignTxID 7

S4 method for signature 'RangedSummarizedExperiment,TxDb'
assignTxID(object, txModels, ...)

Arguments

object GRanges or RangedSummarizedExperiment: Ranges to be annotated.

txModels TxDb or GRanges: Transcript models via a TxDb, or manually specified as a
GRanges.

... additional arguments passed to methods.

outputColumn character: Name of column to hold txID values.

swap character or NULL: If not NULL, use another set of ranges contained in object
to calculate overlaps, for example peaks in the thick column.

upstream integer: Distance to extend annotated promoter upstream.

downstream integer: Distance to extend annotated promoter downstream.

Value

object with txID added as a column in rowData (or mcols)

See Also

Other Annotation functions: assignGeneID(), assignMissingID(), assignTxType()

Examples

data(exampleUnidirectional)

Obtain transcript models from a TxDb-object:
library(TxDb.Mmusculus.UCSC.mm9.knownGene)
txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

Assign txIDs
assignTxID(exampleUnidirectional,

txModels=txdb,
outputColumn='geneID')

Assign txIDs using only TC peaks:
assignTxID(exampleUnidirectional,

txModels=txdb,
outputColumn='geneID',
swap='thick')

8 assignTxType

assignTxType Annotate ranges with transcript type.

Description

Annotate a set of ranges in a GRanges object with transcript type (txType) based on their genic
context. Transcripts are obtained from a TxDb object, but can alternatively be specified manually
as a GRangesList.

Usage

assignTxType(object, txModels, ...)

S4 method for signature 'GenomicRanges,GenomicRangesList'
assignTxType(
object,
txModels,
outputColumn = "txType",
swap = NULL,
noOverlap = "intergenic"

)

S4 method for signature 'RangedSummarizedExperiment,GenomicRangesList'
assignTxType(object, txModels, ...)

S4 method for signature 'GenomicRanges,TxDb'
assignTxType(
object,
txModels,
outputColumn = "txType",
swap = NULL,
tssUpstream = 100,
tssDownstream = 100,
proximalUpstream = 1000,
detailedAntisense = FALSE

)

S4 method for signature 'RangedSummarizedExperiment,TxDb'
assignTxType(object, txModels, ...)

Arguments

object GRanges or RangedSummarizedExperiment: Ranges to be annotated.

txModels TxDb or GRangesList: Transcript models via a TxDb, or manually specified as
a GRangesList.

... additional arguments passed to methods.

assignTxType 9

outputColumn character: Name of column to hold txType values.

swap character or NULL: If not NULL, use another set of ranges contained in object
to calculate overlaps, for example peaks in the thick column.

noOverlap character: In case categories are manually supplied with as a GRangesList, what
to call regions with no overlap.

tssUpstream integer: Distance to extend annotated promoter upstream.

tssDownstream integer: Distance to extend annotated promoter downstream.
proximalUpstream

integer: Maximum distance upstream of promoter to be considered proximal.
detailedAntisense

logical: Wether to mirror all txType categories in the antisense direction (TRUE)
or lump them all together (FALSE).

Value

object with txType added as factor column in rowData (or mcols)

See Also

Other Annotation functions: assignGeneID(), assignMissingID(), assignTxID()

Examples

Not run:
data(exampleUnidirectional)

Obtain transcript models from a TxDb-object:
library(TxDb.Mmusculus.UCSC.mm9.knownGene)
txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

Assign txIDs
assignTxType(exampleUnidirectional,

txModels=txdb)

Assign txIDs using only TC peaks:
exampleUnidirectional <- assignTxType(exampleUnidirectional,

txModels=txdb,
swap='thick')

The 'promoter' and 'proximal' category boundaries can be changed:
assignTxType(exampleUnidirectional,

txModels=txdb,
swap='thick',
tssUpstream=50,
tssDownstream=50,
proximalUpstream=100)

Annotation using complete antisense categories:
exampleUnidirectional <- assignTxType(exampleUnidirectional,

txModels=txdb,

10 balanceBC

outputColumn='txTypeExtended',
swap='thick',
detailedAntisense=TRUE)

The output is always a factor added as a column:
summary(rowRanges(exampleUnidirectional)$txType)
summary(rowRanges(exampleUnidirectional)$txTypeExtended)

To avoid using a TxDb-object, a GRangesList can be supplied:
custom_hierarchy <- GRangesList(promoters=granges(promoters(txdb)),

exons=granges(exons(txdb)))
assignTxType(exampleUnidirectional,

txModels=custom_hierarchy,
outputColumn='customType',
swap='thick',
noOverlap = 'intergenic')

End(Not run)

balanceBC Balance statistic: Bhattacharyya coefficient (BC)

Description

Calculates the Bhattacharyya coefficient from observed plus/minus upstream/downstream signals
to a perfect bidirectional site, where plus-downstream = 50

Usage

balanceBC(PD, MD, PU, MU)

Arguments

PD Plus-Downstream signal
MD Minus-Downstream signal
PU Plus-Upstream signal
MU Plus-Upstream signal

Value

Balance score of the same class as inputs.

Examples

Unbalanced
balanceBC(2, 3, 1, 0)

Balanced
balanceBC(3, 3, 0, 0)

balanceD 11

balanceD Balance statistic: Andersson’s D.

Description

Calculates the D-statistics from Andersson et al the observed plus/minus downstream signals. The D
statistics is rescaled from -1:1 to 0:1 so it can be used for slice-reduce identification of bidirectional
sites.

Usage

balanceD(PD, MD, PU, MU)

Arguments

PD Plus-Downstream signal

MD Minus-Downstream signal

PU Plus-Upstream signal

MU Plus-Upstream signal

Value

Balance score of the same class as inputs.

Examples

Unbalanced
balanceD(2, 3, 1, 0)

Balanced
balanceD(3, 3, 0, 0)

bwCommonGenome Find a common genome for a series of BigWig files.

Description

Finds a common genome for a series of BigWig-files, either using only levels present in all files
(intersect) or in any file (union).

Usage

bwCommonGenome(plusStrand, minusStrand, method = "intersect")

12 bwGenomeCompatibility

Arguments

plusStrand BigWigFileList: BigWig files with plus-strand CTSS data.

minusStrand BigWigFileList: BigWig files with minus-strand CTSS data.

method character: Either ’intersect’ or ’union’.

Value

Sorted Seqinfo-object.

See Also

Other BigWig functions: bwGenomeCompatibility(), bwValid()

Examples

if (.Platform$OS.type != "windows") {
Use the BigWig-files included with the package:
data('exampleDesign')
bw_plus <- system.file('extdata', exampleDesign$BigWigPlus,

package = 'CAGEfightR')
bw_minus <- system.file('extdata', exampleDesign$BigWigMinus,

package = 'CAGEfightR')

Create two named BigWigFileList-objects:
bw_plus <- BigWigFileList(bw_plus)
bw_minus <- BigWigFileList(bw_minus)
names(bw_plus) <- exampleDesign$Name
names(bw_minus) <- exampleDesign$Name

Find the smallest common genome (intersect) across the BigWigList-objects:
bwCommonGenome(plusStrand=bw_plus, minusStrand=bw_minus, method='intersect')

Find the most inclusive genome (union) across the BigWigList-objects:
bwCommonGenome(plusStrand=bw_plus, minusStrand=bw_minus, method='union')
}

bwGenomeCompatibility Check if BigWig-files are compatible with a given genome.

Description

Given a genome, checks whether a series of BigWig-files are compatible by checking if all common
seqlevels have equal seqlengths.

Usage

bwGenomeCompatibility(plusStrand, minusStrand, genome)

bwValid 13

Arguments

plusStrand BigWigFileList: BigWig files with plus-strand CTSS data.

minusStrand BigWigFileList: BigWig files with minus-strand CTSS data.

genome Seqinfo: Genome information.

Value

TRUE, raises an error if the supplied genome is incompabtible.

See Also

Other BigWig functions: bwCommonGenome(), bwValid()

Examples

if (.Platform$OS.type != "windows") {
Use the BigWig-files included with the package:
data('exampleDesign')
bw_plus <- system.file('extdata', exampleDesign$BigWigPlus,

package = 'CAGEfightR')
bw_minus <- system.file('extdata', exampleDesign$BigWigMinus,

package = 'CAGEfightR')

Create two named BigWigFileList-objects:
bw_plus <- BigWigFileList(bw_plus)
bw_minus <- BigWigFileList(bw_minus)
names(bw_plus) <- exampleDesign$Name
names(bw_minus) <- exampleDesign$Name

Make a smaller genome:
si <- seqinfo(bw_plus[[1]])
si <- si['chr18']

Check if it is still compatible:
bwGenomeCompatibility(plusStrand=bw_plus, minusStrand=bw_minus, genome=si)
}

bwValid Check if BigWig-files are valid.

Description

Checks if a BigWigFile or BigWigFileList is composed of readable files with the proper .bw exten-
sion.

14 calcBidirectionality

Usage

bwValid(object)

S4 method for signature 'BigWigFile'
bwValid(object)

S4 method for signature 'BigWigFileList'
bwValid(object)

Arguments

object BigWigFile or BigWigFileList

Value

TRUE, if any tests fails an error is raised.

See Also

Other BigWig functions: bwCommonGenome(), bwGenomeCompatibility()

Examples

Use the BigWig-files included with the package:
data('exampleDesign')
bw_plus <- system.file('extdata', exampleDesign$BigWigPlus,

package = 'CAGEfightR')

Create a named BigWigFileList-object with names
bw_plus <- BigWigFileList(bw_plus)
names(bw_plus) <- exampleDesign$Name

Check a single BigWigFile:
bwValid(bw_plus[[1]])

Check the entire BigWigFileList:
bwValid(bw_plus)

calcBidirectionality Calculate sample-wise bidirectionally of clusters.

Description

For each cluster, calculate how many individual samples shows transcription in both directions.
This is refered to as the ’bidirectionality’. Clusters must be unstranded (*) and have a midpoint
stored in the thick column

calcBidirectionality 15

Usage

calcBidirectionality(object, ...)

S4 method for signature 'GRanges'
calcBidirectionality(
object,
samples,
inputAssay = "counts",
outputColumn = "bidirectionality"

)

S4 method for signature 'GPos'
calcBidirectionality(object, ...)

S4 method for signature 'RangedSummarizedExperiment'
calcBidirectionality(object, ...)

Arguments

object GenomicRanges or RangedSummarizedExperiment: Unstranded clusters with
midpoints stored in the ’thick’ column.

... additional arguments passed to methods.

samples RangedSummarizedExperiment: Sample-wise CTSSs stored as an assay.

inputAssay character: Name of assay in samples holding input CTSS values.

outputColumn character: Name of column in object to hold bidirectionality values.

Value

object returned with bidirectionality scores added in rowData (or mcols).

See Also

Other Calculation functions: calcComposition(), calcPooled(), calcShape(), calcSupport(),
calcTPM(), calcTotalTags(), subsetByBidirectionality(), subsetByComposition(), subsetBySupport()

Examples

data(exampleCTSSs)
data(exampleBidirectional)

calcBidirectionality(exampleBidirectional, samples=exampleCTSSs)

16 calcComposition

calcComposition Calculate composition of CAGE data.

Description

For every feature, count in how many samples it is expressed above a certain fraction (e.g. 10
percent) within a grouping, usually genes. This count is refered to as the ’composition’ value.

Usage

calcComposition(
object,
inputAssay = "counts",
outputColumn = "composition",
unexpressed = 0.1,
genes = "geneID"

)

Arguments

object RangedSummarizedExperiment: CAGE data quantified at CTSS, cluster or gene-
level.

inputAssay character: Name of assay holding input expression values.

outputColumn character: Name of column in rowRanges to hold composition values.

unexpressed numeric: Composition will be calculated based on features larger than this cut-
off.

genes character: Name of column in rowData holding genes (NAs are not currently
allowed.)

Value

object with composition added as a column in rowData.

See Also

Other Calculation functions: calcBidirectionality(), calcPooled(), calcShape(), calcSupport(),
calcTPM(), calcTotalTags(), subsetByBidirectionality(), subsetByComposition(), subsetBySupport()

Examples

data(exampleUnidirectional)

Annotate clusters with geneIDs:
library(TxDb.Mmusculus.UCSC.mm9.knownGene)
txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene
exampleUnidirectional <- assignGeneID(exampleUnidirectional,

geneModels=txdb,

calcPooled 17

outputColumn='geneID',
swap='thick')

Calculate composition values:
exampleUnidirectional <- subset(exampleUnidirectional, !is.na(geneID))
calcComposition(exampleUnidirectional)

Use a lower threshold
calcComposition(exampleUnidirectional,

unexpressed=0.05,
outputColumn='lenientComposition')

calcPooled Calculate pooled expression across all samples.

Description

Sum expression of features across all samples to obtain a ’pooled’ signal.

Usage

calcPooled(object, inputAssay = "TPM", outputColumn = "score")

Arguments

object RangedSummarizedExperiment: CAGE data quantified at CTSS, cluster or gene-
level.

inputAssay character: Name of assay holding input expression values.

outputColumn character: Name of column in rowRanges to hold pooled expression.

Value

object with pooled expression added as a column in rowRanges.

See Also

Other Calculation functions: calcBidirectionality(), calcComposition(), calcShape(), calcSupport(),
calcTPM(), calcTotalTags(), subsetByBidirectionality(), subsetByComposition(), subsetBySupport()

Examples

data(exampleCTSSs)

Calculate TPM using supplied total number of tags:
exampleCTSSs <- calcTPM(exampleCTSSs, totalTags='totalTags')

Sum TPM values over samples:
calcPooled(exampleCTSSs)

18 calcShape

calcShape Calculate Tag Cluster shapes

Description

Apply a shape-function to the pooled CTSS signal of every Tag Cluster (TC).

Usage

calcShape(object, pooled, ...)

S4 method for signature 'GRanges,GRanges'
calcShape(object, pooled, outputColumn = "IQR", shapeFunction = shapeIQR, ...)

S4 method for signature 'RangedSummarizedExperiment,GRanges'
calcShape(object, pooled, ...)

S4 method for signature 'GRanges,RangedSummarizedExperiment'
calcShape(object, pooled, ...)

S4 method for signature 'GRanges,GPos'
calcShape(object, pooled, ...)

S4 method for signature
'RangedSummarizedExperiment,RangedSummarizedExperiment'
calcShape(object, pooled, ...)

Arguments

object GenomicRanges or RangedSummarizedExperiment: TCs.

pooled GenomicRanges or RangedSummarizedExperiment: Pooled CTSS as the score
column.

... additional arguments passed to shapeFunction.

outputColumn character: Name of column to hold shape statistics.

shapeFunction function: Function to apply to each TC (See details).

Value

object with calculated shape statistics added as a column in rowData (or mcols).

See Also

Other Calculation functions: calcBidirectionality(), calcComposition(), calcPooled(),
calcSupport(), calcTPM(), calcTotalTags(), subsetByBidirectionality(), subsetByComposition(),
subsetBySupport()

Other Shape functions: shapeEntropy(), shapeIQR(), shapeMean()

calcSupport 19

Examples

data(exampleCTSSs)
data(exampleUnidirectional)

Calculate pooled CTSSs using pre-calculated number of total tags:
exampleCTSSs <- calcTPM(exampleCTSSs, totalTags='totalTags')
exampleCTSSs <- calcPooled(exampleCTSSs)

Calculate shape statistics
calcShape(exampleUnidirectional, pooled=exampleCTSSs,

outputColumn='entropy', shapeFunction=shapeEntropy)
calcShape(exampleUnidirectional, pooled=exampleCTSSs, outputColumn='IQR',

shapeFunction=shapeIQR, lower=0.2, upper=0.8)

See the vignette for how to implement custom shape functions!

calcSupport Calculate support of CAGE data.

Description

Calculate the number of samples expression a feature above a certain level. This number is refered
to as the ’support’.

Usage

calcSupport(
object,
inputAssay = "counts",
outputColumn = "support",
unexpressed = 0

)

Arguments

object RangedSummarizedExperiment: CAGE data quantified at CTSS, cluster or gene-
level.

inputAssay character: Name of assay holding input expression values.

outputColumn character: Name of column in rowRanges to hold support values.

unexpressed numeric: Support will be calculated based on features larger than this cutoff.

Value

object with support added as a column in rowRanges.

20 calcTotalTags

See Also

Other Calculation functions: calcBidirectionality(), calcComposition(), calcPooled(),
calcShape(), calcTPM(), calcTotalTags(), subsetByBidirectionality(), subsetByComposition(),
subsetBySupport()

Examples

data(exampleUnidirectional)

Count samples with at at least a single tags
exampleUnidirectional <- calcSupport(exampleUnidirectional,

inputAssay='counts',
unexpressed=0)

Count number of samples with more than 1 TPM and save as a new column.
exampleUnidirectional <- calcTPM(exampleUnidirectional,

totalTags = 'totalTags')
exampleUnidirectional <- calcSupport(exampleUnidirectional,

inputAssay='TPM',
unexpressed=1,
outputColumn='TPMsupport')

calcTotalTags Calculate the total number of CAGE tags across samples.

Description

For each CAGE library, calculate the total number of tags.

Usage

calcTotalTags(object, inputAssay = "counts", outputColumn = "totalTags")

Arguments

object RangedSummarizedExperiment: CAGE data quantified at CTSS, cluster or gene-
level.

inputAssay character: Name of assay holding input expression values.
outputColumn character: Name of column in colData to hold number of total tags.

Value

object with total tags per library added as a column in colData.

See Also

Other Calculation functions: calcBidirectionality(), calcComposition(), calcPooled(),
calcShape(), calcSupport(), calcTPM(), subsetByBidirectionality(), subsetByComposition(),
subsetBySupport()

calcTPM 21

Examples

data(exampleUnidirectional)
calcTotalTags(exampleUnidirectional)

calcTPM Calculate CAGE Tags-Per-Million (TPM)

Description

Normalize CAGE-tag counts into TPM values.

Usage

calcTPM(
object,
inputAssay = "counts",
outputAssay = "TPM",
totalTags = NULL,
outputColumn = "totalTags"

)

Arguments

object RangedSummarizedExperiment: CAGE data quantified at CTSS, cluster or gene-
level.

inputAssay character: Name of assay holding input expression values.

outputAssay character: Name of assay to hold TPM values.

totalTags character or NULL: Column in colData holding the total number of tags for each
samples. If NULL, this will be calculated using calcTotalTags.

outputColumn character: Name of column in colData to hold number of total tags, only used if
totalTags is NULL.

Value

object with TPM-values added as a new assay. If totalTags is NULL, total tags added as a column
in colData.

See Also

Other Calculation functions: calcBidirectionality(), calcComposition(), calcPooled(),
calcShape(), calcSupport(), calcTotalTags(), subsetByBidirectionality(), subsetByComposition(),
subsetBySupport()

22 checkCTSSs

Examples

data(exampleUnidirectional)

Calculate TPM:
calcTPM(exampleUnidirectional)

Use pre-calculated total number of tags:
calcTPM(exampleUnidirectional,

outputAssay='TPMsupplied',
totalTags='totalTags')

checkCTSSs Helper for checking files containing CTSSs

Description

Checks whether a file (or GRanges/GPos) contains data formatted in the same manner as CAGE
Transcription Start Sites (CTSSs): Each basepair of the genome is associated with a single integer
count.

Usage

checkCTSSs(object)

S4 method for signature 'ANY'
checkCTSSs(object)

S4 method for signature 'GRanges'
checkCTSSs(object)

S4 method for signature 'character'
checkCTSSs(object)

S4 method for signature 'GPos'
checkCTSSs(object)

S4 method for signature 'BigWigFile'
checkCTSSs(object)

Arguments

object BigWigFile, character, GRanges or GPos: Path to the file storing CTSSs, or an
already improted GRanges/GPos.

Value

TRUE if CTSSs are correctly formatted, otherwise a (hopefully) informative error is thrown.

checkPeaked 23

Note

In the case that a character is supplied pointing to a file, checkCTSSs will not check any extensions,
but simply try to read it using rtracklayer::import. This means that checkCTSSs can technically
analyze BED-files, although CAGEfightR can only import CTSSs from BigWig or bedGraph files.

Examples

if (.Platform$OS.type != "windows") {
Load example data
data('exampleDesign')
bw_plus <- system.file('extdata',

exampleDesign$BigWigPlus,
package = 'CAGEfightR')

bw_plus <- BigWigFileList(bw_plus)

Check raw file
checkCTSSs(bw_plus[[1]])

Import first, then check
gr <- import(bw_plus[[1]])
checkCTSSs(gr)
}

checkPeaked Helper for checking cluster with peaks

Description

Checks whether a supplied set of cluster have valid peaks: Whether the thick column contains
IRanges all contained within the main ranges.

Usage

checkPeaked(object)

Arguments

object GRanges or GPos: Clusters with peaks to be checked.

Value

TRUE if object is correct format, otherwise an error is thrown

See Also

Other Checking functions: checkPooled()

24 clusterBidirectionally

Examples

data(exampleUnidirectional)
checkPeaked(rowRanges(exampleUnidirectional))

checkPooled Helper for checking pooled signal

Description

Checks whether a supplied pooled signal is valid: Single bp disjoint with signal in the score column
with supplied genome information.

Usage

checkPooled(object)

Arguments

object GRanges or GPos: Pooled signal to be checked

Value

TRUE if object is correct format, otherwise an error is thrown

See Also

Other Checking functions: checkPeaked()

Examples

data(exampleCTSSs)
checkPooled(rowRanges(exampleCTSSs))

clusterBidirectionally

Bidirectional clustering of pooled CTSSs.

Description

Finds sites with (balanced and divergent) bidirectional transcription using sliding windows of summed
coverage: The Bhattacharyya coefficient (BC) is used to quantify depature from a perfectly balanced
site, and a slice-reduce is used to identify sites.

clusterBidirectionally 25

Usage

clusterBidirectionally(object, ...)

S4 method for signature 'GRanges'
clusterBidirectionally(
object,
window = 201,
balanceThreshold = 0.95,
balanceFun = balanceBC

)

S4 method for signature 'GPos'
clusterBidirectionally(object, ...)

S4 method for signature 'RangedSummarizedExperiment'
clusterBidirectionally(object, ...)

Arguments

object GenomicRanges or RangedSummarizedExperiment: Pooled CTSSs stored in
the score column.

... additional arguments passed to methods.

window integer: Width of sliding window used for calculating window sums.
balanceThreshold

numeric: Minimum value of the BC to use for slice-reduce, a value of 1 corre-
sponds to perfectly balanced sites.

balanceFun function: Advanced users may supply their own function for calculating the
balance score instead of the the default balanceBC. See details for instructions.

Value

GRanges with bidirectional sites: Minimum width is 1 + 2*window, TPM sum (on both strands)
in the score column, maximal bidirectional site in the thick column and maximum balance in the
balance column.

See Also

Other Clustering functions: clusterUnidirectionally(), trimToPeak(), trimToPercentiles(),
tuneTagClustering()

Examples

Not run:
data(exampleCTSSs)

Calculate pooledTPM, using supplied number of total tags
exampleCTSSs <- calcTPM(exampleCTSSs,

inputAssay='counts',

26 clusterUnidirectionally

outputAssay='TPM',
totalTags='totalTags')

exampleCTSSs <- calcPooled(exampleCTSSs, inputAssay='TPM')

Cluster using defaults: balance-treshold of 199 and window of 199 bp:
clusterBidirectionally(exampleCTSSs)

Use custom thresholds:
clusterBidirectionally(exampleCTSSs, balanceThreshold=0.99, window=101)

End(Not run)

clusterUnidirectionally

Unidirectional Clustering (Tag Clustering) of pooled CTSSs.

Description

Finds unidirectional Tag Clusters (TCs) with a pooled TPM above a certain threshold using a slice-
reduce approach. Addtionally calculates the sum and peak position of the TCs.

Usage

clusterUnidirectionally(object, ...)

S4 method for signature 'GRanges'
clusterUnidirectionally(object, pooledCutoff = 0, mergeDist = 20L)

S4 method for signature 'RangedSummarizedExperiment'
clusterUnidirectionally(object, ...)

S4 method for signature 'GPos'
clusterUnidirectionally(object, ...)

Arguments

object GRanges or RangedSummarizedExperiment: Basepair-wise pooled CTSS.
... additional arguments passed to methods.
pooledCutoff numeric: Minimum pooled value to be considered as TC.
mergeDist integer: Merge TCs within this distance.

Value

GRanges with TPM sum as the score column, and TC peak as the thick column.

See Also

Other Clustering functions: clusterBidirectionally(), trimToPeak(), trimToPercentiles(),
tuneTagClustering()

combineClusters 27

Examples

data(exampleCTSSs)

Calculate pooledTPM, using supplied number of total tags
exampleCTSSs <- calcTPM(exampleCTSSs,

inputAssay='counts',
outputAssay='TPM',
totalTags='totalTags')

exampleCTSSs <- calcPooled(exampleCTSSs, inputAssay='TPM')

Cluster using defaults: slice-threshold of 0 and reduce-distance of 20
clusterUnidirectionally(exampleCTSSs)

Use custom thresholds:
clusterUnidirectionally(exampleCTSSs, pooledCutoff=1, mergeDist=25)

combineClusters Combine two CAGE experiments.

Description

This function can safely combine two CAGE experiments, for example TCs and enhancers, for later
analysis, by making sure no ranges in the final object are overlapping.

Usage

combineClusters(object1, object2, ...)

S4 method for signature
'RangedSummarizedExperiment,RangedSummarizedExperiment'
combineClusters(object1, object2, removeIfOverlapping = "none")

Arguments

object1 RangedSummarizedExperiment: First experiment to be combined.

object2 RangedSummarizedExperiment: First experiment to be combined.

... arguments passed to methods.
removeIfOverlapping

character: Whether to keep overlapping ranges (’none’) or discard from either
the first (’object1’) or second (’object2’) experiment.

Value

RangedSummarizedExperiment with merged and sorted ranges (colData and metadata are carried
over unchanged).

28 convertBAM2BigWig

Examples

data(exampleUnidirectional)
data(exampleBidirectional)

Clusters must have identical colData to be combined:
exampleUnidirectional$totalTags <- NULL

Combine, keeping potential overlaps
combineClusters(object1=exampleUnidirectional, object2=exampleBidirectional)

If features overlap, keep only from object1
combineClusters(object1=exampleUnidirectional, object2=exampleBidirectional,

removeIfOverlapping='object2')

If features overlap, keep only from object2
combineClusters(object1=exampleUnidirectional, object2=exampleBidirectional,

removeIfOverlapping='object1')

convertBAM2BigWig Extract CTSSs from BAM-files (EXPERIMENTAL)

Description

Function for converting mapped reads in BAM-files to CAGE Transcription Start Sites (CTSSs)
in BigWig-files. Currently, this function will simply load a (single-end) BAM-file (respecting a
supplied ScanBamParam), optionally remove short tags, and count the number of 5’-ends at each
bp. Note, the BAM-file is loaded as a single object, so you must be able to keep at least one complete
BAM-file in RAM.

Usage

convertBAM2BigWig(input, outputPlus, outputMinus, minLength = 1L, ...)

Arguments

input character: Path to input BAM-file

outputPlus character: Path to output BigWig-file holding CTSSs on the plus strand.

outputMinus character: Path to output BigWig-file holding CTSSs on the minus strand.

minLength integer: Minimum length of mapped reads.

... Additional arguments passed to rtracklayer::import. This will often include a
ScanBamParam

Value

Number of CTSSs/Tags returned invisibly.

convertBED2BigWig 29

Note

WARNING: This function is experimental, has not been thoroughly tested, and will most likely
significantly change in upcoming CAGEfightR version. For comments/question please go to the
CAGEfightR github page.

Examples

TBA

convertBED2BigWig Convert CTSSs stored in different file formats.

Description

Collection of functions for converting CTSSs/CTSSs-like data stored in BigWig, bedGraph or BED
file formats. BigWig and bedGraph files use a file for each strand, while BED-files stores both
strands in a single file. As BigWig files stores info about the chromosome lenghts, conversion from
bedGraph/BED to BigWig requires a genome. Note that CAGEfightR will only import BigWig or
bedGraph files!

Usage

convertBED2BigWig(input, outputPlus, outputMinus, genome)

convertBED2BedGraph(input, outputPlus, outputMinus)

convertBedGraph2BigWig(input, output, genome)

convertBigWig2BedGraph(input, output)

convertBigWig2BED(inputPlus, inputMinus, output)

convertBedGraph2BED(inputPlus, inputMinus, output)

Arguments

input charater: Path to input files holding CTSSs on both strands.

outputPlus character: Path to output files holding CTSSs on plus strand.

outputMinus character: Path to output files holding CTSSs on minus strand.

genome Seqinfo or character: Genome info passed to rtracklayer::import (see note).

output charater: Path to output files holding CTSSs on both strands.

inputPlus character: Path to input files holding CTSSs on plus strand.

inputMinus character: Path to input files holding CTSSs on minus strand.

30 convertBED2BigWig

Value

TRUE returned invisibly if conversion(s) was succesful, otherwise an error is raised.

Note

These functions will warn if input files do not have the correct extensions (.bw, .bedGraph, .bed),
but otherwise simply pass input to rtracklayer::import. This makes them able to handle compressed
files (like .gz). The same applies to the genome argument, which can also be the name of a UCSC
genome.

Examples

Not run:
Find paths to BigWig files
data('exampleDesign')
bw_plus <- system.file('extdata', exampleDesign$BigWigPlus,

package = 'CAGEfightR')
bw_minus <- system.file('extdata', exampleDesign$BigWigMinus,

package = 'CAGEfightR')

Designate paths to new files
n_samples <- length(bw_plus)
beds <- replicate(n=n_samples, tempfile(fileext=".bed"))
bg_plus <- replicate(n=n_samples, tempfile(fileext="_plus.bedGraph"))
bg_minus <- replicate(n=n_samples, tempfile(fileext="_minus.bedGraph"))
conv_plus <- replicate(n=n_samples, tempfile(fileext="_plus.bw"))
conv_minus <- replicate(n=n_samples, tempfile(fileext="_minus.bw"))

Convert BigWig to BED
convertBigWig2BED(inputPlus=bw_plus,

inputMinus=bw_minus,
output=beds)

Convert BED to bedGraph
convertBED2BedGraph(input=beds,

outputPlus=bg_plus,
outputMinus=bg_minus)

Convert BED to bedGraph
mm9 <- SeqinfoForUCSCGenome("mm9")
convertBED2BigWig(input=beds,

outputPlus=conv_plus,
outputMinus=conv_minus,
genome=mm9)

Check it's still the same data
x <- import(bw_plus[1])
y <- import(bg_plus[1])
z <- import(conv_plus[1])
all(x == y)
all(x == z)
sum(score(x)) == sum(score(y))

convertGRanges2GPos 31

sum(score(x)) == sum(score(z))

End(Not run)

convertGRanges2GPos Convert GRanges with scores to GPos

Description

Converts a GRanges to a GPos, correctly expanding the score column. This is useful is nearby
CTSSs with the same count are grouped in the same range (see example).

Usage

convertGRanges2GPos(object)

Arguments

object GRanges object with a score column

Value

GPos with score column

Examples

Example GRanges
gr <- GRanges(Rle(c("chr2", "chr2", "chr3", "chr4")),

IRanges(start=c(1, 10, 5, 3),
end=c(5L, 10L, 5L, 4L)),
strand="+",
score=c(2, 1, 3, 11))

Expand to proper GPos / CTSS format:
gp <- convertGRanges2GPos(gr)

Double check that the total number of counts remains the same
stopifnot(sum(score(gr) * width(gr)) == sum(score(gp)))

32 exampleDesign

exampleDesign Example CAGE Data

Description

Subset of the CAGE dataset from the paper ’Identification of Gene Transcription Start Sites and
Enhancers Responding to Pulmonary Carbon Nanotube Exposure in Vivo’. CTSS data from subsets
of chr18 and chr19 across 3 mouse (mm9) samples are included. Datasets can be loaded with the
data function.

Usage

exampleDesign

exampleCTSSs

exampleUnidirectional

exampleBidirectional

exampleGenes

Format

Example data from various stages of CAGEfightR:

exampleDesign DataFrame: Description of samples, including .bw filenames
exampleCTSS RangedSummarizedExperiment: CTSSs
exampleUnidirectional RangedSummarizedExperiment: Unidirectional or Tag Clusters
exampleBidirectionalCluster RangedSummarizedExperiment: Bidirectional clusters
exampleGenes RangedSummarizedExperiment: Genes

An object of class RangedSummarizedExperiment with 41256 rows and 3 columns.
An object of class RangedSummarizedExperiment with 21008 rows and 3 columns.
An object of class RangedSummarizedExperiment with 377 rows and 3 columns.
An object of class RangedSummarizedExperiment with 127 rows and 3 columns.

Source

http://pubs.acs.org/doi/abs/10.1021/acsnano.6b07533

Examples

data(exampleDesign)
data(exampleCTSSs)
data(exampleUnidirectional)
data(exampleBidirectional)
data(exampleGenes)

http://pubs.acs.org/doi/abs/10.1021/acsnano.6b07533

findLinks 33

findLinks Find nearby pairs of clusters and calculate pairwise correlations.

Description

Finds all links or pairs of clusters within a certain distance of each other and then calculates the
correlation between them. The links found can be restricted to only be between two classes, for
example TSSs to enhancers.

Usage

findLinks(object, ...)

S4 method for signature 'GRanges'
findLinks(object, maxDist = 10000L, directional = NULL)

S4 method for signature 'RangedSummarizedExperiment'
findLinks(
object,
inputAssay,
maxDist = 10000L,
directional = NULL,
corFun = stats::cor.test,
vals = c("estimate", "p.value"),
...

)

Arguments

object GRanges or RangedSummarizedExperiment: Clusters, possibly with expression
for calculating correlations.

... additional arguments passed to methods or ultimately corFun.

maxDist integer: Maximum distance between links.

directional character: Name of a column in object holding a grouping of the clusters. This
must be a factor with two levels. The first level is used as the basis for calculating
orientation (see below).

inputAssay character: Name of assay holding expression values (if object is a RangedSum-
marizedExperiment)

corFun function: Function for calculating pairwise correlations. See notes for supplying
custom functions.

vals character: Statistics extracted from the results produced by corFun. See notes
for supplying custom functions.

34 findStretches

Details

A custom function for calculation correlations can be supplied by the user. The output of this
function must be a named list or vector of numeric values. The names of the vals to be extracted
should be supplied to vals.

Value

A GInteractions holding the links, along with the distance between them and correlation estimate
and p-value calculated from their expression. If a directional analysis was performed, the two
anchors are always connecting members of the two classes and the orientation of the second anchor
relative to the first is additionaly calculated (e.g. whether an enhancers is upstream or downstream
of the TSS).

See Also

Other Spatial functions: findStretches(), trackLinks()

Examples

library(InteractionSet)

Subset to highly expressed unidirectional clusters
TCs <- subset(exampleUnidirectional, score > 10)

Find links within a certain distance
findLinks(TCs, inputAssay="counts", maxDist=10000L)

To find TSS-to-enhancer type links, first merge the clusters:
colData(exampleBidirectional) <- colData(TCs)
rowRanges(TCs)$clusterType <- "TSS"
rowRanges(exampleBidirectional)$clusterType <- "Enhancer"
SE <- combineClusters(TCs, exampleBidirectional, removeIfOverlapping="object1")
rowRanges(SE)$clusterType <- factor(rowRanges(SE)$clusterType, levels=c("TSS", "Enhancer"))

Calculate kendall correlations of TPM values:
SE <- calcTPM(SE, totalTags="totalTags")
findLinks(SE, inputAssay="TPM", maxDist=10000L, directional="clusterType", method="kendall")

findStretches Find stretches of clusters

Description

Finds stretches or groups of clusters along the genome, where each cluster is within a certain dis-
tance of the next. Once stretches have been identified, the average pairwise correlation between all
clusters in the stretch is calculated. A typical use case is to look for stretches of enhancers, often
refered to as "super enhancers".

findStretches 35

Usage

findStretches(object, ...)

S4 method for signature 'GRanges'
findStretches(object, mergeDist = 10000L, minSize = 3L)

S4 method for signature 'RangedSummarizedExperiment'
findStretches(
object,
inputAssay,
mergeDist = 10000L,
minSize = 3L,
corFun = cor,
...

)

Arguments

object GRanges or RangedSummarizedExperiment: Clusters, possibly with expression
for calculating correlations.

... additional arguments passed to methods or ultimately corFun.

mergeDist integer: Maximum distance between clusters to be merged into stretches.

minSize integer: Minimum number of clusters in stretches.

inputAssay character: Name of assay holding expression values (if object is a RangedSum-
marizedExperiment)

corFun function: Function for calculating correlations. Should behave and produce out-
put similar to cor().

Value

A GRanges containing stretches with number of clusters and average pairwise correlations calcu-
lated. The revmap can be used to retrieve the original clusters (see example below.)

See Also

Other Spatial functions: findLinks(), trackLinks()

Examples

Calculate TPM values for bidirectional clusters
data(exampleBidirectional)
BCs <- calcTPM(exampleBidirectional)

Find stretches
pearson_stretches <- findStretches(BCs, inputAssay="TPM")

Use Kendall instead of pearson and require bigger stretches
kendall_stretches <- findStretches(BCs, inputAssay="TPM",

36 quantifyClusters

minSize=5, method="kendall")

Use the revmap to get stretches as a GRangesList
grl <- extractList(rowRanges(BCs), kendall_stretches$revmap)
names(grl) <- names(kendall_stretches)

quantifyClusters Quantify expression of clusters (TSSs or enhancers) by summing
CTSSs within clusters.

Description

Quantify expression of clusters (TSSs or enhancers) by summing CTSSs within clusters.

Usage

quantifyClusters(object, clusters, inputAssay = "counts", sparse = FALSE)

Arguments

object RangedSummarizedExperiment: CTSSs.

clusters GRanges: Clusters to be quantified.

inputAssay character: Name of assay holding expression values to be quantified (usually
counts).

sparse logical: If the input is a sparse matrix, TRUE will keep the output matrix sparse
while FALSE will coerce it into a normal matrix.

Value

RangedSummarizedExperiment with row corresponding to clusters. seqinfo and colData is copied
over from object.

See Also

Other Quantification functions: quantifyCTSSs2(), quantifyCTSSs(), quantifyGenes()

Examples

CTSSs stored in a RangedSummarizedExperiment:
data(exampleCTSS)

Clusters to be quantified as a GRanges:
data(exampleUnidirectional)
clusters <- rowRanges(exampleUnidirectional)

Quantify clusters:
quantifyClusters(exampleCTSSs, clusters)

quantifyCTSSs 37

For exceptionally large datasets,
the resulting count matrix can be left sparse:
quantifyClusters(exampleCTSSs, rowRanges(exampleUnidirectional), sparse=TRUE)

quantifyCTSSs Quantify CAGE Transcriptions Start Sites (CTSSs)

Description

This function reads in CTSS count data from a series of BigWig-files (or bedGraph-files) and re-
turns a CTSS-by-library count matrix. For efficient processing, the count matrix is stored as a
sparse matrix (dgCMatrix from the Matrix package), and CTSSs are compressed to a GPos object
if possible.

Usage

quantifyCTSSs(plusStrand, minusStrand, design = NULL, genome = NULL, ...)

S4 method for signature 'BigWigFileList,BigWigFileList'
quantifyCTSSs(
plusStrand,
minusStrand,
design = NULL,
genome = NULL,
nTiles = 1L

)

S4 method for signature 'character,character'
quantifyCTSSs(plusStrand, minusStrand, design = NULL, genome = NULL)

Arguments

plusStrand BigWigFileList or character: BigWig/bedGraph files with plus-strand CTSS
data.

minusStrand BigWigFileList or character: BigWig/bedGraph files with minus-strand CTSS
data.

design DataFrame or data.frame: Additional information on samples which will be
added to the ouput

genome Seqinfo: Genome information. If NULL the smallest common genome will be
found using bwCommonGenome when BigWig-files are analyzed.

... additional arguments passed to methods.

nTiles integer: Number of genomic tiles to parallelize over.

Value

RangedSummarizedExperiment, where assay is a sparse matrix (dgCMatrix) of CTSS counts and
design stored in colData.

38 quantifyCTSSs

See Also

Other Quantification functions: quantifyCTSSs2(), quantifyClusters(), quantifyGenes()

Examples

Not run:
Load the example data
data('exampleDesign')
Use the BigWig-files included with the package:
bw_plus <- system.file('extdata', exampleDesign$BigWigPlus,

package = 'CAGEfightR')
bw_minus <- system.file('extdata', exampleDesign$BigWigMinus,

package = 'CAGEfightR')

Create two named BigWigFileList-objects:
bw_plus <- BigWigFileList(bw_plus)
bw_minus <- BigWigFileList(bw_minus)
names(bw_plus) <- exampleDesign$Name
names(bw_minus) <- exampleDesign$Name

Quantify CTSSs, by default this will use the smallest common genome:
CTSSs <- quantifyCTSSs(plusStrand=bw_plus,

minusStrand=bw_minus,
design=exampleDesign)

Alternatively, a genome can be specified:
si <- seqinfo(bw_plus[[1]])
si <- si['chr18']
CTSSs_subset <- quantifyCTSSs(plusStrand=bw_plus,

minusStrand=bw_minus,
design=exampleDesign,
genome=si)

Quantification can be speed up by using multiple cores:
library(BiocParallel)
register(MulticoreParam(workers=3))
CTSSs_subset <- quantifyCTSSs(plusStrand=bw_plus,

minusStrand=bw_minus,
design=exampleDesign,
genome=si)

CAGEfightR also support bedGraph files, first BigWig is converted
bg_plus <- replicate(n=length(bw_plus), tempfile(fileext="_plus.bedGraph"))
bg_minus <- replicate(n=length(bw_minus), tempfile(fileext="_minus.bedGraph"))
names(bg_plus) <- names(bw_plus)
names(bg_minus) <- names(bw_minus)

convertBigWig2BedGraph(input=sapply(bw_plus, resource), output=bg_plus)
convertBigWig2BedGraph(input=sapply(bw_minus, resource), output=bg_minus)

Then analyze: Note a genome MUST be supplied here!
si <- bwCommonGenome(bw_plus, bw_minus)

quantifyCTSSs2 39

CTSSs_via_bg <- quantifyCTSSs(plusStrand=bg_plus,
minusStrand=bg_minus,
design=exampleDesign,
genome=si)

Confirm that the two approaches yield the same results
all(assay(CTSSs_via_bg) == assay(CTSSs))

End(Not run)

quantifyCTSSs2 Quantify CAGE Transcriptions Start Sites (CTSSs)

Description

This function reads in CTSS count data from a series of BigWig-files and returns a CTSS-by-library
count matrix. For efficient processing, the count matrix is stored as a sparse matrix (dgCMatrix).

Usage

quantifyCTSSs2(
plusStrand,
minusStrand,
design = NULL,
genome = NULL,
tileWidth = 100000000L

)

Arguments

plusStrand BigWigFileList: BigWig files with plus-strand CTSS data.

minusStrand BigWigFileList: BigWig files with minus-strand CTSS data.

design DataFrame or data.frame: Additional information on samples.

genome Seqinfo: Genome information. If NULL the smallest common genome will be
found using bwCommonGenome.

tileWidth integer: Size of tiles to parallelize over.

Value

RangedSummarizedExperiment, where assay is a sparse matrix (dgCMatrix) of CTSS counts..

See Also

Other Quantification functions: quantifyCTSSs(), quantifyClusters(), quantifyGenes()

40 quantifyGenes

Examples

Not run:
Load the example data
data('exampleDesign')
Use the BigWig-files included with the package:
bw_plus <- system.file('extdata', exampleDesign$BigWigPlus,

package = 'CAGEfightR')
bw_minus <- system.file('extdata', exampleDesign$BigWigMinus,

package = 'CAGEfightR')

Create two named BigWigFileList-objects:
bw_plus <- BigWigFileList(bw_plus)
bw_minus <- BigWigFileList(bw_minus)
names(bw_plus) <- exampleDesign$Name
names(bw_minus) <- exampleDesign$Name

Quantify CTSSs, by default this will use the smallest common genome:
CTSSs <- quantifyCTSSs(plusStrand=bw_plus,

minusStrand=bw_minus,
design=exampleDesign)

Alternatively, a genome can be specified:
si <- seqinfo(bw_plus[[1]])
si <- si['chr18']
CTSSs <- quantifyCTSSs(plusStrand=bw_plus,

minusStrand=bw_minus,
design=exampleDesign,
genome=si)

Quantification can be speed up by using multiple cores:
library(BiocParallel)
register(MulticoreParam(workers=3))
CTSSs <- quantifyCTSSs(plusStrand=bw_plus,

minusStrand=bw_minus,
design=exampleDesign,
genome=si)

End(Not run)

quantifyGenes Quantify expression of genes

Description

Obtain gene-level expression estimates by summing clusters annotated to the same gene. Unanno-
tated transcripts (NAs) are discarded.

Usage

quantifyGenes(object, genes, inputAssay = "counts", sparse = FALSE)

quickEnhancers 41

Arguments

object RangedSummarizedExperiment: Cluster-level expression values.

genes character: Name of column in rowData holding gene IDs (NAs will be dis-
carded).

inputAssay character: Name of assay holding values to be quantified, (usually counts).

sparse logical: If the input is a sparse matrix, TRUE will keep the output matrix sparse
while FALSE will coerce it into a normal matrix.

Value

RangedSummarizedExperiment with rows corresponding to genes. Location of clusters within
genes is stored as a GRangesList in rowRanges. seqinfo and colData is copied over from object.

See Also

Other Quantification functions: quantifyCTSSs2(), quantifyCTSSs(), quantifyClusters()

Examples

data(exampleUnidirectional)

Annotate clusters with geneIDs:
library(TxDb.Mmusculus.UCSC.mm9.knownGene)
txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene
exampleUnidirectional <- assignGeneID(exampleUnidirectional,

geneModels=txdb,
outputColumn='geneID')

Quantify counts within genes:
quantifyGenes(exampleUnidirectional, genes='geneID', inputAssay='counts')

For exceptionally large datasets,
the resulting count matrix can be left sparse:
quantifyGenes(exampleUnidirectional,

genes='geneID',
inputAssay='counts',
sparse=TRUE)

quickEnhancers Identify and quantify enhancers.

Description

A convienient wrapper around clusterBidirectionally, subsetByBidirectionality and quantifyClus-
ters.

42 quickGenes

Usage

quickEnhancers(object)

Arguments

object RangedSummarizedExperiment: Location and counts of CTSSs, usually found
by calling quantifyCTSSs.

Value

RangedSummarizedExperiment containing location and counts of enhancers.

See Also

Other Wrapper functions: quickGenes(), quickTSSs()

Examples

See the CAGEfightR vignette for an overview!

quickGenes Identify and quantify genes.

Description

A convienient wrapper around assignGeneID, and quantifyGenes. Also removes unstranded fea-
tures

Usage

quickGenes(object, geneModels = NULL, ...)

Arguments

object RangedSummarizedExperiment: Location and counts of clusters, usually found
by calling quantifyClusters.

geneModels TxDb or GRanges: Gene models via a TxDb, or manually specified as a GRanges-
List.

... additional arguments passed to assignGeneID.

Value

RangedSummarizedExperiment containing gene expression and clusters assigned within each gene.

See Also

Other Wrapper functions: quickEnhancers(), quickTSSs()

quickTSSs 43

Examples

See the CAGEfightR vignette for an overview!

quickTSSs Identify and quantify Transcription Start Sites (TSSs).

Description

A convienient wrapper around calcTPM, calcPooled, tuneTagClustering, clusterUnidirectionally
and quantifyClusters.

Usage

quickTSSs(object)

Arguments

object RangedSummarizedExperiment: Location and counts of CTSSs, usually found
by calling quantifyCTSSs.

Value

RangedSummarizedExperiment containing location and counts of TSSs

See Also

Other Wrapper functions: quickEnhancers(), quickGenes()

Examples

See the CAGEfightR vignette for an overview!

shapeEntropy Shape statistic: Shannon Entropy

Description

Calculates the Shannon Entropy (base log2) for a vector. Zeros are removed before calculation.

Usage

shapeEntropy(x)

Arguments

x numeric Rle vector: Coverage series.

44 shapeIQR

Value

Numeric.

See Also

Other Shape functions: calcShape(), shapeIQR(), shapeMean()

Examples

Hypothetical shard/broad clusters:
x_sharp <- Rle(c(1,1,1,4,5,2,1,1))
x_broad <- Rle(c(1,2,3,5,4,3,2,1))

Calculate Entropy
shapeEntropy(x_sharp)
shapeEntropy(x_broad)

See calcShape for more usage examples

shapeIQR Shape statitic: Interquartile range

Description

Calculates the interquartile range of a vector.

Usage

shapeIQR(x, lower = 0.25, upper = 0.75)

Arguments

x numeric Rle vector: Coverage series.

lower numeric: Lower quartile.

upper numeric: Upper quartile.

Value

Numeric

See Also

Other Shape functions: calcShape(), shapeEntropy(), shapeMean()

shapeMean 45

Examples

Hypothetical shard/broad clusters:
x_sharp <- Rle(c(1,1,1,4,5,2,1,1))
x_broad <- Rle(c(1,2,3,5,4,3,2,1))

Calculate IQR
shapeIQR(x_sharp)
shapeIQR(x_broad)

See calcShape for more usage examples

shapeMean Shape statistic: Mean

Description

Calculates the mean of a vector.

Usage

shapeMean(x)

Arguments

x numeric Rle vector: Coverage series.

Value

Numeric

See Also

Other Shape functions: calcShape(), shapeEntropy(), shapeIQR()

Examples

Hypothetical shard/broad clusters:
x_sharp <- Rle(c(1,1,1,4,5,2,1,1))
x_broad <- Rle(c(1,2,3,5,4,3,2,1))

Calculate mean
shapeMean(x_sharp)
shapeMean(x_broad)

See calcShape for more usage examples

46 subsetByBidirectionality

shapeMultimodality Shape statistic: Multimodality

Description

Shape statistic: Multimodality

Usage

shapeMultimodality(x)

Arguments

x numeric Rle vector: Coverage series.

Value

Numeric.

Examples

See calcShape for usage examples

subsetByBidirectionality

Subset by sample-wise bidirectionality of clusters.

Description

A convenient wrapper around calcBidirectionality and subset.

Usage

subsetByBidirectionality(object, ...)

S4 method for signature 'GRanges'
subsetByBidirectionality(
object,
samples,
inputAssay = "counts",
outputColumn = "bidirectionality",
minSamples = 0

)

S4 method for signature 'GPos'
subsetByBidirectionality(object, ...)

subsetByComposition 47

S4 method for signature 'RangedSummarizedExperiment'
subsetByBidirectionality(object, ...)

Arguments

object GRanges or RangedSummarizedExperiment: Unstranded clusters with peaks
stored in the ’thick’ column.

... additional arguments passed to methods.
samples RangedSummarizedExperiment: Sample-wise CTSSs stored as an assay.
inputAssay character: Name of assay in samples holding input CTSS values.
outputColumn character: Name of column in object to hold bidirectionality values.
minSamples integer: Only regions with bidirectionality above this value are retained.

Value

object with bidirectionality values added as a column, and low bidirectionaly regions removed.

See Also

Other Subsetting functions: subsetByComposition(), subsetBySupport()

Other Calculation functions: calcBidirectionality(), calcComposition(), calcPooled(),
calcShape(), calcSupport(), calcTPM(), calcTotalTags(), subsetByComposition(), subsetBySupport()

Examples

data(exampleCTSSs)
data(exampleBidirectional)

Keep only clusters that are bidirectional in at least one sample:
subsetByBidirectionality(exampleBidirectional, samples=exampleCTSSs)

subsetByComposition Subset by composition across samples

Description

A convenient wrapper around calcComposition and subset.

Usage

subsetByComposition(
object,
inputAssay = "counts",
outputColumn = "composition",
unexpressed = 0.1,
genes = "geneID",
minSamples = 1

)

48 subsetByComposition

Arguments

object RangedSummarizedExperiment: CAGE data quantified at CTSS, cluster or gene-
level.

inputAssay character: Name of assay holding input expression values.

outputColumn character: Name of column in rowRanges to hold composition values.

unexpressed numeric: Composition will be calculated based on features larger than this cut-
off.

genes character: Name of column in rowData holding genes (NAs are not allowed.)

minSamples numeric: Only features with composition in more than this number of samples
will be kept.

Value

RangedSummarizedExperiment with composition values added as a column in rowData and fea-
tures with less composition than minSamples removed.

See Also

Other Subsetting functions: subsetByBidirectionality(), subsetBySupport()

Other Calculation functions: calcBidirectionality(), calcComposition(), calcPooled(),
calcShape(), calcSupport(), calcTPM(), calcTotalTags(), subsetByBidirectionality(),
subsetBySupport()

Examples

data(exampleUnidirectional)

Annotate clusters with geneIDs:
library(TxDb.Mmusculus.UCSC.mm9.knownGene)
txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

exampleUnidirectional <- assignGeneID(exampleUnidirectional,
geneModels=txdb,
outputColumn='geneID')

exampleUnidirectional <- subset(exampleUnidirectional, !is.na(geneID))

Keep only clusters more than 10% in more than one sample:
calcComposition(exampleUnidirectional)

Keep only clusters more than 5% in more than 2 samples:
subsetByComposition(exampleUnidirectional, unexpressed = 0.05, minSamples=2)

subsetBySupport 49

subsetBySupport Subset by support across samples

Description

A convienient wrapper around calcSupport and subset.

Usage

subsetBySupport(
object,
inputAssay = "counts",
outputColumn = "support",
unexpressed = 0,
minSamples = 1

)

Arguments

object RangedSummarizedExperiment: CAGE data quantified at CTSS, cluster or gene-
level.

inputAssay character: Name of assay holding input expression values.
outputColumn character: Name of column in rowRanges to hold support values.
unexpressed numeric: Support will be calculated based on features larger than this cutoff.
minSamples numeric: Only features with support in more than this number of samples will

be kept.

Value

RangedSummarizedExperiment with support added as a column in rowRanges and features with
less support than minSamples removed.

See Also

Other Subsetting functions: subsetByBidirectionality(), subsetByComposition()
Other Calculation functions: calcBidirectionality(), calcComposition(), calcPooled(),
calcShape(), calcSupport(), calcTPM(), calcTotalTags(), subsetByBidirectionality(),
subsetByComposition()

Examples

data(exampleBidirectional)

Keep clusters with at least one tag in two samples
subsetBySupport(exampleBidirectional)

Keep clusters with at least two tags in four samples
subsetBySupport(exampleBidirectional, unexpressed=1, minSamples=2)

50 swapRanges

swapRanges Swap ranges in a GRanges.

Description

Swap out the range of a GRanges-object with another IRanges-object stored inside the same object.
I.e., swapping cluster widths with cluster peaks.

Usage

swapRanges(object, ...)

S4 method for signature 'GenomicRanges'
swapRanges(object, inputColumn = "thick", outputColumn = NULL)

S4 method for signature 'RangedSummarizedExperiment'
swapRanges(object, ...)

Arguments

object GRanges or RangedSummarizedExperiment: Primary ranges to be swapped out.
... additional arguments passed to methods.
inputColumn character: Name of column holding IRanges to be swapped in.
outputColumn character or NULL: Name of column to hold swapped out ranges, if NULL

original ranges are not saved.

Value

GRanges with inputColumn swapped in as ranges.

See Also

Other Swapping functions: swapScores()

Examples

data(exampleUnidirectional)
gr <- rowRanges(exampleUnidirectional)

Swap in peaks as main ranges
peaks <- swapRanges(gr)
head(width(gr))
head(width(peaks))

swapRanges() can also be directly called on a RangedSummarizedExperiment:
swapRanges(exampleUnidirectional)

The original can optionally be saved in the output object
swapRanges(gr, outputColumn = 'swapped')

swapScores 51

swapScores Swap scores in SummarizedExperiment

Description

Take scores for a specific sample and a specific assay and put them into rowData.

Usage

swapScores(object, outputColumn = "score", inputAssay, sample)

Arguments

object SummarizedExperiment: CAGE-data

outputColumn character: Column in rowData to to hold swapped in scores.

inputAssay character: Name of assay to take scores from.

sample character: Name of sample to take scores from.

Value

SummarizedExperiment with sample scores from inputAssay in rowRata.

See Also

Other Swapping functions: swapRanges()

Examples

data(exampleCTSSs)
sample_names <- colnames(exampleCTSSs)

Replace scores with values from the first sample:
x <- swapScores(exampleCTSSs, inputAssay='counts', sample=sample_names[1])
rowRanges(x)

trackBalance Create Genome Browser Track of bidirectional balance scores

Description

Visualize balance scores used for detectiong of bidirectional sites. Mainly intended as diagnostic
tools for expert user.

52 trackBalance

Usage

trackBalance(object, ...)

S4 method for signature 'GRanges'
trackBalance(
object,
window = 199,
plusColor = "cornflowerblue",
minusColor = "tomato",
balanceColor = "forestgreen",
...

)

S4 method for signature 'GPos'
trackBalance(object, ...)

S4 method for signature 'RangedSummarizedExperiment'
trackBalance(object, ...)

Arguments

object GenomicRanges or RangedSummarizedExperiment: Ranges with CTSSs in the
score column.

... additional arguments passed to DataTrack.

window integer: Width of sliding window used for calculating windowed sums.

plusColor character: Color for plus-strand coverage.

minusColor character: Color for minus-strand coverage.

balanceColor character: Color for bidirectional balance.

Value

list of 3 DataTracks for upstream, downstream and balance.

Note

Potentially consumes a large amount of memory!

See Also

Other Genome Browser functions: trackCTSS(), trackClusters(), trackLinks()

Examples

Not run:
library(Gviz)
data(exampleCTSSs)
data(exampleBidirectional)

trackClusters 53

Calculate pooled CTSSs
exampleCTSSs <- calcTPM(exampleCTSSs, totalTags='totalTags')
exampleCTSSs <- calcPooled(exampleCTSSs)

Find a bidirectional cluster to plot:
BC <- rowRanges(exampleBidirectional[10,])
start(BC) <- start(BC) - 250
end(BC) <- end(BC) + 250
subsetOfCTSSs <- subsetByOverlaps(exampleCTSSs, BC)

Build balance track
balance_track <- trackBalance(subsetOfCTSSs)

Plot
plotTracks(balance_track, from=start(BC), to=end(BC),

chromosome=seqnames(BC))

End(Not run)

trackClusters Create genome browser track of clusters.

Description

Create a Gviz-track of clusters (unidirectional TCs or bidirectional enhancers), where cluster strand
and peak is indicated.

Usage

trackClusters(object, ...)

S4 method for signature 'GRanges'
trackClusters(
object,
plusColor = "cornflowerblue",
minusColor = "tomato",
unstrandedColor = "hotpink",
...

)

S4 method for signature 'RangedSummarizedExperiment'
trackClusters(object, ...)

Arguments

object GRanges: GRanges with peaks in the thick-column.

... additional arguments passed on to GeneRegionTrack.

plusColor character: Color for plus-strand features.

54 trackCTSS

minusColor character: Color for minus-strand features.
unstrandedColor

character: Color for unstranded features.

Value

GeneRegionTrack-object.

See Also

Other Genome Browser functions: trackBalance(), trackCTSS(), trackLinks()

Examples

library(Gviz)
data(exampleUnidirectional)

Find some wide unidirectional clusters:
TCs <- subset(exampleUnidirectional, width >= 100)

Create track
clusters_track <- trackClusters(TCs[1:2,], name='Tag clusters', col=NULL)

Plot
plotTracks(clusters_track)

See vignette for examples on how to combine multiple Gviz tracks

trackCTSS Create Genome Browser track of CTSSs.

Description

Create a Gviz-track of CTSSs, where Plus/minus strand signal is shown positive/negative. This
representation makes it easy to identify bidirectional peaks.

Usage

trackCTSS(object, ...)

S4 method for signature 'GRanges'
trackCTSS(object, plusColor = "cornflowerblue", minusColor = "tomato", ...)

S4 method for signature 'RangedSummarizedExperiment'
trackCTSS(object, ...)

S4 method for signature 'GPos'
trackCTSS(object, ...)

trackLinks 55

Arguments

object GenomicRanges or RangedSummarizedExperiment: Ranges with CTSSs in the
score column.

... additional arguments passed on to DataTrack.

plusColor character: Color for plus-strand coverage.

minusColor character: Color for minus-strand coverage.

Value

DataTrack-object.

See Also

Other Genome Browser functions: trackBalance(), trackClusters(), trackLinks()

Examples

library(Gviz)
data(exampleCTSSs)
data(exampleUnidirectional)
data(exampleBidirectional)

Example uni- and bidirectional clusters
TC <- rowRanges(subset(exampleUnidirectional, width>=100)[3,])
BC <- rowRanges(exampleBidirectional[3,])

Create pooled track
subsetOfCTSSs <- subsetByOverlaps(rowRanges(exampleCTSSs), c(BC, TC, ignore.mcols=TRUE))
pooledTrack <- trackCTSS(subsetOfCTSSs)

Plot
plotTracks(pooledTrack, from=start(TC)-100, to=end(TC)+100,

chromosome=seqnames(TC), name='TC')
plotTracks(pooledTrack, from=start(BC)-100, to=end(BC)+100,

chromosome=seqnames(BC), name='BC')

See vignette for examples on how to combine multiple Gviz tracks

trackLinks Create a genome browser track of links.

Description

Create a Gviz-track of links (e.g. between TSSs and enhancers), where arches connect the different
pairs of clusters. The height of arches can be set to scale the strength of the interaction (for example
indicating higher correlation). This function is a thin wrapper around the InteractionTrack-class
from the GenomicInteractions package. Currently, only scaling arch height by p-value is supported.

56 trimToPeak

Usage

trackLinks(object, ...)

Arguments

object GInteractions: Links or pairs between clusters.

... additional arguments passed to InteractionTrack via displayPars.

Value

InteractionTrack-object from the GenomicInteractions package.

See Also

Other Genome Browser functions: trackBalance(), trackCTSS(), trackClusters()

Other Spatial functions: findLinks(), findStretches()

Examples

library(InteractionSet)
library(Gviz)
library(GenomicInteractions)

Links between highly expressed unidirectional clusters
TCs <- subset(exampleUnidirectional, score > 10)
TC_links <- findLinks(TCs, inputAssay="counts", maxDist=10000L)
link_track <- trackLinks(TC_links, name="TSS links", interaction.measure="p.value")

Plot region
plot_region <- GRanges(seqnames="chr18",

ranges = IRanges(start=start(anchors(TC_links[1],
"first")),

end=end(anchors(TC_links[1],
"second"))))

Plot using Gviz
plotTracks(link_track,

from=start(plot_region),
to=end(plot_region),
chromosome = as.character(seqnames(plot_region)))

See vignette for examples on how to combine multiple Gviz tracks

trimToPeak Trim width of TCs by distance from TC peak

Description

Trim the width of TCs by distance from the TC peaks.

trimToPeak 57

Usage

trimToPeak(object, pooled, ...)

S4 method for signature 'GRanges,GRanges'
trimToPeak(object, pooled, upstream, downstream)

S4 method for signature 'GRanges,GPos'
trimToPeak(object, pooled, ...)

S4 method for signature 'RangedSummarizedExperiment,GenomicRanges'
trimToPeak(object, pooled, ...)

S4 method for signature 'GRanges,RangedSummarizedExperiment'
trimToPeak(object, pooled, ...)

S4 method for signature
'RangedSummarizedExperiment,RangedSummarizedExperiment'
trimToPeak(object, pooled, ...)

Arguments

object GenomicRanges or RangedSummarizedExperiment: Tag clusters.

pooled GenomicRanges or RangedSummarizedExperiment: Basepair-wise pooled CTSS
(stored in the score column).

... additional arguments passed to methods.

upstream integer: Maximum upstream distance from TC peak.

downstream integer: Maximum downstream distance from TC peak.

Value

data.frame with two columns: threshold and nTCs (number of Tag Clusters)

See Also

Other Clustering functions: clusterBidirectionally(), clusterUnidirectionally(), trimToPercentiles(),
tuneTagClustering()

Other Trimming functions: trimToPercentiles()

Examples

data(exampleCTSSs)
data(exampleBidirectional)

Calculate pooled CTSSs
exampleCTSSs <- calcTPM(exampleCTSSs, totalTags='totalTags')
exampleCTSSs <- calcPooled(exampleCTSSs)

Choose a few wide clusters:

58 trimToPercentiles

TCs <- subset(exampleUnidirectional, width >= 100)

Trim to +/- 10 bp of TC peak
trimToPeak(TCs, pooled=exampleCTSSs, upstream=10, downstream=10)

trimToPercentiles Trim width of TCs to expression percentiles

Description

Given a set of TCs and genome-wide CTSS coverage, reduce the width of TC until a certain amount
of expression has been removed.

Usage

trimToPercentiles(object, pooled, ...)

S4 method for signature 'GRanges,GRanges'
trimToPercentiles(object, pooled, percentile = 0.1, symmetric = FALSE)

S4 method for signature 'GRanges,GPos'
trimToPercentiles(object, pooled, ...)

S4 method for signature 'RangedSummarizedExperiment,GenomicRanges'
trimToPercentiles(object, pooled, ...)

S4 method for signature 'GRanges,RangedSummarizedExperiment'
trimToPercentiles(object, pooled, ...)

S4 method for signature
'RangedSummarizedExperiment,RangedSummarizedExperiment'
trimToPercentiles(object, pooled, ...)

Arguments

object GenomicRanges or RangedSummarizedExperiment: TCs to be trimmed.

pooled GenomicRanges or RangedSummarizedExperiment: CTSS coverage.

... additional arguments passed to methods.

percentile numeric: Fraction of expression to remove from TCs.

symmetric logical: Whether to trim the same amount from both edges of the TC (TRUE)
or always trim from the least expressed end (FALSE).

Value

GRanges with trimmed TCs, including recalculated peaks and scores.

tuneTagClustering 59

See Also

Other Clustering functions: clusterBidirectionally(), clusterUnidirectionally(), trimToPeak(),
tuneTagClustering()

Other Trimming functions: trimToPeak()

Examples

data(exampleCTSSs)
data(exampleBidirectional)

Calculate pooled CTSSs
exampleCTSSs <- calcTPM(exampleCTSSs, totalTags='totalTags')
exampleCTSSs <- calcPooled(exampleCTSSs)

Choose a few wide clusters:
TCs <- subset(exampleUnidirectional, width >= 100)

Symmetric trimming (same percentage from each side):
TCs_sym <- trimToPercentiles(TCs, pooled=exampleCTSSs, symmetric=FALSE)

Assymmetric trimming (always trim from lowest side):
TCs_asym <- trimToPercentiles(TCs, pooled=exampleCTSSs, symmetric=TRUE)

Compare the two results sets of widths:
summary(width(TCs_sym) - width(TCs_asym))

tuneTagClustering Determine the optimal pooled threshold for unidirectional tag cluster-
ing.

Description

This function counts the number of Tag Clusters (TCs) for an series of small incremental pooled
cutoffs

Usage

tuneTagClustering(object, ...)

S4 method for signature 'GRanges'
tuneTagClustering(
object,
steps = 10L,
mergeDist = 20L,
searchMethod = "minUnique",
maxExponent = 1

)

60 tuneTagClustering

S4 method for signature 'RangedSummarizedExperiment'
tuneTagClustering(object, ...)

S4 method for signature 'GPos'
tuneTagClustering(object, ...)

Arguments

object GenomicRanges or RangedSummarizedExperiment: Pooled CTSS.

... additional arguments passed to methods.

steps integer: Number of thresholds to analyze (in addition to treshold=0).

mergeDist integer: Merge TCs within this distance.

searchMethod character: For advanced user only, see details.

maxExponent numeric: The maximal threshold to analyse is obtained as min(score)*2^maxExponent
(only used if searchMethod=’exponential’).

Value

data.frame with two columns: threshold and nTCs (number of Tag Clusters)

See Also

Other Clustering functions: clusterBidirectionally(), clusterUnidirectionally(), trimToPeak(),
trimToPercentiles()

Examples

Not run:
data(exampleCTSSs)

Calculate pooledTPM, using supplied number of total tags
exampleCTSSs <- calcTPM(exampleCTSSs,

inputAssay='counts',
outputAssay='TPM',
totalTags='totalTags')

exampleCTSSs <- calcPooled(exampleCTSSs, inputAssay='TPM')

Set backend
library(BiocParallel)
register(SerialParam())

Find optimal slice-threshold for reduce distance of 20:
tuneTagClustering(object=exampleCTSSs)

End(Not run)

utilsAggregateRows 61

utilsAggregateRows Utility: Aggregate rows

Description

Used by quantifyClusters and quantifyGenes. Wrapper around rowsum with a few improvements:
1) Handles dgCMatrix 2) Suppresses warnings from and discards NAs in grouping 3) Checks if
output can be coerced to integer (useful when aggregating a dgCMatrix), 4) For the dgCMatrix
case, has the option to keep unused levels and output a sparse matrix.

Usage

utilsAggregateRows(x, group, drop = TRUE, sparse = FALSE)

S4 method for signature 'matrix'
utilsAggregateRows(x, group, drop = TRUE, sparse = FALSE)

S4 method for signature 'dgCMatrix'
utilsAggregateRows(x, group, drop = TRUE, sparse = FALSE)

Arguments

x matrix or dgCMatrix: Matrix to be aggregated.

group factor: Grouping, can cannot NAs which will be discarded.

drop logical: Whether to drop unused levels (TRUE) or keep assign them 0 (FALSE).

sparse logical: Whether output should be coerced to a dense matrix.

Value

matrix (or dgCMatrix if sparse=TRUE)

See Also

Other Utility functions: utilsDeStrand(), utilsScoreOverlaps(), utilsSimplifyTxDb()

Examples

library(Matrix)
data("exampleCTSSs")
data("exampleUnidirectional")

Sparse and dense examples
sparse_matrix <- assay(exampleCTSSs)
dense_matrix <- as(sparse_matrix, "matrix")

Groupings
grp <- findOverlaps(query = exampleCTSSs,

62 utilsDeStrand

subject = exampleUnidirectional,
select="arbitrary")

Aggregate rows and compare
sparse_res <- utilsAggregateRows(sparse_matrix, grp)
dense_res <- utilsAggregateRows(dense_matrix, grp)
all(sparse_res == dense_res)

Note that storage type was converted to integers!
storage.mode(sparse_res)
storage.mode(dense_res)

You can also elect to keep a sparse representation
utilsAggregateRows(sparse_matrix, grp, sparse = TRUE)

Examples with unused levels

Silly example
dense_mat <- replicate(5, runif(10))
sparse_mat <- as(dense_mat, "dgCMatrix")
fct_unused <- factor(c(1, 1, NA, NA, 3, 3, NA, NA, 5, 5), levels=1:5)

The default is to drop unused levels
utilsAggregateRows(dense_mat, fct_unused, drop=TRUE)
utilsAggregateRows(sparse_mat, fct_unused, drop=TRUE)

For dgCMatrix, one can elect to retain these:
utilsAggregateRows(sparse_mat, fct_unused, drop=FALSE)

For matrix, a warning is produced if either drop or sparse is requested
utilsAggregateRows(dense_mat, fct_unused, drop=FALSE)
utilsAggregateRows(dense_mat, fct_unused, sparse=TRUE)

utilsDeStrand Utility: Split Genomic Ranges by strand

Description

Utility function that attemps to split genomic ranges by strand with split(object, strand(object))

Usage

utilsDeStrand(object)

Arguments

object Any object with a split and strand method, e.g. GRanges/GPos

Value

Object split by strand, e.g. GRangesList.

utilsScoreOverlaps 63

See Also

Other Utility functions: utilsAggregateRows(), utilsScoreOverlaps(), utilsSimplifyTxDb()

Examples

gp <- GPos(seqnames=Rle(c("chr1", "chr2", "chr1"), c(10, 6, 4)),
pos=c(44:53, 5:10, 2:5),
strand=c(rep("+", 10), rep("-", 10)))

gr <- as(gp, "GRanges")
utilsDeStrand(gp)
utilsDeStrand(gr)

utilsScoreOverlaps Utility: Counting overlaps taking into account scores

Description

Similar to countOverlaps, but takes the score column into account.

Usage

utilsScoreOverlaps(query, subject, ...)

Arguments

query same as findOverlaps/countOverlaps

subject same as findOverlaps/countOverlaps

... additional arguments passed to findOverlaps

Value

vector of number of overlaps weigthed by score column.

See Also

https://support.bioconductor.org/p/87736/#87758

Other Utility functions: utilsAggregateRows(), utilsDeStrand(), utilsSimplifyTxDb()

Examples

gr1 <- GRanges(seqnames="chr1",
ranges=IRanges(start = c(4, 9, 10, 30),

end = c(4, 15, 20, 31)),
strand="+")

gr2 <- GRanges(seqnames="chr1",
ranges=IRanges(start = c(1, 4, 15, 25),

end = c(2, 4, 20, 26)),
strand=c("+"),

https://support.bioconductor.org/p/87736/#87758

64 utilsSimplifyTxDb

score=c(10, 20, 15, 5))
countOverlaps(gr1, gr2)
utilsScoreOverlaps(gr1, gr2)

utilsSimplifyTxDb Utility: Extract annotation hierachy from a TxDb.

Description

Used by assignTxType. This function extracts the hierachical annotations used by assignTxType
from a TxDb object. If you are annotating many ranges, it can be time saving to built the hierachy
first, to avoid processing the TxDb for every assignTxDb call.

Usage

utilsSimplifyTxDb(
object,
tssUpstream = 100,
tssDownstream = 100,
proximalUpstream = 1000,
detailedAntisense = FALSE

)

Arguments

object TxDb: Transcript database

tssUpstream integer: Distance to extend annotated promoter upstream.

tssDownstream integer: Distance to extend annotated promoter downstream.

proximalUpstream

integer: Maximum distance upstream of promoter to be considered proximal.

detailedAntisense

logical: Wether to mirror all txType categories in the antisense direction (TRUE)
or lump them all together (FALSE).

Value

GRangesList of annotation hierachy

See Also

assignTxType

Other Utility functions: utilsAggregateRows(), utilsDeStrand(), utilsScoreOverlaps()

utilsSimplifyTxDb 65

Examples

Not run:
data(exampleUnidirectional)

Obtain transcript models from a TxDb-object:
library(TxDb.Mmusculus.UCSC.mm9.knownGene)
txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

Simplify txdb
hierachy <- utilsSimplifyTxDb(txdb)

Standard way of calling
x <- assignTxType(exampleUnidirectional,

txModels=txdb)

Calling with premade hierachy
y <- assignTxType(exampleUnidirectional, txModels=hierachy)

These are identical
stopifnot(all(rowRanges(x)$txType == rowRanges(y)$txType))

End(Not run)

Index

∗ Annotation functions
assignGeneID, 3
assignMissingID, 5
assignTxID, 6
assignTxType, 8

∗ BigWig functions
bwCommonGenome, 11
bwGenomeCompatibility, 12
bwValid, 13

∗ Calculation functions
calcBidirectionality, 14
calcComposition, 16
calcPooled, 17
calcShape, 18
calcSupport, 19
calcTotalTags, 20
calcTPM, 21
subsetByBidirectionality, 46
subsetByComposition, 47
subsetBySupport, 49

∗ Checking functions
checkPeaked, 23
checkPooled, 24

∗ Clustering functions
clusterBidirectionally, 24
clusterUnidirectionally, 26
trimToPeak, 56
trimToPercentiles, 58
tuneTagClustering, 59

∗ Genome Browser functions
trackBalance, 51
trackClusters, 53
trackCTSS, 54
trackLinks, 55

∗ Quantification functions
quantifyClusters, 36
quantifyCTSSs, 37
quantifyCTSSs2, 39
quantifyGenes, 40

∗ Shape functions
calcShape, 18
shapeEntropy, 43
shapeIQR, 44
shapeMean, 45

∗ Spatial functions
findLinks, 33
findStretches, 34
trackLinks, 55

∗ Subsetting functions
subsetByBidirectionality, 46
subsetByComposition, 47
subsetBySupport, 49

∗ Swapping functions
swapRanges, 50
swapScores, 51

∗ Trimming functions
trimToPeak, 56
trimToPercentiles, 58

∗ Utility functions
utilsAggregateRows, 61
utilsDeStrand, 62
utilsScoreOverlaps, 63
utilsSimplifyTxDb, 64

∗ Wrapper functions
quickEnhancers, 41
quickGenes, 42
quickTSSs, 43

∗ datasets
exampleDesign, 32

assignGeneID, 3, 5, 7, 9
assignGeneID,GenomicRanges,GenomicRanges-method

(assignGeneID), 3
assignGeneID,GenomicRanges,TxDb-method

(assignGeneID), 3
assignGeneID,RangedSummarizedExperiment,GenomicRanges-method

(assignGeneID), 3
assignGeneID,RangedSummarizedExperiment,TxDb-method

(assignGeneID), 3

66

INDEX 67

assignMissingID, 4, 5, 7, 9
assignMissingID,character-method

(assignMissingID), 5
assignMissingID,GenomicRanges-method

(assignMissingID), 5
assignMissingID,RangedSummarizedExperiment-method

(assignMissingID), 5
assignTxID, 4, 5, 6, 9
assignTxID,GenomicRanges,GenomicRanges-method

(assignTxID), 6
assignTxID,GenomicRanges,TxDb-method

(assignTxID), 6
assignTxID,RangedSummarizedExperiment,GenomicRanges-method

(assignTxID), 6
assignTxID,RangedSummarizedExperiment,TxDb-method

(assignTxID), 6
assignTxType, 4, 5, 7, 8
assignTxType,GenomicRanges,GenomicRangesList-method

(assignTxType), 8
assignTxType,GenomicRanges,TxDb-method

(assignTxType), 8
assignTxType,RangedSummarizedExperiment,GenomicRangesList-method

(assignTxType), 8
assignTxType,RangedSummarizedExperiment,TxDb-method

(assignTxType), 8

balanceBC, 10
balanceD, 11
bwCommonGenome, 11, 13, 14
bwGenomeCompatibility, 12, 12, 14
bwValid, 12, 13, 13
bwValid,BigWigFile-method (bwValid), 13
bwValid,BigWigFileList-method

(bwValid), 13

calcBidirectionality, 14, 16–18, 20, 21,
47–49

calcBidirectionality,GPos-method
(calcBidirectionality), 14

calcBidirectionality,GRanges-method
(calcBidirectionality), 14

calcBidirectionality,RangedSummarizedExperiment-method
(calcBidirectionality), 14

calcComposition, 15, 16, 17, 18, 20, 21,
47–49

calcPooled, 15, 16, 17, 18, 20, 21, 47–49
calcShape, 15–17, 18, 20, 21, 44, 45, 47–49
calcShape,GRanges,GPos-method

(calcShape), 18

calcShape,GRanges,GRanges-method
(calcShape), 18

calcShape,GRanges,RangedSummarizedExperiment-method
(calcShape), 18

calcShape,RangedSummarizedExperiment,GRanges-method
(calcShape), 18

calcShape,RangedSummarizedExperiment,RangedSummarizedExperiment-method
(calcShape), 18

calcSupport, 15–18, 19, 20, 21, 47–49
calcTotalTags, 15–18, 20, 20, 21, 47–49
calcTPM, 15–18, 20, 21, 47–49
checkCTSSs, 22
checkCTSSs,ANY-method (checkCTSSs), 22
checkCTSSs,BigWigFile-method

(checkCTSSs), 22
checkCTSSs,character-method

(checkCTSSs), 22
checkCTSSs,GPos-method (checkCTSSs), 22
checkCTSSs,GRanges-method (checkCTSSs),

22
checkPeaked, 23, 24
checkPooled, 23, 24
clusterBidirectionally, 24, 26, 57, 59, 60
clusterBidirectionally,GPos-method

(clusterBidirectionally), 24
clusterBidirectionally,GRanges-method

(clusterBidirectionally), 24
clusterBidirectionally,RangedSummarizedExperiment-method

(clusterBidirectionally), 24
clusterUnidirectionally, 25, 26, 57, 59,

60
clusterUnidirectionally,GPos-method

(clusterUnidirectionally), 26
clusterUnidirectionally,GRanges-method

(clusterUnidirectionally), 26
clusterUnidirectionally,RangedSummarizedExperiment-method

(clusterUnidirectionally), 26
combineClusters, 27
combineClusters,RangedSummarizedExperiment,RangedSummarizedExperiment-method

(combineClusters), 27
convertBAM2BigWig, 28
convertBED2BedGraph

(convertBED2BigWig), 29
convertBED2BigWig, 29
convertBedGraph2BED

(convertBED2BigWig), 29
convertBedGraph2BigWig

(convertBED2BigWig), 29

68 INDEX

convertBigWig2BED (convertBED2BigWig),
29

convertBigWig2BedGraph
(convertBED2BigWig), 29

convertGRanges2GPos, 31

exampleBidirectional (exampleDesign), 32
exampleCTSSs (exampleDesign), 32
exampleDesign, 32
exampleGenes (exampleDesign), 32
exampleUnidirectional (exampleDesign),

32

findLinks, 33, 35, 56
findLinks,GRanges-method (findLinks), 33
findLinks,RangedSummarizedExperiment-method

(findLinks), 33
findStretches, 34, 34, 56
findStretches,GRanges-method

(findStretches), 34
findStretches,RangedSummarizedExperiment-method

(findStretches), 34

quantifyClusters, 36, 38, 39, 41
quantifyCTSSs, 36, 37, 39, 41
quantifyCTSSs,BigWigFileList,BigWigFileList-method

(quantifyCTSSs), 37
quantifyCTSSs,character,character-method

(quantifyCTSSs), 37
quantifyCTSSs2, 36, 38, 39, 41
quantifyGenes, 36, 38, 39, 40
quickEnhancers, 41, 42, 43
quickGenes, 42, 42, 43
quickTSSs, 42, 43

shapeEntropy, 18, 43, 44, 45
shapeIQR, 18, 44, 44, 45
shapeMean, 18, 44, 45
shapeMultimodality, 46
subsetByBidirectionality, 15–18, 20, 21,

46, 48, 49
subsetByBidirectionality,GPos-method

(subsetByBidirectionality), 46
subsetByBidirectionality,GRanges-method

(subsetByBidirectionality), 46
subsetByBidirectionality,RangedSummarizedExperiment-method

(subsetByBidirectionality), 46
subsetByComposition, 15–18, 20, 21, 47, 47,

49

subsetBySupport, 15–18, 20, 21, 47, 48, 49
swapRanges, 50, 51
swapRanges,GenomicRanges-method

(swapRanges), 50
swapRanges,RangedSummarizedExperiment-method

(swapRanges), 50
swapScores, 50, 51

trackBalance, 51, 54–56
trackBalance,GPos-method

(trackBalance), 51
trackBalance,GRanges-method

(trackBalance), 51
trackBalance,RangedSummarizedExperiment-method

(trackBalance), 51
trackClusters, 52, 53, 55, 56
trackClusters,GRanges-method

(trackClusters), 53
trackClusters,RangedSummarizedExperiment-method

(trackClusters), 53
trackCTSS, 52, 54, 54, 56
trackCTSS,GPos-method (trackCTSS), 54
trackCTSS,GRanges-method (trackCTSS), 54
trackCTSS,RangedSummarizedExperiment-method

(trackCTSS), 54
trackLinks, 34, 35, 52, 54, 55, 55
trimToPeak, 25, 26, 56, 59, 60
trimToPeak,GRanges,GPos-method

(trimToPeak), 56
trimToPeak,GRanges,GRanges-method

(trimToPeak), 56
trimToPeak,GRanges,RangedSummarizedExperiment-method

(trimToPeak), 56
trimToPeak,RangedSummarizedExperiment,GenomicRanges-method

(trimToPeak), 56
trimToPeak,RangedSummarizedExperiment,RangedSummarizedExperiment-method

(trimToPeak), 56
trimToPercentiles, 25, 26, 57, 58, 60
trimToPercentiles,GRanges,GPos-method

(trimToPercentiles), 58
trimToPercentiles,GRanges,GRanges-method

(trimToPercentiles), 58
trimToPercentiles,GRanges,RangedSummarizedExperiment-method

(trimToPercentiles), 58
trimToPercentiles,RangedSummarizedExperiment,GenomicRanges-method

(trimToPercentiles), 58
trimToPercentiles,RangedSummarizedExperiment,RangedSummarizedExperiment-method

(trimToPercentiles), 58
tuneTagClustering, 25, 26, 57, 59, 59

INDEX 69

tuneTagClustering,GPos-method
(tuneTagClustering), 59

tuneTagClustering,GRanges-method
(tuneTagClustering), 59

tuneTagClustering,RangedSummarizedExperiment-method
(tuneTagClustering), 59

utilsAggregateRows, 61, 63, 64
utilsAggregateRows,dgCMatrix-method

(utilsAggregateRows), 61
utilsAggregateRows,matrix-method

(utilsAggregateRows), 61
utilsDeStrand, 61, 62, 63, 64
utilsScoreOverlaps, 61, 63, 63, 64
utilsSimplifyTxDb, 61, 63, 64

	assignGeneID
	assignMissingID
	assignTxID
	assignTxType
	balanceBC
	balanceD
	bwCommonGenome
	bwGenomeCompatibility
	bwValid
	calcBidirectionality
	calcComposition
	calcPooled
	calcShape
	calcSupport
	calcTotalTags
	calcTPM
	checkCTSSs
	checkPeaked
	checkPooled
	clusterBidirectionally
	clusterUnidirectionally
	combineClusters
	convertBAM2BigWig
	convertBED2BigWig
	convertGRanges2GPos
	exampleDesign
	findLinks
	findStretches
	quantifyClusters
	quantifyCTSSs
	quantifyCTSSs2
	quantifyGenes
	quickEnhancers
	quickGenes
	quickTSSs
	shapeEntropy
	shapeIQR
	shapeMean
	shapeMultimodality
	subsetByBidirectionality
	subsetByComposition
	subsetBySupport
	swapRanges
	swapScores
	trackBalance
	trackClusters
	trackCTSS
	trackLinks
	trimToPeak
	trimToPercentiles
	tuneTagClustering
	utilsAggregateRows
	utilsDeStrand
	utilsScoreOverlaps
	utilsSimplifyTxDb
	Index

