Package ‘Chromatograms’

January 15, 2026

Title Infrastructure for Chromatographic Mass Spectrometry Data
Version 1.1.0

Description The Chromatograms packages defines an efficient infrastructure
for storing and handling of chromatographic mass spectrometry data. It
provides different implementations of *backends* to store and represent the
data. Such backends can be optimized for small memory footprint or fast
data access/processing. A lazy evaluation queue and chunk-wise processing
capabilities ensure efficient analysis of also very large data sets.

Depends BiocParallel, ProtGenerics (>= 1.39.2), R (>=4.5.0)
Imports methods, S4Vectors, MsCoreUtils (>= 1.7.5), Spectra

Suggests msdata (>=0.19.3), roxygen2, BiocStyle (>= 2.5.19),
testthat, knitr (>= 1.1.0), rmarkdown, mzR (>=2.41.4),
MsBackendMetaboLights (>= 1.3.1), vdiffr, RColorBrewer

License Artistic-2.0
Encoding UTF-8
VignetteBuilder knitr

BugReports https://github.com/RforMassSpectrometry/Chromatograms/issues

URL https://github.com/RforMassSpectrometry/Chromatograms
biocViews Infrastructure, Metabolomics, MassSpectrometry, Proteomics
Roxygen list(markdown=TRUE)

RoxygenNote 7.3.3

Collate 'AllGenerics.R' 'ChromBackend-functions.R' 'ChromBackend.R'
'hidden_aliases.R' 'helpers.R' 'ChromBackendMemory.R'
'ChromBackendMzR.R' 'ChromBackendSpectra.R' ‘Chromatograms.R'
'Chromatograms-chromData.R' 'Chromatograms-peaksData.R’
'Chromatograms-plot.R' 'Chromatograms-processingQueue.R'

git_url https://git.bioconductor.org/packages/Chromatograms
git_branch devel

git_last_commit c10498e

git_last_commit_date 2025-10-29

https://github.com/RforMassSpectrometry/Chromatograms/issues
https://github.com/RforMassSpectrometry/Chromatograms

2 Chromatograms

Repository Bioconductor 3.23
Date/Publication 2026-01-15

Author Johannes Rainer [aut] (ORCID: <https://orcid.org/0000-0002-6977-7147>),
Laurent Gatto [aut] (ORCID: <https://orcid.org/0000-0002-1520-2268>),
Philippine Louail [aut, cre] (ORCID:

<https://orcid.org/0009-0007-5429-6846>, fnd: European Union
HORIZON-MSCA-2021 project Grant No. 101073062: HUMAN — Harmonising
and Unifying Blood Metabolic Analysis Networks)

Maintainer Philippine Louail <philippine.louail@outlook.com>

Contents
Chromatograms e e
ChromBackendMemory
ChromBackendMzR
ChromBackendSpectra e
chromData. 12
coreChromVariables e 17
peaksData L e e e e 29
plotChromatograms 33
processingQuUeueo L e e e e e e 35
TESEL . o o o i e e e e e e e e e e 38

Index 43

Chromatograms The Chromatograms class to manage and access chromatographic
data
Description

The Chromatograms class encapsules chromatographic data and related metadata. The chromato-
graphic data is represented by a backend extending the virtual ChromBackend class which provides
the raw data to the Chromatograms object. Different backends and their properties are decribed in
the ChromBackend class documentation.

Usage

S4 method for signature 'ChromBackendOrMissing'
Chromatograms(object = ChromBackendMemory(), processingQueue = list(), ...)

S4 method for signature 'Spectra’
Chromatograms(

object,
summarize.method = c(”"sum”, "max"),
chromData = data.frame(),

https://orcid.org/0000-0002-6977-7147
https://orcid.org/0000-0002-1520-2268
https://orcid.org/0009-0007-5429-6846

Chromatograms 3

factorize.by = c("msLevel”, "dataOrigin"),
spectraVariables = character(),

)

S4 method for signature 'Chromatograms,ChromBackend'
setBackend(

object,

backend,

f = processingChunkFactor(object),

BPPARAM = SerialParam(),

)

S4 method for signature 'Chromatograms'
x$name

S4 replacement method for signature 'Chromatograms'’
x$name <- value

S4 method for signature 'Chromatograms'
x[i, j, ..., drop = FALSE]

S4 method for signature 'Chromatograms'

x[[i, j, ...1]

S4 replacement method for signature 'Chromatograms'’
x[[i, j, ...1] <= value

S4 method for signature 'Chromatograms'
factorize(object, factorize.by = c("msLevel”, "dataOrigin"”), ...)

S4 method for signature 'Chromatograms'

chromExtract(object, peak.table, by, ...)
Arguments

object A Chromatograms object.

processingQueue

list a list of processing steps (i.e. functions) to be applied to the chromato-
graphic data. The processing steps are applied in the order they are listed in the
processingQueue.

Additional arguments.

summarize.method
For Chromatograms created with a Spectra object: A character vector with
the name of the function to be used to summaries the spectra data intensity. The
available methods are "sum" and "max". The default is "sum".

4 Chromatograms

chromData For Chromatograms() build from a Spectra object backend, a data.frame
with the chromatographic data. If not provided (or if empty), a default data. frame
with the core chromatographic variables will be created.

factorize.by A character vector with the names of the variables in the Spectra object and
the chromData slot that should be used to factorize the Spectra object data to
generate the chromatographic data.

spectraVariables

A character vector specifying which variables from the Spectra object should
be added to the chromData. These will be mapped using the chromSpectralndex

variable.

backend ChromBackend object providing the raw data for the Chromatograms object.

f factor defining the grouping to split the Chromatograms object.

BPPARAM Parallel setup configuration. See BiocParallel: :bpparam() for more infor-
mation.

X A Chromatograms object.

name A character string specifying the name of the variable to access.

value The value to replace the variable with.

i For [: integer, logical or character to subset the object.

j For [and [[: ignored.

drop For [: logical(1) default to FALSE.

peak.table For chromExtract() A data frame containing the following minimum columns:

- rtMin: Minimum retention time for each peak. Cannot be NA. - rtMax: Max-
imum retention time for each peak. Cannot be NA. - mzMin: Minimum m/z
value for each peak. - mzMax: Maximum m/z value for each peak. Addi-
tionally, the peak.table must include columns that uniquely identify chro-
matograms in the object. Common choices are "msLevel" and/or "dataOrigin".
These columns must also be present in the chromData of the object. Any extra
columns in peak.table will be added to the chromData of the newly created
object.

by A character vector naming one or more columns that uniquely identify chro-
matograms in both peak.table and chromData(object). The combination of
these columns must be unique within chromData(object). Typically includes

n o n

"dataOrigin”, "msLevel”, or both.

Value

Refer to the individual function description for information on the return value.

Creation of objects

Chromatograms objects can be created using the Chromatograms () construction function. Either
by providing a ChromBackend object or by providing a Spectra object. The Spectra object will
be used to generate a Chromatograms object with a backend of class ChromBackendSpectra.

Chromatograms 5

Data stored in a Chromatograms object

The Chromatograms object is a container for chromatographic data, which includes peaks data
(retention time and related intensity values, also referred to as peaks data variables in the context of
Chromatograms) and metadata of individual chromatogram (so called chromatograms variables).
While a core set of chromatograms variables (the coreChromatogramsVariables()) and peaks
data variables (the corePeaksVariables()) are guaranteed to be provided by a Chromatograms, it
is possible to add arbitrary variables to a Chromatograms object.

The Chromatograms object is designed to contain chromatographic data of a (large) set of chro-
matograms. The data is organized linearly and can be thought of a list of chromatograms, i.e. each
element in the Chromatograms is one chromatogram.

The chromatograms variables information in the Chromatograms object can be accessed using the
chromData() function. Specific chromatograms variables can be accessed by either precising the
"columns” parameter in chromData() or using $. chromData can be accessed, replaced but also
filtered/subsetted. Refer to the chromData documentation for more details.

The peaks data variables information in the Chromatograms object can be accessed using the
peaksData() function. Specific peaks variables can be accessed by either precising the "columns”
parameter in peaksData() or using $. peaksData can be accessed, replaced but also filtered/subsetted.
Refer to the peaksData documentation for more details.

Processing of Chromatograms objects

Functions that process the chromatograms data in some ways can be applied to the object either di-
rectly or by using the processingQueue mechanism. The processingQueue is a list of processing
steps that are stored within the object and only applied when needed. This was created so that the
data can be processed in a single step and is very useful for larger datasets. This is even more true as
this processing queue will call function that can be applied on the data in a chunk-wise manner. This
allows for parallel processing of the data and reduces the memory demand. To read more about the
processingQueue, and how to parallelize your processes, see the processingQueue documentation.

Subsetting and accessing data

The Chromatograms class supports subsetting by chromatogram (i.e. rows) using the [operator.
The [operator does not support subsetting by columns. Specific chromatograms or peaks variables
can be accessed using the [[operator or the $ operator. The [[operator can also be used to replace
specific chromatograms or peaks variables.

Changing the backend

The setBackend() function can be used to change the backend of a Chromatograms object. This
can be useful to switch to a backend that better suits the needs of the user, for example switching
to a memory-based backend for smaller datasets or to a file-based backend for larger datasets.
The setBackend() function supports parallelization of the backend conversion using the BPPARAM
parameter.

Extracting chromatograms based on a peak table

The chromextract () function allows users to extract specific regions of interest from a Chromatograms
object based on a user-provided peak table. Each row in the peak.table defines a region to ex-

6 Chromatograms

tract, using minimum and maximum retention time (and m/z in the case of chromBackendSpectra)
boundaries, and identifiers that uniquely match chromatograms in the object.

The resulting new Chromatograms object contains only chromatograms overlapping the specified
regions, with updated metadata reflecting the extracted boundaries.

This function is most commonly used to subset chromatographic data around detected peaks or pre-
defined time/mass ranges, for example to reprocess, visualize, or quantify extracted chromatograms
corresponding to known features.

Note

This needs to be discussed, if we want for example to be able to set a a backend to ChromBackendMzR
we need to implement backendlInitialize() better. = Support peaksData and chromData as arguments
AND have a way to write .mzml files (which we do not have for chromatographic data).

See Also

chromData for a general description of the chromatographic metadata available in the object, as
well as how to access, replace and subset them. peaksData for a general description of the chro-
matographic peaks data available in the object, as well as how to access, replace and subset them.
processingQueue for more information on the queuing of processings and parallelization for larger
dataset.

Examples

library(MsBackendMetabolLights)
library(Spectra)

Create a Chromatograms object from a Spectra object.
be <- backendInitialize(MsBackendMetabolLights(),
mtblsId = "MTBLS39",
filePattern = c("63B.cdf")
)
s <- Spectra(be)
s <- setBackend(s, MsBackendMemory())
be <- backendInitialize(new("ChromBackendSpectra”), s)
chr <- Chromatograms(be)

Subset
chr(1:2]

access a specific variables
chr[["msLevel”]1]

chr$msLevel

Replace data of a specific variable
chr$msLevel <- c(2L, 2L, 2L)

Can re factorize the data
chr <- factorize(chr)

Can also change the backend into memory

ChromBackendMemory 7

chr <- setBackend(chr, ChromBackendMemory())

chr

ChromBackendMemory Improved in-memory Chromatographic data backend

Description

ChromBackendMemory: This backend stores chromatographic data directly in memory, making it
ideal for small datasets or testing. It can be initialized with a data. frame of chromatographic data
via the chromData parameter and a 1ist of data. frame entries for peaks data using the peaksData
parameter. These data can be accessed with the chromData() and peaksData() functions.

Usage

ChromBackendMemory ()

S4 method for signature 'ChromBackendMemory'
backendInitialize(
object,
chromData = fillCoreChromVariables(data.frame()),
peaksData = list(.EMPTY_PEAKS_DATA),

Arguments
object A ChromBackendMemory object.
chromData For backendInitialize() of a ChromBackendMemory backend, a data.frame
with the chromatographic data. If not provided (or if empty), a default data. frame
with the core chromatographicvariables will be created.
peaksData For backendInitialize() of a ChromBackendMemory backend, a list of data. frame
with the peaks data. If not provided (or if empty), a default 1ist of empty
data. frame with the core peaks variables will be created. The length of the list
should match the number of chromatograms in the chromData parameter.
Additional parameters to be passed.
Value

Refer to the individual function description for information on the return value.

Author(s)

Philippine Louail

8 ChromBackendMzR

Examples

Create a ChromBackendMemory object
cbm <- ChromBackendMemory ()

Initialize the ChromBackendMemory object with a data.frame of
chromatographic data and a list of data.frame of peaks data
cdata <- data.frame(

msLevel = c(1L, 1L, 1L),

mz = c(112.2, 123.3, 134.4),

dataOrigin = c("mem1"”, "mem2", "mem3")

)

pdata <- list(

data.frame(
rtime = c(12.4, 12.8, 13.2, 14.6),
intensity = c(123.3, 153.6, 2354.3, 243.4)

),

data.frame(
rtime = c(45.1, 46.2),
intensity = c(100, 80.1)

),

data.frame(
rtime = c(12.4, 12.8, 13.2, 14.6),
intensity = ¢(123.3, 153.6, 2354.3, 243.4)

)
)
cbm <- backendInitialize(cbm, chromData = cdata, peaksData = pdata)
cbm
ChromBackendMzR Chromatographic Data Backend for Reading mzML Files
Description

The ChromBackendMzR inherits all slots and methods from the base ChromBackendMemory backend,
providing additional functionality for reading chromatographic data from mzML files.

Unlike the ChromBackendMemory backend, the ChromBackendMzR backend should have the dataO-
rigin chromatographic variables populated with the file path of the mzML file from which the chro-
matographic data was read.

Note that the ChromBackendMzR backend is read-only and does not support direct modification of
chromatographic data. However, it does support peaksData slot replacement, which will modify
the peaksData slot but not the local mzML files. This is indicated by the "inMemory" slot being
set to TRUE.

Implementing functionalities with the ChromBackendMzR backend should be simplified as much as
possible and reuse the methods already implemented for ChromBackendMemory when possible.

ChromBackendSpectra 9

Usage
ChromBackendMzR ()

S4 method for signature 'ChromBackendMzR'

backendInitialize(object, files = character(), BPPARAM = bpparam(), ...)
Arguments
object A ChromBackendMzR object.
files A character vector of file paths to mzML files.
BPPARAM Parallel setup configuration. See BiocParallel: :bpparam() for more infor-
mation.

Additional parameters to be passed.

Value

Refer to the individual function description for information on the return value.

Author(s)

Philippine Louail

Examples

library(mzR)
library(msdata)

Load an mzML file
MRM_file <- system.file("proteomics”, "MRM-standmix-5.mzML.gz",
package = "msdata”

)

Initialize the ChromBackendMzR object
be_empty <- ChromBackendMzR()
be <- backendInitialize(be_empty, files = MRM_file, BPPARAM = SerialParam())

ChromBackendSpectra Chromatographic Data Backend for Spectra Objects

Description

The ChromBackendSpectra class extends ChromBackendMemory, inheriting all its slots and meth-
ods while providing additional functionality for summarizing chromatographic data from Spectra: : Spectra()
objects.

It can be initialized with a Spectra object, which is stored in the spectra slot of the backend. Users
can also provide a data. frame containing chromatographic metadata, stored in chromData. This

10 ChromBackendSpectra

metadata filters the Spectra object and generates peaksData. If chromData is not provided, a de-
fault data. frame is created from the Spectra data. An "rtMin", "rtMax", "mzMin", and "mzMax"
column will be created by condensing the Spectra data corresponding to each unique combination
of the factorize.by variables.

The dataOrigin core chromatogram variable should reflect the dataOrigin of the Spectra ob-
ject. The factorize.by parameter defines the variables for grouping Spectra data into chro-
matographic data. The default is c("msLevel”, "dataOrigin"), which will define separate chro-
matograms for each combination of msLevel and dataOrigin. These variables must be in both
Spectra and chromData (if provided).

The summarize.method parameter defines how spectral data intensity is summarized:

* "sum'': Sums intensity to create a Total Ion Chromatogram (TIC).

* "max'"': Takes max intensity for a Base Peak Chromatogram (BPC).

If chromData or its factorization columns are modified, the factorize() method must be called to
update chromSpectralndex.

Usage

ChromBackendSpectra()

S4 method for signature 'ChromBackendSpectra'

backendInitialize(
object,
spectra = Spectra(),
factorize.by = c("msLevel”, "dataOrigin"),
summarize.method = c(”"sum”, "max"),

chromData = fillCoreChromVariables(),
spectraVariables = character(),

)

chromSpectralndex(object)

Arguments
object A ChromBackendSpectra object.
spectra A Spectra object.

factorize.by A character vector of variables for grouping Spectra data into chromato-
graphic data. Default: c("msLevel”, "dataOrigin”). If chromData is pro-
vided, it must contain these columns.

summarize.method
A character string specifying intensity summary: "sum” (default) or "max”.

chromData A data.frame with chromatographic data for use in backendInitialize().
If missing, a default is generated. Columns like rtMin, rtMax, mzMin, and
mzMax must be provided and not contain NA values. Use -Inf/Inf for un-
specified values. The "dataOrigin” column must match the Spectra object’s
"dataOrigin”.

ChromBackendSpectra 11

spectraVariables
A character vector specifying which variables from the Spectra object should
be added to the chromData. These will be mapped using the chromSpectralndex
variable.

Additional parameters.

Details

No peaksData is stored until the user calls a function that generates it (e.g., rtime(), peaksData(),
intensity()). The peaksData slot replacement is unsupported — modifications are temporary to
optimize memory. The inMemory slot indicates this with TRUE.

ChromBackendSpectra should reuse ChromBackendMemory methods whenever possible to keep
implementations simple.

Value

Refer to the individual function description for information on the return value.

Note

ensure that it returns a factor

Author(s)

Philippine Louail, Johannes Rainer.

Examples

library(Spectra)
library(MsBackendMetabolLights)

Get Spectra data from MetabolLights

be <- backendInitialize(MsBackendMetabolLights(),
mtblsId = "MTBLS39",
filePattern = c("63B.cdf")

)

s <- Spectra(be)

s <- setBackend(s, MsBackendMemory())
Initialize ChromBackendSpectra
be_empty <- new(”ChromBackendSpectra”)

be <- backendInitialize(be_empty, s)

replace the msLevel data
msLevel(be) <- c(1L, 2L, 3L)

re-factorize the data
be <- factorize(be)

Create BPC : we summarize the intensity present in the Spectra object

12 chromData

by the maximum value, thus creating a Base Peak Chromatogram.
be <- backendInitialize(be_empty, s, summarize.method = "max"

Can now see the details of this bpc by looking at the chromData of our
object
chromData(be)

Another possibilities is to create eics from the Spectra object.

Here we create an EIC with a specific m/z and retention time window.
df <- data.frame(mzMin = 100.01, mzMax = 100.02 , rtMin = 50, rtMax = 100)
be <- backendInitialize(be_empty, s, summarize.method = "sum")
chromData(be) <- cbind(chromData(be), df)

now when we call the peaksData function, we will get the intensity
of the spectra object that are in the m/z and retention time window
defined in the chromData.

peaksData(be)

chromData Chromatographic Peaks Metadata.

Description

As explained in the Chromatograms class documentation, the Chromatograms object is a container
for chromatogram data that includes chromatographic peaks data (retention time and related inten-
sity values, also referred to as peaks data variables in the context of Chromatograms) and metadata
of individual chromatograms (so called chromatograms variables).

The chromatograms variables information can be accessed using the chromData() function. it is
also possible to access specific chromatograms variables using $.

chromData can be accessed, replaced but also filtered/subsetted. Refer to the sections below for
more details.

Usage

S4 method for signature 'Chromatograms'
chromData(object, columns = chromVariables(object), drop = FALSE)

S4 replacement method for signature 'Chromatograms'
chromData(object) <- value

S4 method for signature 'Chromatograms'
chromVariables(object)

S4 method for signature 'Chromatograms'
chromIndex(object)

S4 replacement method for signature 'Chromatograms'’

chromData

chromIndex(object) <- value

S4 method for signature 'Chromatograms'
collisionEnergy(object)

S4 replacement method for signature 'Chromatograms'’
collisionEnergy(object) <- value

S4 method for signature 'Chromatograms'
dataOrigin(object)

S4 replacement method for signature 'Chromatograms'’
dataOrigin(object) <- value

S4 method for signature 'Chromatograms'

msLevel (object)

S4 replacement method for signature 'Chromatograms'’
msLevel (object) <- value

S4 method for signature 'Chromatograms'

mz(object)

S4 replacement method for signature 'Chromatograms'’
mz(object) <- value

S4 method for signature 'Chromatograms'

mzMax (object)

S4 replacement method for signature 'Chromatograms'’
mzMax (object) <- value

S4 method for signature 'Chromatograms'
mzMin(object)

S4 replacement method for signature 'Chromatograms'’
mzMin(object) <- value

S4 method for signature 'Chromatograms'
length(x)

S4 method for signature 'Chromatograms'
precursorMz(object)

S4 replacement method for signature 'Chromatograms
precursorMz(object) <- value

S4 method for signature 'Chromatograms'

13

14

precursorMzMin(object)

S4 replacement method for signature 'Chromatograms'
precursorMzMin(object) <- value

S4 method for signature 'Chromatograms'
precursorMzMax(object)

S4 replacement method for signature 'Chromatograms'’
precursorMzMax(object) <- value

S4 method for signature 'Chromatograms'
productMz(object)

S4 replacement method for signature 'Chromatograms'’
productMz(object) <- value

S4 method for signature 'Chromatograms'
productMzMin(object)

S4 replacement method for signature 'Chromatograms'’
productMzMin(object) <- value

S4 method for signature 'Chromatograms'
productMzMax (object)

S4 replacement method for signature 'Chromatograms'’
productMzMax (object) <- value

S4 method for signature 'Chromatograms'
filterChromData(

object,

variables = character(),

ranges = numeric(),

match = c("any”, "all"),

keep = TRUE

Arguments

object A Chromatograms object.

columns A character vector of chromatograms variables to extract.

chromData

drop A logical indicating whether to drop dimensions when extracting a single vari-

able.

value replacement value for <- methods. See individual method description or ex-

pected data type.

X A Chromatograms object.

chromData 15

variables For filterChromData(): character vector with the names of the chromatogram

variables to filter for. The list of available chromatogram variables can be ob-
tained with chromVariables().

ranges For filterChromData() : a numeric vector of paired values (upper and lower

boundary) that define the ranges to filter the object. These paired values need
to be in the same order as the variables parameter (see below).

match For filterChromData() : character(1) defining whether the condition has

keep

Value

to match for all provided ranges (match = "all"; the default), or for any of
them (match = "any") for chromatogram data to be retained.

For filterChromData(): logical(1) defining whether to keep (keep = TRUE)
or remove (keep = FALSE) the chromatogram data that match the condition.

Refer to the individual function description for information on the return value.

Chromatograms variables and accessor functions

The following chromatograms variables are guaranteed to be provided by a Chromatograms object
and to be accessible with either the chromData() or a specific function named after the variables
names:

chromIndex: an integer with the index of the chromatogram in the original source file (e.g.
mzML file).

collisionEnergy: for SRM data, numeric with the collision energy of the precursor.
dataOrigin: optional character with the origin of the data.

msLevel: integer defining the MS level of the data.

mz: optional numeric with the (target) m/z value for the chromatographic data.

mzMin: optional numeric with the lower m/z value of the m/z range in case the data (e.g. an
extracted ion chromatogram EIC) was extracted from a Spectra object.

mzMax: optional numeric with the upper m/z value of the m/z range.
precursorMz: for SRM data, numeric with the target m/z of the precursor (parent).

precursorMzMin: for SRM data, optional numeric with the lower m/z of the precursor’s
isolation window.

precursorMzMax: for SRM data, optional numeric with the upper m/z of the precursor’s
isolation window.

productMz for SRM data, numeric with the target m/z of the product ion.

productMzMin: for SRM data, optional numeric with the lower m/z of the product’s isolation
window.

productMzMax: for SRM data, optional numeric with the upper m/z of the product’s isolation
window.

16 chromData

Filter Chromatograms variables

Functions that filter Chromatograms based on chromatograms variables (i.e, chromData) will re-
move chromatographic data that do not meet the specified conditions. This means that if a chro-
matogram is filtered out, its corresponding chromData and peaksData will be removed from the
object immediately.

The available functions to filter chromatogram data are:

e filterChromData(): Filters numerical chromatographic data variables based on the pro-
vided numerical ranges. The method returns a Chromatograms object containing only the
chromatograms that match the specified conditions. This function results in an object with
fewer chromatograms than the original.

Author(s)

Philippine Louail

See Also

Chromatograms for a general description of the Chromatograms object. peaksData for a general
description of the chromatographic peaks data available in the object, as well as how to access,
replace and subset them. processingQueue for more information on the queuing of processings and
parallelization for larger dataset processing.

Examples

Create a Chromatograms object
cdata <- data.frame(

msLevel = c(1L, 1L, 1L),

mz = c(112.2, 123.3, 134.4),

chromIndex = c(1L, 2L, 3L)
)

be <- backendInitialize(new("ChromBackendMemory"”), chromData = cdata)
chr <- Chromatograms(be)

Access chromatograms variables
chromData(chr)

Access specific chromatograms variables
chromData(chr, columns = "msLevel")

msLevel (chr)

Replace chromatograms variables
msLevel(chr) <- c(1L, 2L, 2L)

Filter chromatograms variables
filterChromData(chr,
variables = "msLevel”, ranges = c(1L, 1L),
keep = FALSE

coreChrom Variables 17

coreChromVariables Chromatographic MS Data Backends

Description

ChromBackend is a virtual class that defines what different backends need to provide to be used by
the Chromatograms package and classes.

The backend should provide access to the chromatographic data which mainly consists of (paired)
intensity and retention time values. Additional chromatographic metadata such as MS level and
precursor and product m/z should also be provided.

Through their implementation different backends can be either optimized for minimal memory
requirements or performance. Each backend needs to implement data access methods listed in
section Backend functions: below.

And example implementation and more details and descriptions are provided in the Creating new
ChromBackend classes for Chromatograms vignette.

Currently available backends are:
* ChromBackendMemory: This backend stores chromatographic data directly in memory, mak-
ing it ideal for small datasets or testing. It can be initialized with a data.frame of chro-
matographic data via the chromData parameter and a 1ist of data.frame entries for peaks

data using the peaksData parameter. These data can be accessed with the chromData() and
peaksData() functions.

¢ ChromBackendMzR: The ChromBackendMzR inherits all slots and methods from the base ChromBackendMemory
backend, providing additional functionality for reading chromatographic data from mzML
files.

e ChromBackendSpectra: The ChromBackendSpectra inherits all slots and methods from the
base ChromBackendMemory backend, providing additional functionality for reading chromato-
graphic data from Spectra objects.

Filter the peak data based on the provided ranges for the given variables.

Usage

coreChromVariables()
corePeaksVariables()

S4 method for signature 'ChromBackend'
x$name

S4 replacement method for signature 'ChromBackend'
x$name <- value

18

S4 method for signature 'ChromBackend'
backendMerge(object, ...)

S4 method for signature 'ChromBackend'

coreChrom Variables

chromData(object, columns = chromVariables(object), drop = FALSE)

S4 replacement method for signature 'ChromBackend'
chromData(object) <- value

S4 method for signature 'ChromBackend'
chromExtract(object, peak.table, by)

S4 method for signature 'ChromBackend'
factorize(object, ...)

S4 method for signature 'ChromBackend'

peaksData(object, columns = c("rtime"”, "intensity"”), drop = FALSE, ...)

S4 replacement method for signature 'ChromBackend'
peaksData(object) <- value

S4 method for signature 'ChromBackend'
x[i, j, ..., drop = FALSE]

S4 method for signature 'ChromBackend'
x[[i, j, ...]1]

S4 replacement method for signature 'ChromBackend'
x[[i, j, ...]11 <- value

S4 method for signature 'ChromBackend'
backendBpparam(object, BPPARAM = bpparam())

S4 method for signature 'ChromBackend'
backendInitialize(object, ...)

S4 method for signature 'ChromBackend'
backendParallelFactor(object, ...)

S4 method for signature 'list'
backendMerge(object, ...)

S4 method for signature 'ChromBackend'
chromIndex(object)

S4 replacement method for signature 'ChromBackend'
chromIndex(object) <- value

coreChrom Variables

S4 method for signature 'ChromBackend'
chromVariables(object)

S4 method for signature 'ChromBackend'
collisionEnergy(object)

S4 replacement method for signature 'ChromBackend'
collisionEnergy(object) <- value

S4 method for signature 'ChromBackend'
dataOrigin(object)

S4 replacement method for signature 'ChromBackend'
dataOrigin(object) <- value

S4 method for signature 'ChromBackend,ANY'
extractByIndex(object, i)

S4 method for signature 'ChromBackend,missing'
extractByIndex(object, i)

S4 method for signature 'ChromBackend'
intensity(object)

S4 replacement method for signature 'ChromBackend'
intensity(object) <- value

S4 method for signature 'ChromBackend'
isEmpty(x)

S4 method for signature 'ChromBackend'
isReadOnly(object)

S4 method for signature 'ChromBackend'
length(x)

S4 method for signature 'ChromBackend'
lengths(x)

S4 method for signature 'ChromBackend'
msLevel (object)

S4 replacement method for signature 'ChromBackend'
msLevel (object) <- value

S4 method for signature 'ChromBackend'
mz(object)

19

20

S4 replacement method for signature 'ChromBackend'
mz(object) <- value

S4 method for signature 'ChromBackend'
mzMax (object)

S4 replacement method for signature 'ChromBackend'
mzMax (object) <- value

S4 method for signature 'ChromBackend'
mzMin(object)

S4 replacement method for signature 'ChromBackend'
mzMin(object) <- value

S4 method for signature 'ChromBackend'
peaksVariables(object)

S4 method for signature 'ChromBackend'
precursorMz(object)

S4 replacement method for signature 'ChromBackend'
precursorMz(object) <- value

S4 method for signature 'ChromBackend'
precursorMzMax(object)

S4 replacement method for signature 'ChromBackend'
precursorMzMax(object) <- value

S4 method for signature 'ChromBackend'
precursorMzMin(object)

S4 replacement method for signature 'ChromBackend'
precursorMzMin(object) <- value

S4 method for signature 'ChromBackend'
productMz(object)

S4 replacement method for signature 'ChromBackend'
productMz(object) <- value

S4 method for signature 'ChromBackend'
productMzMax (object)

S4 replacement method for signature 'ChromBackend'
productMzMax (object) <- value

coreChrom Variables

coreChrom Variables

S4 method for signature 'ChromBackend'
productMzMin(object)

S4 replacement method for signature 'ChromBackend'
productMzMin(object) <- value

S4 method for signature 'ChromBackend'
reset(object)

S4 method for signature 'ChromBackend'
rtime(object)

S4 replacement method for signature 'ChromBackend'
rtime(object) <- value

S4 method for signature 'ChromBackend,ANY'
split(x, f, drop = FALSE, ...)

S4 method for signature 'ChromBackend'
filterChromData(

object,

variables = character(),

ranges = numeric(),

match = c("any”, "all"),

keep = TRUE
)

S4 method for signature 'ChromBackend'
filterPeaksData(

object,

variables = character(),

ranges = numeric(),

match = c("any”, "all"),

keep = TRUE
)

S4 method for signature 'ChromBackend'
supportsSetBackend(object, ...)

S4 method for signature 'ChromBackend'
imputePeaksData(
object,
method = c("linear”, "spline”, "gaussian”, "loess"),
span = 0.3,
sd =1,
window = 2,

22

Arguments

X
name

value

object

columns

drop

peak.table

by

i
J
BPPARAM

.F

variables

ranges

match

keep

coreChrom Variables

Object extending ChromBackend.
For $ and $<-: the name of the chromatogram variable to return or set.

Replacement value for <- methods. See individual method description or ex-
pected data type.

Object extending ChromBackend.
Additional arguments.

For chromData() accessor: optional character with column names (chro-
matogram variables) that should be included in the returned data.frame. By
default, all columns are returned.

For chromData() and peaksData(): logical(1) default to FALSE. If TRUE,
and one column is requested by the user, the method should return a vector (or
list of vector for peaksData()) of the single column requested.

For chromExtract() A data frame containing the following minimum columns:
- rtMin: Minimum retention time for each peak. Cannot be NA. - rtMax: Max-
imum retention time for each peak. Cannot be NA. - mzMin: Minimum m/z
value for each peak. - mzMax: Maximum m/z value for each peak. Addi-
tionally, the peak.table must include columns that uniquely identify chro-
matograms in the object. Common choices are "msLevel" and/or "dataOrigin".
These columns must also be present in the chromData of the object. Any extra
columns in peak.table will be added to the chromData of the newly created
object.

for chromExtract() A character vector specifying one or more column names
that are present in both peak. table and chromData(object). These columns
uniquely identify chromatograms. The combination of these columns must be
unique in chromData(object). Can be of length 1 or greater.

For [: integer, logical or character to subset the object.
For [and [[: ignored.

Parallel setup configuration. See BiocParallel: :bpparam() for more infor-
mation.

factor defining the grouping to split x. See split().

For filterChromData(): character vector with the names of the chromatogram
variables to filter for. The list of available chromatogram variables can be ob-
tained with chromVariables().

For filterChromData() : a numeric vector of paired values (upper and lower
boundary) that define the ranges to filter the object. These paired values need
to be in the same order as the variables parameter (see below).

For filterChromData() : character(1) defining whether the condition has
to match for all provided ranges (match = "all"; the default), or for any of
them (match = "any") for chromatogram data to be retained.

For filterChromData(): logical(1) defining whether to keep (keep = TRUE)
or remove (keep = FALSE) the chromatogram data that match the condition.

coreChrom Variables 23

"non

method For imputePeaksData(): character(1): Imputation method ("linear", "spline",

"gaussian", "loess")

span For imputePeaksData: numeric(1), for the loess method: Smoothing parame-
ter (only used if method == "loess")
sd For imputePeaksData: numeric(1), for the gaussian method: Standard devia-
tion for Gaussian kernel (only used if method == "gaussian")
window For imputePeaksData: integer, for the gaussian method: Half-width of Gaus-
sian kernel window (e.g., 2 gives window size 5)
Value

Refer to the individual function description for information on the return value.

Core chromatogram variables

The core chromatogram variables are variables (metadata) that can/should be provided by a back-
end. For each of these variables a value needs to be returned, if none is defined, a missing value (of
the correct data type) should be returned. The names of the chromatogram variables in your current
chromatogram object are returned with the chromVariables() function.

For each core chromatogram variable a dedicated access method exists. In contrast to the peaks
data described below, a single value should be returned for each chromatogram.

The coreChromVariables() function returns the core chromatogram variables along with their
expected (defined) data type.

The core chromatogram variables (in alphabetical order) are:

chromIndex: an integer with the index of the chromatogram in the original source file
(e.g. mzML file). In backedn with no original source file, this variable should be set to
NA_integer_.

collisionEnergy: for SRM data, numeric with the collision energy of the precursor.
dataOrigin: optional character with the origin of a chromatogram.

msLevel: integer defining the MS level of the data.

mz: optional numeric with the (target) m/z value for the chromatographic data.

mzMin: optional numeric with the lower m/z value of the m/z range in case the data (e.g. an
extracted ion chromatogram EIC) was extracted from a Spectra object.

mzMax: optional numeric with the upper m/z value of the m/z range.
precursorMz: for SRM data, numeric with the target m/z of the precursor (parent).

precursorMzMin: for SRM data, optional numeric with the lower m/z of the precursor’s
isolation window.

precursorMzMax: for SRM data, optional numeric with the upper m/z of the precursor’s
isolation window.

productMz for SRM data, numeric with the target m/z of the product ion.

productMzMin: for SRM data, optional numeric with the lower m/z of the product’s isolation
window.

productMzMax: for SRM data, optional numeric with the upper m/z of the product’s isolation
window.

24 coreChrom Variables

Core Peaks variables

Similar to the core chromatogram variables, core peaks variables represent metadata that should be
provided by a backend. Each of these variables should return a value, and if undefined, a missing
value (with the appropriate data type) is returned. The number of values for a peaks variable in a
single chromatogram can vary, from none to multiple, and may differ between chromatograms.

The names of peaks variables in the current chromatogram object can be obtained with the peaksVariables()
function.

Each core peaks variable has a dedicated accessor method.

The corePeaksVariables() function returns the core peaks variables along with their expected
(defined) data type.

The core peaks variables, listed in the required order for peaksData, are:

* rtime: A numeric vector containing retention time values.

* intensity: A numeric vector containing intensity values.

They should be provided for each chromatogram in the backend, in this order, No NAs are allowed
for the rtime values. These characteristics will be checked with the validPeaksData() function.

Mandatory methods

New backend classes must extend the base ChromBackend class and implement the following
mandatory methods:

* backendInitialize(): initialises the backend. This method is supposed to be called right
after creating an instance of the backend class and should prepare the backend. Parameters
can be defined freely for each backend, depending on what is needed to initialize the backend.
This method has to ensure to set the chromatogram variable dataOrigin correctly.

* backendBpparam(): returns the parallel processing setup supported by the backend class.
This function can be used by any higher level function to evaluate whether the provided paral-
lel processing setup (or the default one returned by bpparam()) is supported by the backend.
Backends not supporting parallel processing (e.g. because they contain a connection to a
database that can not be shared across processes) should extend this method to return only
SerialParam() and hence disable parallel processing for (most) methods and functions. See
also backendParallelFactor () for a function to provide a preferred splitting of the backend
for parallel processing.

* backendParallelFactor(): returns a factor defining an optimal (preferred) way how the
backend can be split for parallel processing used for all peak data accessor or data manipula-
tion functions. The default implementation returns a factor of length O (factor()) providing
thus no default splitting. backendParallelFactor() for ChromBackendMzR on the other
hand returns factor(dataOrigin(object)) hence suggesting to split the object by data file.

* chromData(), chromData<-: gets or sets general chromatogram metadata (annotation). chromData()
returns a data. frame, chromData<- expects a data. frame with the same number of rows as
there are chromatograms in object. Read-only backends might not need to implement the
replacement method chromData<- (unless some internal caching mechanism could be used).
chromData() should be implemented with the parameter drop set to FALSE as default. With
drop = FALSE the method should return a data.frame even if one column is requested. If
drop = TRUE is specified, the output will be a vector of the single column requested. New

coreChrom Variables 25

backends should be implemented such as if empty, the method returns a data. frame with 0
rows and the columns defined by chromVariables(). By default, the function should return
at minimum the coreChromVariables, even if NAs.

e chromExtract(): return A new Chrombackend object containing separated chromatographic
area as individual chromatograms. The chromatographic areas are defined by the peak. table
parameter. The new object will contain chromatograms that match the conditions defined
in peak.table. If no chromatograms match the conditions, an empty ChromBackend object
should be returned.

* extractByIndex(): function to subset a backend to selected elements defined by the provided
index. Similar to [, this method should allow extracting (or to subset) the data in any order. In
contrast to [, however, i is expected to be an integer (while [should also support logical
and eventually character). While being apparently redundant to [, this methods avoids pack-
age namespace errors/problems that can result in implementations of [being not found by R
(which can happen sometimes in parallel processing using the BiocParallel: : SnowParam()).
This method is used internally to extract/subset its backend. Implementation of this method is
mandatory.

* peaksData(): returns a list of data.frame with the data (e.g. retention time - intensity
pairs) from each chromatogram. The length of the list is equal to the number of chro-
matograms in object. For an empty chromatogram a data.frame with 0 rows and two
columns (named "rtime” and "intensity”) has to be returned. The optional parameter
columns, if supported by the backend allows to define which peak variables should be re-
turned in each array. As default (minimum) columns "rtime” and "intensity” have to be
provided. peaksData() should be implemented with the parameter drop set to FALSE as de-
fault. With drop = FALSE the method should return a data. frame even if only one column
is requested. If drop = TRUE is specified, the output will be a vector of the single column
requested.

» peaksData<- replaces the peak data (retention time and intensity values) of the backend. This
method expects a 1ist of two-dimensional arrays (data.frame) with columns representing
the peak variables. All existing peaks data are expected to be replaced with these new values.
The length of the 1ist has to match the number of chromatogram of object. Note that only
writeable backends need to support this method.

o [: subset the backend. Only subsetting by element (row/1i) is allowed. This method should be
implemented as to support empty integer.

* $, $<-: access or set/add a single chromatogram variable (column) in the backend.

* backendMerge(): merges (combines) ChromBackend objects into a single instance. All ob-
jects to be merged have to be of the same type.

Optional methods with default implementations

Additional methods that might be implemented, but for which default implementations are already
present are:

* [

* backendParallelFactor(): returns a factor defining an optimal (preferred) way how the
backend can be split for parallel processing used for all peak data accessor or data manipula-
tion functions. The default implementation returns a factor of length 0 (factor()) providing
thus no default splitting.

26

coreChrom Variables

chromIndex(): returns an integer vector with the index of the chromatograms in the original
source file.

chromVariables(): returns a character vector with the available chromatogram variables
(columns, fields or attributes) available in object. Variables listed by this function are ex-
pected to be returned (if requested) by the chromData() function.

collisionEnergy(), collisionEnergy<-: gets or sets the collision energy for the precursor
(for SRM data). collisionEnergy() returns a numeric of length equal to the number of
chromatograms in object.

dataOrigin(), dataOrigin<-: gets or sets the data origin variable. dataOrigin() returns
a character of length equal to the number of chromatograms, dataOrigin<- expects a
character of length equal length(object).

filterChromData(): filters any numerical chromatographic data variables based on the pro-
vided numerical ranges. The method should return a ChromBackend object with the chro-
matograms that match the condition. This function will results in an object with less chro-
matogram than the original.

intensity(): gets the intensity values from the chromatograms. Returns a 1ist of numeric
vectors (intensity values for each chromatogram). The length of the list is equal to the number
of chromatograms in object.

intensity<-: replaces the intensity values. value has to be a list of length equal to the
number of chromatograms and the number of values within each list element identical to the
number of data pairs in each chromatogram. Note that just writeable backends need to support
this method.

imputePeaksData(): Imputes missing intensity values in the chromatographic peaks data us-
ing various methods such as linear interpolation, spline interpolation, Gaussian kernel smooth-
ing, or LOESS smoothing. This method modifies the peaks data in place and returns the same
ChromBackend object with imputed values.

isReadOnly(): returns a logical (1) whether the backend is read only or does allow also to
write/update data. Defaults to FALSE.

isEmpty(): returns a logical of length equal to the number of chromatograms with TRUE for
chromatograms without any data pairs.

length(): returns the number of chromatograms in the object.

lengths(): returns the number of data pairs (retention time and intensity values) per chro-
matogram.

msLevel(): gets the chromatogram’s MS level. Returns an integer vector (of length equal
to the number of chromatograms) with the MS level for each chromatogram (or NA_integer_
if not available).

mz(),mz<-: gets or sets the m/z value of the chromatograms. mz() returns a numeric of
length equal to the number of chromatograms in object, mz<- expects a numeric of length
length(object).

mzMax (),mzMax<-: gets or sets the upper m/z of the mass-to-charge range from which a chro-
matogram contains signal (e.g. if the chromatogram was extracted from MS data in spectra
format and a m/z range was provided). mzMax () returns a numeric of length equal to the num-
ber of chromatograms in object, mzMax<- expects a numeric of length equal to the number
of chromatograms in object.

coreChrom Variables 27

* mzMin(),mzMin<-: gets or sets the lower m/z of the mass-to-charge range from which a chro-
matogram contains signal (e.g. if the chromatogram was extracted from MS data in spectra
format and a m/z range was provided). mzMin () returns a numeric of length equal to the num-
ber of chromatograms in object, mzMin<- expects a numeric of length equal to the number
of chromatograms in object.

* peaksVariables(): lists the available data variables for the chromatograms. Default peak
variables are "rtime” and "intensity” (which all backends need to support and provide),
but some backends might provide additional variables. Variables listed by this function are
expected to be returned (if requested) by the peaksData() function.

* precursorMz(),precursorMz<-: gets or sets the (target) m/z of the precursor (for SRM
data). precursorMz() returns a numeric of length equal to the number of chromatograms in
object. precursorMz<- expects a numeric of length equal to the number of chromatograms.

* precursorMzMin(),precursorMzMax(),productMzMin(), productMzMax(): gets the lower
and upper margin for the precursor or product isolation windows. These functions might return
the value of productMz() if the respective minimal or maximal m/z values are not defined in
object.

* productMz(),productMz<-: gets or sets the (target) m/z of the product (for SRM data).
productMz () returns a numeric of length equal to the number of chromatograms in object.
productMz<- expects a numeric of length equal to the number of chromatograms.

e rtime(): gets the retention times from the chromatograms. returns a 1ist of numeric vectors
(retention times for each chromatogram). The length of the returned list is equal to the number
of chromatograms in object.

* rtime<-: replaces the retention times. value has to be a list of length equal to the number
of chromatograms and the number of values within each list element identical to the number
of data pairs in each chromatogram. Note that just writeable backends support this method.

* split(): splits the backend into a 1ist of backends (depending on parameter f). The default
method for ChromBackend uses split.default(), thus backends extending ChromBackend
don’t necessarily need to implement this method.

* supportsSetBackend(): whether a ChromBackend supports the Chromatograms setBackend()
function. The default function will take the peaksData() and chromData() of the user’s back-
end and pass it to the new backend. If the backend does not support this function, it should
return FALSE. Therefore both backend in question should have a adequate peaksData() and
chromData() method as well as their respective replacement method.

Implementation notes

Backends extending ChromBackend must implement all of its methods (listed above). A guide
to create new backend classes is provided as a dedicated vignette. Additional information and an
example for a backend implementation is provided in the respective vignette.

Author(s)

Johannes Rainer, Philippine Louail

Examples

Create a simple backend implementation

28

coreChrom Variables

ChromBackendDummy <- setClass("ChromBackendDummy",
contains = "ChromBackend"

)

We will show examples on a ~ChromBackendMemory™ backend.
be <- ChromBackendMemory ()

The “backendInitialize()™ method initializes the backend filling it with
data. This method can take any parameters needed for the backend to
get loaded with the data.
cdata <- data.frame(
msLevel = c(1L, 1L, 1L),
mz = c(112.2, 123.3, 134.4),
dataOrigin = c("mem1”, "mem2", "mem3")

)

pdata <- list(
data.frame(
rtime = ¢c(12.4, 12.8, 13.2, 14.6),
intensity = ¢(123.3, 153.6, 2354.3, 243.4)
),
data.frame(
rtime = c(45.1, 46.2),
intensity = c(100, 80.1)
),
data.frame(
rtime = c(12.4, 12.8, 13.2, 14.6),
intensity = ¢(123.3, 153.6, 2354.3, 243.4)
)
)

be <- backendInitialize(be, chromData = cdata, peaksData = pdata)
be

Data can be accessed with the accessor methods
msLevel (be)

rtime(be)

Even if no data was provided for all chromatogram variables, its accessor
methods are supposed to return a value.
precursorMz(be)

The ~peaksData()™ method is supposed to return data/frames of rtime and
intensity pairs as a “list".
peaksData(be)

Use columns to extract specific peaks variables. Below we extract rtime
and intensity values, but in reversed order to the default.
peaksData(be, columns = c("intensity”, "rtime"))

List available chromatographic variables
chromVariables(be)

peaksData 29

List available peak variables
peaksVariables(be)

Extract multiple chromatographic variables
chromData(be, c("dataOrigin”, "mz", "msLevel”))

Single variables can also be accessed and replaced
mz(be)
mz(be) <- c(123.4, 134.5, 145.6)

be$msLevel
be$msLevel <- c(2L, 2L, 2L)

be[["rtime"]]

bel[["rtime"]] <- list(
c(12.4, 12.8, 13.2, 14.6),
c(45.1, 46.2),
c(12.4, 12.8, 13.2, 14.6)

peaksData Chromatographic peaks data

Description

As explained in the Chromatograms class documentation, the Chromatograms object is a container
for chromatographic data that includes chromatographic peaks data (retention time and related in-
tensity values, also referred to as peaks data variables in the context of Chromatograms) and meta-
data of individual chromatograms (so called chromatograms variables).

The peaks data variables information can be accessed using the peaksData() function. It is also
possible to access specific peaks variables using $.

The peaks data can be accessed, replaced but also filtered/subsetted. Refer to the sections below for
more details.

Usage
S4 method for signature 'Chromatograms'
imputePeaksData(
object,
method = c("linear”, "spline”, "gaussian”, "loess"),
span = 0.3,
sd =1,
window = 2,
)

S4 method for signature 'Chromatograms'

30 peaksData

filterPeaksData(
object,
variables = character(),
ranges = numeric(),
match = c("any”, "all"),
keep = TRUE

)

S4 method for signature 'Chromatograms'
intensity(object, ...)

S4 replacement method for signature 'Chromatograms'
intensity(object) <- value

S4 method for signature 'Chromatograms'
peaksData(
object,
columns = peaksVariables(object),
f = processingChunkFactor(object),
BPPARAM = bpparam(),
drop = FALSE,

)

S4 replacement method for signature 'Chromatograms'’
peaksData(object) <- value

S4 method for signature 'Chromatograms'
peaksVariables(object, ...)

S4 method for signature 'Chromatograms'
rtime(object, ...)

S4 replacement method for signature 'Chromatograms'’
rtime(object) <- value

S4 method for signature 'Chromatograms'

lengths(x)
Arguments

object A Chromatograms object.

method For imputePeaksData(): character(1): Imputation method ("linear", "spline",
"gaussian", "loess")

span For imputePeaksData: numeric (1), for the loess method: Smoothing parame-
ter (only used if method == "loess")

sd For imputePeaksData: numeric(1), for the gaussian method: Standard devia-

tion for Gaussian kernel (only used if method == "gaussian")

peaksData 31

window For imputePeaksData: integer, for the gaussian method: Half-width of Gaus-
sian kernel window (e.g., 2 gives window size 5)

Additional arguments passed to the method.

variables For filterPeaksData(): character vector with the names of the peaks data
variables to filter for. The list of available peaks data variables can be obtained
with peaksVariables().

ranges For filterPeaksData() : a numeric vector of paired values (upper and lower
boundary) that define the ranges to filter the object. These paired values need
to be in the same order as the variables parameter (see below).

match For filterPeaksData() : character(1) defining whether the condition has
to match for all provided ranges (match = "all"; the default), or for any of
them (match = "any").

keep For filterPeaksData(): logical(1) defining whether to keep (keep = TRUE)
or remove (keep = FALSE) the chromatographic peaks data that match the con-
dition.

value For rtime() and intensity(): numeric vector with the values to replace the

current values. The length of the vector must match the number of peaks data
pairs in the Chromatograms object.

columns For peaksData(): optional character with column names (peaks variables)
that should be included in the returned list of data.frame. By default, all
columns are returned. Available variables can be found by calling peaksVariables()
on the object.

f factor defining the grouping to split the Chromatograms object.

BPPARAM Parallel setup configuration. See BiocParallel: :bpparam() for more infor-
mation.

drop logical (1) For peaksData(), default to FALSE. If TRUE, and one column is
called by the user, the method returns a list of vector of the single column re-
quested.

X For lengths(): A Chromatograms object.

Value

Refer to the individual function description for information on the return value.

Filter Peaks Variables

Functions that filter a Chromatograms’s peaks data (i.e., peaksData). These functions remove
peaks data that do not meet the specified conditions. If a chromatogram in a Chromatograms object
is filtered, only the corresponding peaks variable pairs (i.e., rows) in the peaksData are removed,
while the chromatogram itself remains in the object.

The available functions to filter chromatographic peaks data include:

e filterPeaksData(): Filters numerical peaks data variables based on the specified numerical
ranges parameter. This method returns the same input Chromatograms object, but the filtering
step is added to the processing queue. The filtered data will be reflected when the user accesses
peaksData. This function does not reduce the number of chromatograms in the object, but it
removes the specified peaks data (e.g., "rtime" and "intensity" pairs) from the peaksData.

32 peaksData

In the case of a read-only backend, (such as the ChromBackendMzR), the replacement of the peaks
data is not possible. The peaks data can be filtered, but the filtered data will not be saved in the
backend. This means the original mzml files will not be affected by computations performed on the
Chromatograms.

Impute Peaks Variables

imputePeaksData will impute missing values in a Chromatograms’s peaks data (i.e., peaksData).
This functions replace missing peaks data values with specified imputation methods using various
methods such as linear interpolation, spline interpolation, Gaussian kernel smoothing, or LOESS
smoothing. This method modifies the peaks data in place and returns the same Chromatograms
object with imputed values.

Author(s)

Philippine Louail

See Also

Chromatograms for a general description of the Chromatograms object, and chromData for access-
ing,substituting and filtering chromatographic variables. For more information on the queuing of
processings and parallelization for larger dataset processing see processingQueue.

Examples

Create a Chromatograms object

cdata <- data.frame(
msLevel = c(1L, 1L, 1L),
mz = c(112.2, 123.3, 134.4),
dataOrigin = c("mem1”, "mem2", "mem3")

)

pdata <- list(

data.frame(
rtime = c(12.4, 12.8, 13.2, 14.6),
intensity = c(123.3, 153.6, 2354.3, 243.4)

),

data.frame(
rtime = c(45.1, 46.2),
intensity = c(100, 80.1)

),

data.frame(
rtime = c(12.4, 12.8, 13.2, 14.6),
intensity = ¢(123.3, 153.6, 2354.3, 243.4)

)

be <- backendInitialize(new("ChromBackendMemory"),
chromData = cdata,
peaksData = pdata

plotChromatograms 33

chr <- Chromatograms(be)

Access peaks data
peaksData(chr)

Access specific peaks data variables
peaksData(chr, columns = "rtime")
rtime(chr)

Replace peaks data
rtime(chr)[[11] <- c(1, 2, 3, 4)

Filter peaks data
filterPeaksData(chr, variables = "rtime", ranges = c(12.5, 13.5))

plotChromatograms Plot chromatograms

Description

Chromatograms() can be plotted with the following functions:

The plotChromatograms(): plots each chromatogram in its separate plot by splitting the plot area
into as many panels as there are spectra.

Usage
plotChromatograms(
X’
xlab = "rtime (s)",
ylab = "intensity",
type = "o",
pch = 20,
cex = 0.6,
lwd = 1.5,

xlim = numeric(),
ylim = numeric(),
main = character(),
col = "#00000080",

asp = 1,
)
plotChromatogramsOverlay(
X’
xlab = "rtime (s)",
ylab = "intensity",

n.n

type = "0",

34 plotChromatograms

pch = 20,
cex = 0.6,
lwd = 1.5,
xlim = numeric(),
ylim = numeric(),

main = paste(length(x), "chromatograms"),
col = "#00000080",

axes = TRUE,

frame.plot = axes,

Arguments

X A Chromatograms object.

xlab character (1) with the label for the x-axis (by default x1ab = "rtime (s)").

ylab character (1) with the label for the y-axis (by default ylab = "intensity").

type character (1) specifying the type of plot. See plot.default() for details.
Defaults to type = "1" which draws each peak as a line.

pch integer (1) or character (1) specifying the plotting symbol (see plot.default()).

cex numeric(1) specifying the size of the plotting symbol (see plot.default()).

lwd numeric(1) specifying the line width (see plot.default()).

x1lim numeric(2) defining the x-axis limits. The range of m/z values are used by
default.

ylim numeric(2) defining the y-axis limits. The range of intensity values are used
by default.

main character (1) with the title for the plot. By default the spectrum’s MS level
and retention time (in seconds) is used.

col color to be used to draw the peaks. Should be either of length 1, or equal to the
number of chromatograms (to plot each chromatograms in a different color) or
be a 1ist with colors for each individual peak in each spectrum.

asp numeric(1) the aspect ratio of the plot, i.e. the ratio of the y-axis to the x-axis.
Defaults to 1.
Additional arguments to be passed to plot.default().

axes logical (1) whether (x and y) axes should be drawn.

frame.plot logical(1) whether a box should be drawn around the plotting area.

Value

These functions create a plot.

Refer to the individual function description for information on the return value.

Author(s)

Philippine Louail, Johannes Rainer.

processingQueue 35

Examples

Create a Chromatograms object
cdata <- data.frame(
msLevel = c(1L, 1L, 1L),
mz = c(112.2, 123.3, 134.4),
chromIndex = c(1L, 2L, 3L)
)
pdata <- list(
data.frame(
rtime = c(12.4, 12.8, 13.2, 14.6),
intensity = ¢(123.3, 153.6, 2354.3, 243.4)
),
data.frame(
rtime = c(45.1, 46.2),
intensity = c(100, 80.1)
),
data.frame(
rtime = c(12.4, 12.8, 13.2, 14.6),
intensity = c(123.3, 153.6, 2354.3, 243.4)

)

chr <- backendInitialize(ChromBackendMemory(),
chromData = cdata,
peaksData = pdata

) |> Chromatograms()

Plot one chromatogram
plotChromatograms(chr[1])

Plot the full Chromatograms object
plotChromatograms(chr)

Define a color for each peak in each chromatogram
plotChromatograms(chr[1:2], col = c("green”", "blue"))

Overlay all chromatograms
plotChromatogramsOverlay(chr[1:2], col = c("green”, "blue"))

processingQueue Efficiently processing Chromatograms objects.

Description

The processingQueue of a Chromatograms object is a list of processing steps (i.e., functions)
that are stored within the object and applied only when needed. This design allows data to be
processed in a single step, which is particularly useful for larger datasets. The processing queue
enables functions to be applied in a chunk-wise manner, facilitating parallel processing and reducing
memory demand.

36 processingQueue

Since the peaks data can be quite large, a processing queue is used to ensure efficiency. Generally,
the processing queue is applied either temporarily when calling peaksData() or permanently when
calling applyProcessing(). As explained below the processing efficiency can be further improved
by enabling chunk-wise processing.

Usage

S4 method for signature 'Chromatograms'
applyProcessing(
object,
f = processingChunkFactor(object),
BPPARAM = bpparam(),

)

S4 method for signature 'Chromatograms'
addProcessing(object, FUN, ...)

S4 method for signature 'Chromatograms'
processingChunkSize(object, ...)

S4 replacement method for signature 'Chromatograms'’
processingChunkSize(object) <- value

S4 method for signature 'Chromatograms'

processingChunkFactor(object, chunkSize = processingChunkSize(object), ...)
Arguments
object A Chromatograms object.
f factor defining the grouping to split the Chromatograms object.
BPPARAM Parallel setup configuration. See BiocParallel: :bpparam() for more infor-
mation.

Additional arguments passed to the methods.

FUN For addProcessing(), a function to be added to the Chromatograms object’s
processing queue.

value integer (1) defining the chunk size.

chunkSize integer (1) for processingChunkFactor defining the chunk size. The default

is the value stored in the Chromatograms object’s processingChunkSize slot.

Value

processingChunkSize() returns the currently defined processing chunk size (or Inf if it is not
defined). processingChunkFactor() returns a factor defining the chunks into which object
will be split for (parallel) chunk-wise processing or a factor of length 0 if no splitting is defined.

Refer to the individual function description for information on the return value.

processingQueue 37

Apply Processing

The applyProcessing() function applies the processing queue to the backend and returns the
updated Chromatograms object. The processing queue is a list of processing steps applied to the
chromatograms data. Each element in the list is a function that processes the chromatograms data.
To apply processing to the peaks data, the backend must be set to a non-read-only backend using
the setBackend() function.

Parallel and Chunk-wise Processing of Chromatograms

Many operations on Chromatograms objects, especially those involving the actual peaks data (see
peaksData), support chunk-wise processing. This involves splitting the Chromatograms into smaller

parts (chunks) that are processed iteratively. This enables parallel processing by data chunk and re-

duces memory demand since only the peak data of the currently processed subset is loaded into

memory. Chunk-wise processing, which is disabled by default, can be enabled by setting the pro-

cessing chunk size of a Chromatograms object using the processingChunkSize() function to a

value smaller than the length of the Chromatograms object. For example, setting processingChunkSize(chr)
<- 1000 will cause any data manipulation operation on chr, such as filterPeaksData(), to be per-

formed in parallel for sets of 1000 chromatograms in each iteration.

Chunk-wise processing is particularly useful for Chromatograms objects using an on-disk backend
or for very large experiments. For small datasets or Chromatograms using an in-memory backend,
direct processing might be more efficient. Setting the chunk size to Inf will disable chunk-wise
processing.

Some backends may prefer a specific type of splitting and chunk-wise processing. For example, the
ChromBackendMzR backend needs to load MS data from the original (mzML) files, so chunk-wise
processing on a per-file basis is ideal. The backendParallelFactor() function for ChromBackend
allows backends to suggest a preferred data chunking by returning a factor defining the respec-
tive data chunks. The ChromBackendMzR returns a factor based on the dataOrigin chromatograms
variable. A factor of length O is returned if no particular preferred splitting is needed. The sug-
gested chunk definition will be used if no finite processingChunkSize() is defined. Setting the
processingChunkSize overrides backendParallelFactor.

Functions to configure parallel or chunk-wise processing:
* processingChunkSize(): Gets or sets the size of the chunks for parallel or chunk-wise pro-

cessing of a Chromatograms object. With a value of Inf (the default), no chunk-wise process-
ing will be performed.

* processingChunkFactor(): Returns a factor defining the chunks into which a Chromatograms
object will be split for chunk-wise (parallel) processing. A factor of length O indicates that
no chunk-wise processing will be performed.

Note
Some backends might not support parallel processing. For these, the backendBpparam() function
will always return a SerialParam() regardless of how parallel processing was defined.

Author(s)

Johannes Rainer, Philippine Louail

38 reset

Examples

Create a Chromatograms object
cdata <- data.frame(
msLevel = c(1L, 1L, 1L),
mz = c(112.2, 123.3, 134.4),
chromIndex = c(1L, 2L, 3L)

)

pdata <- list(

data.frame(
rtime = c(12.4, 12.8, 13.2, 14.6),
intensity = c(123.3, 153.6, 2354.3, 243.4)

),

data.frame(
rtime = c(45.1, 46.2),
intensity = c(100, 80.1)

),

data.frame(
rtime = ¢c(12.4, 12.8, 13.2, 14.6),
intensity = ¢(123.3, 153.6, 2354.3, 243.4)

be <- backendInitialize(new("ChromBackendMemory"),
chromData = cdata,
peaksData = pdata

)

chr <- Chromatograms(be)

divide_intensities <- function(x, y, ...) {
intensity(x) <- lapply(intensity(x), ~/°, y)
X

3

Add the function to the procesing queue
chr <- addProcessing(chr, divide_intensities, y = 2)
chr

Apply the processing queue
chr <- applyProcessing(chr)

reset Fill data.frame with columns for missing core chromatogram vari-
ables.

Description

fillCoreChromVariables() fills a provided data.frame with columns for eventually missing
core chromatogram variables. The missing core variables are added as new columns with missing

reset 39

values (NA) of the correct data type. Use coreChromVariables() to list the set of core variables
and their data types.

validChromData() checks that columns, representing core chromatogram variables are of the cor-
rect data type.

For S4 methods that require a documentation entry but only clutter the index.

This method returns the chromatographic data stored in the backend. If not specified otherwise it
will return all defined columns in the chromData slot as well as adding the coreChromVariables
missing with NA values.

Usage

reset(object, ...)
fillCoreChromVariables(x = data.frame())

validChromData(x

data.frame(), error = TRUE)

validPeaksData(x

list(), error = TRUE)

S4 method for signature 'ChromBackendMemory'
backendMerge(object, ...)

S4 method for signature 'ChromBackendMemory'
chromData(object, columns = chromVariables(object), drop = FALSE)

S4 replacement method for signature 'ChromBackendMemory'
chromData(object) <- value

S4 method for signature 'ChromBackendMemory'
chromVariables(object)

S4 method for signature 'ChromBackendMemory'
peaksData(object, columns = peaksVariables(object), drop = FALSE, ...)

S4 replacement method for signature 'ChromBackendMemory'
peaksData(object) <- value

S4 method for signature 'ChromBackendMemory'
peaksVariables(object)

S4 method for signature 'ChromBackendMemory'
isReadOnly(object)

S4 method for signature 'ChromBackendMemory'
show(object)

S4 method for signature 'ChromBackendMemory'
supportsSetBackend(object, ...)

reset

S4 method for signature 'ChromBackendMemory'
x[i, j, ..., drop = FALSE]

S4 method for signature 'ChromBackendMemory'
x$name

S4 replacement method for signature 'ChromBackendMemory'
x$name <- value

S4 method for signature 'ChromBackendMemory'
chromExtract(object, peak.table, by)

S4 method for signature 'ChromBackendMzR'
show(object)

S4 method for signature 'ChromBackendMzR'
backendParallelFactor(object, ...)

S4 method for signature 'ChromBackendMzR'
isReadOnly(object)

S4 method for signature 'ChromBackendMzR'

peaksData(
object,
columns = peaksVariables(object),
drop = FALSE,

BPPARAM = SerialParam(),

)

S4 replacement method for signature 'ChromBackendMzR'
peaksData(object) <- value

S4 replacement method for signature 'ChromBackendMzR'
chromData(object) <- value

S4 method for signature 'ChromBackendMzR'
supportsSetBackend(object, ...)

S4 method for signature 'ChromBackendMzR'
x[i, j, ..., drop = TRUE]

S4 method for signature 'ChromBackendMzR'
chromExtract(object, peak.table, by, ...)

S4 method for signature 'ChromBackendSpectra'
show(object)

reset 41

S4 method for signature 'ChromBackendSpectra'
factorize(object, factorize.by = c("msLevel”, "dataOrigin"), ...)

S4 method for signature 'ChromBackendSpectra'
backendParallelFactor(object, ...)

S4 method for signature 'ChromBackendSpectra'
isReadOnly(object)

S4 method for signature 'ChromBackendSpectra’
peaksData(object, columns = peaksVariables(object), drop = FALSE, ...)

S4 replacement method for signature 'ChromBackendSpectra'
peaksData(object) <- value

S4 method for signature 'ChromBackendSpectra'
supportsSetBackend(object, ...)

S4 method for signature 'ChromBackendSpectra'
x[i, j, ..., drop = TRUE]

S4 method for signature 'ChromBackendSpectra'
chromExtract(object, peak.table, by, ...)

S4 method for signature 'Chromatograms'

show(object)
Arguments
object A Chromatograms object.
X list representing the peaks data of a Chromatograms
error logical (1) whether an error should be thrown (the default) if one or more
columns don’t have the correct data type.
Value

input data frame x with missing core variables added (with the correct data type).

If the core variables have all the correct data type: an empty character. If one or more core variables
(columns) have the wrong data type the function either throws an error (with error = TRUE) or
returns a character specifying which variables/columns don’t have the correct type (for error =
FALSE).

Not applicable

Examples

Define a data frame
a <- data.frame(msLevel = c(1L, 1L, 2L), other_column = "b")

42

Add missing core chromatogram variables to this data frame
fillCoreChromVariables(a)

The data.frame thus contains columns for all core chromatogram
variables in the respective expected data type (but filled with
missing values).

reset

Index

* internal
reset, 38
[,ChromBackend-method
(coreChromVariables), 17
[,ChromBackendMemory-method (reset), 38
[,ChromBackendMzR-method (reset), 38
[,ChromBackendSpectra-method (reset), 38
[,Chromatograms-method (Chromatograms),
2
[<-,Chromatograms-method
(Chromatograms), 2
[[,ChromBackend-method
(coreChromVariables), 17
[[,Chromatograms-method
(Chromatograms), 2
[[<-,ChromBackend-method
(coreChromVariables), 17
[[<-,Chromatograms-method
(Chromatograms), 2
$,ChromBackend-method
(coreChromVariables), 17
$,ChromBackendMemory-method (reset), 38
$,Chromatograms-method (Chromatograms),
2
$<-, ChromBackend-method
(coreChromVariables), 17
$<-,ChromBackendMemory-method (reset),
38
$<-,Chromatograms-method
(Chromatograms), 2

addProcessing,Chromatograms-method
(processingQueue), 35

applyProcessing,Chromatograms-method
(processingQueue), 35

backendBpparam,ChromBackend-method
(coreChromVariables), 17

backendInitialize,ChromBackend-method
(coreChromVariables), 17

43

backendInitialize,ChromBackendMemory-method
(ChromBackendMemory), 7

backendInitialize,ChromBackendMzR-method
(ChromBackendMzR), 8

backendInitialize,ChromBackendSpectra-method
(ChromBackendSpectra), 9

backendMerge, ChromBackend-method
(coreChromVariables), 17

backendMerge, ChromBackendMemory-method
(reset), 38

backendMerge,list-method
(coreChromVariables), 17

backendParallelFactor(), 37

backendParallelFactor,ChromBackend-method
(coreChromVariables), 17

backendParallelFactor,ChromBackendMzR-method
(reset), 38

backendParallelFactor,ChromBackendSpectra-method
(reset), 38

BiocParallel: :bpparam(), 4, 9, 22, 31, 36

BiocParallel: :SnowParam(), 25

Chromatograms, 2, 3, 4, 12, 14, 16, 29, 30, 32,
34,41

Chromatograms(), 33

Chromatograms, ChromBackendOrMissing-method
(Chromatograms), 2

Chromatograms, Spectra-method
(Chromatograms), 2

Chromatograms-class (Chromatograms), 2

ChromBackend, 2, 4

ChromBackend (coreChromVariables), 17

ChromBackend-class
(coreChromVariables), 17

ChromBackendMemory, 7

ChromBackendMemory-class
(coreChromVariables), 17

ChromBackendMzR, 8, 32

ChromBackendMzR-class
(coreChromVariables), 17

44

ChromBackendSpectra, 4, 9
ChromBackendSpectra-class
(coreChromVariables), 17
chromData, 5, 6, 12, 32
chromData, Chromatograms-method
(chromData), 12
chromData, ChromBackend-method
(coreChromVariables), 17
chromData, ChromBackendMemory-method
(reset), 38
chromData<- (chromData), 12
chromData<-,Chromatograms-method
(chromData), 12
chromData<-,ChromBackend-method
(coreChromVariables), 17
chromData<-, ChromBackendMemory-method
(reset), 38
chromData<-,ChromBackendMzR-method
(reset), 38
chromExtract (Chromatograms), 2
chromExtract,Chromatograms-method
(Chromatograms), 2
chromExtract,ChromBackend-method
(coreChromVariables), 17
chromExtract,ChromBackendMemory-method
(reset), 38
chromExtract,ChromBackendMzR-method
(reset), 38
chromExtract,ChromBackendSpectra-method
(reset), 38
chromIndex (chromData), 12
chromIndex,Chromatograms-method
(chromData), 12
chromIndex,ChromBackend-method
(coreChromVariables), 17
chromIndex<- (chromData), 12
chromIndex<-,Chromatograms-method
(chromData), 12
chromIndex<-,ChromBackend-method
(coreChromVariables), 17
chromSpectralndex
(ChromBackendSpectra), 9
chromVariables (chromData), 12
chromVariables,Chromatograms-method
(chromData), 12
chromVariables,ChromBackend-method
(coreChromVariables), 17

chromVariables,ChromBackendMemory-method

INDEX

(reset), 38
chromVariables<- (chromData), 12
collisionEnergy (chromData), 12
collisionEnergy,Chromatograms-method
(chromData), 12
collisionEnergy,ChromBackend-method
(coreChromVariables), 17
collisionEnergy<- (chromData), 12
collisionEnergy<-,Chromatograms-method
(chromData), 12
collisionEnergy<-,ChromBackend-method
(coreChromVariables), 17
coreChromVariables, 17
coreChromVariables(), 39
corePeaksVariables
(coreChromVariables), 17

dataOrigin (chromData), 12
datalOrigin,Chromatograms-method
(chromData), 12
dataOrigin,ChromBackend-method
(coreChromVariables), 17
dataOrigin<- (chromData), 12
dataOrigin<-,Chromatograms-method
(chromData), 12
dataOrigin<-,ChromBackend-method
(coreChromVariables), 17

extractByIndex (coreChromVariables), 17
extractByIndex,ChromBackend, ANY-method
(coreChromVariables), 17

extractByIndex,ChromBackend,missing-method

(coreChromVariables), 17

factorize (coreChromVariables), 17
factorize,Chromatograms-method
(Chromatograms), 2
factorize,ChromBackend-method
(coreChromVariables), 17
factorize,ChromBackendSpectra-method
(reset), 38
fillCoreChromVariables (reset), 38
filterChromData (chromData), 12
filterChromData,Chromatograms-method
(chromData), 12
filterChromData,ChromBackend-method
(coreChromVariables), 17
filterPeaksData (peaksData), 29

INDEX

filterPeaksData,Chromatograms-method
(peaksData), 29

filterPeaksData,ChromBackend-method
(coreChromVariables), 17

hidden_aliases (reset), 38

imputePeaksData (peaksData), 29
imputePeaksData,Chromatograms-method
(peaksData), 29
imputePeaksData,ChromBackend-method
(coreChromVariables), 17
intensity,Chromatograms-method
(peaksData), 29
intensity,ChromBackend-method
(coreChromVariables), 17
intensity<-,Chromatograms-method
(peaksData), 29
intensity<-,ChromBackend-method
(coreChromVariables), 17
isEmpty, ChromBackend-method
(coreChromVariables), 17
isReadOnly,ChromBackend-method
(coreChromVariables), 17
isReadOnly, ChromBackendMemory-method
(reset), 38
isReadOnly, ChromBackendMzR-method
(reset), 38
isReadOnly, ChromBackendSpectra-method
(reset), 38

length,Chromatograms-method
(chromData), 12

length, ChromBackend-method
(coreChromVariables), 17

lengths,Chromatograms-method
(peaksData), 29

lengths,ChromBackend-method
(coreChromVariables), 17

list, 3

msLevel (chromData), 12

msLevel, Chromatograms-method
(chromData), 12

msLevel, ChromBackend-method
(coreChromVariables), 17

msLevel<- (chromData), 12

msLevel<-,Chromatograms-method
(chromData), 12

45

msLevel<-,ChromBackend-method
(coreChromVariables), 17

mz (chromData), 12

mz,Chromatograms-method (chromData), 12

mz ,ChromBackend-method
(coreChromVariables), 17

mz<- (chromData), 12

mz<-,Chromatograms-method (chromData),
12

mz<-,ChromBackend-method
(coreChromVariables), 17

mzMax (chromData), 12

mzMax ,Chromatograms-method (chromData),
12

mzMax , ChromBackend-method
(coreChromVariables), 17

mzMax<- (chromData), 12

mzMax<-,Chromatograms-method
(chromData), 12

mzMax<-,ChromBackend-method
(coreChromVariables), 17

mzMin (chromData), 12

mzMin,Chromatograms-method (chromData),
12

mzMin, ChromBackend-method
(coreChromVariables), 17

mzMin<- (chromData), 12

mzMin<-,Chromatograms-method
(chromData), 12

mzMin<-,ChromBackend-method
(coreChromVariables), 17

peaksData, 5, 6, 16, 29, 37
peaksData,Chromatograms-method
(peaksData), 29
peaksData, ChromBackend-method
(coreChromVariables), 17
peaksData,ChromBackendMemory-method
(reset), 38
peaksData,ChromBackendMzR-method
(reset), 38
peaksData,ChromBackendSpectra-method
(reset), 38
peaksData<-,Chromatograms-method
(peaksData), 29
peaksData<-,ChromBackend-method
(coreChromVariables), 17
peaksData<-,ChromBackendMemory-method
(reset), 38

46

peaksData<-,ChromBackendMzR-method
(reset), 38
peaksData<-,ChromBackendSpectra-method
(reset), 38
peaksVariables (peaksData), 29
peaksVariables,Chromatograms-method
(peaksData), 29
peaksVariables,ChromBackend-method
(coreChromVariables), 17
peaksVariables,ChromBackendMemory-method
(reset), 38
plot.default(), 34
plotChromatograms, 33
plotChromatogramsOverlay
(plotChromatograms), 33
precursorMz (chromData), 12
precursorMz,Chromatograms-method
(chromData), 12
precursorMz,ChromBackend-method
(coreChromVariables), 17
precursorMz<- (chromData), 12
precursorMz<-, Chromatograms-method
(chromData), 12
precursorMz<-,ChromBackend-method
(coreChromVariables), 17
precursorMzMax (chromData), 12
precursorMzMax,Chromatograms-method
(chromData), 12
precursorMzMax,ChromBackend-method
(coreChromVariables), 17
precursorMzMax<- (chromData), 12
precursorMzMax<-,Chromatograms-method
(chromData), 12
precursorMzMax<-,ChromBackend-method
(coreChromVariables), 17
precursorMzMin (chromData), 12
precursorMzMin,Chromatograms-method
(chromData), 12
precursorMzMin,ChromBackend-method
(coreChromVariables), 17
precursorMzMin<- (chromData), 12
precursorMzMin<-,Chromatograms-method
(chromData), 12
precursorMzMin<-,ChromBackend-method
(coreChromVariables), 17
processingChunkFactor,Chromatograms-method
(processingQueue), 35
processingChunkSize,Chromatograms-method

INDEX

(processingQueue), 35
processingChunkSize<-,Chromatograms-method
(processingQueue), 35
processingQueue, 5, 6, 16, 32, 35
productMz (chromData), 12
productMz,Chromatograms-method
(chromData), 12
productMz,ChromBackend-method
(coreChromVariables), 17
productMz<- (chromData), 12
productMz<-,Chromatograms-method
(chromData), 12
productMz<-,ChromBackend-method
(coreChromVariables), 17
productMzMax (chromData), 12
productMzMax,Chromatograms-method
(chromData), 12
productMzMax, ChromBackend-method
(coreChromVariables), 17
productMzMax<- (chromData), 12
productMzMax<-,Chromatograms-method
(chromData), 12
productMzMax<-,ChromBackend-method
(coreChromVariables), 17
productMzMin (chromData), 12
productMzMin,Chromatograms-method
(chromData), 12
productMzMin, ChromBackend-method
(coreChromVariables), 17
productMzMin<- (chromData), 12
productMzMin<-,Chromatograms-method
(chromData), 12
productMzMin<-,ChromBackend-method
(coreChromVariables), 17

reset, 38
reset,ChromBackend-method
(coreChromVariables), 17
rtime,Chromatograms-method (peaksData),
29
rtime,ChromBackend-method
(coreChromVariables), 17
rtime<-,Chromatograms-method
(peaksData), 29
rtime<-,ChromBackend-method
(coreChromVariables), 17

setBackend, Chromatograms,ChromBackend-method

(Chromatograms), 2

INDEX

show,Chromatograms-method (reset), 38

show, ChromBackendMemory-method (reset),
38

show, ChromBackendMzR-method (reset), 38

show, ChromBackendSpectra-method
(reset), 38

Spectra: :Spectra(), 9

split(), 22

split,ChromBackend, ANY-method
(coreChromVariables), 17

split.default(), 27

supportsSetBackend, ChromBackend-method
(coreChromVariables), 17

supportsSetBackend,ChromBackendMemory-method
(reset), 38

supportsSetBackend, ChromBackendMzR-method
(reset), 38

supportsSetBackend, ChromBackendSpectra-method
(reset), 38

validChromData (reset), 38
validPeaksData (reset), 38

47

	Chromatograms
	ChromBackendMemory
	ChromBackendMzR
	ChromBackendSpectra
	chromData
	coreChromVariables
	peaksData
	plotChromatograms
	processingQueue
	reset
	Index

