
Package ‘EMDomics’
January 15, 2026

Title Earth Mover's Distance for Differential Analysis of Genomics
Data

Description The EMDomics algorithm is used to perform a supervised
multi-class analysis to measure the magnitude and statistical
significance of observed continuous genomics data between
groups. Usually the data will be gene expression values from
array-based or sequence-based experiments, but data from other
types of experiments can also be analyzed (e.g. copy number
variation). Traditional methods like Significance Analysis of
Microarrays (SAM) and Linear Models for Microarray Data (LIMMA)
use significance tests based on summary statistics (mean and
standard deviation) of the distributions. This approach
lacks power to identify expression differences between groups
that show high levels of intra-group heterogeneity. The Earth
Mover's Distance (EMD) algorithm instead computes the ``work''
needed to transform one distribution into another, thus
providing a metric of the overall difference in shape between
two distributions. Permutation of sample labels is used to
generate q-values for the observed EMD scores. This package also
incorporates the Komolgorov-Smirnov (K-S) test and the Cramer von Mises
test (CVM), which are both common distribution comparison tests.

Version 2.41.0

biocViews Software, DifferentialExpression, GeneExpression, Microarray

Maintainer
Sadhika Malladi <contact@sadhikamalladi.com> and Daniel Schmolze <emd@schmolze.com>

Depends R (>= 3.2.1)

Imports emdist, BiocParallel, matrixStats, ggplot2, CDFt,
preprocessCore

Suggests knitr

License MIT + file LICENSE

LazyData true

VignetteBuilder knitr

NeedsCompilation no

1

2 emdomics-package

Author Sadhika Malladi [aut, cre], Daniel Schmolze [aut, cre], Andrew Beck [aut], Sheida Nabavi
[aut]

git_url https://git.bioconductor.org/packages/EMDomics

git_branch devel

git_last_commit a487db4

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-15

Contents
emdomics-package . 2
calculate_cvm . 3
calculate_cvm_gene . 4
calculate_emd . 5
calculate_emd_gene . 7
calculate_ks . 8
calculate_ks_gene . 10
CVMomics . 11
EMDomics . 12
KSomics . 13
plot_cvmnull . 14
plot_cvmperms . 15
plot_cvm_density . 15
plot_emdnull . 16
plot_emdperms . 17
plot_emd_density . 18
plot_ksnull . 19
plot_ksperms . 20
plot_ks_density . 20

Index 22

emdomics-package Earth Mover’s Distance algorithm for differential analysis of ge-
nomics data.

Description

calculate_emd, calculate_cvm, or calculate_ks will usually be the only functions needed,
depending on the type of distribution comparison test that is desired.

calculate_cvm 3

calculate_cvm Cramer von Mises for differential analysis of genomics data

Description

This is a main user interface to the EMDomics package, and will usually the only function needed
when conducting an analysis using the CVM algorithm. Analyses can also be conducted with the
Komolgorov-Smirnov Test using calculate_ks or the Earth Mover’s Distance algorithm using
calculate_emd.

The algorithm is used to compare genomics data between any number of groups. Usually the data
will be gene expression values from array-based or sequence-based experiments, but data from other
types of experiments can also be analyzed (e.g. copy number variation).

Traditional methods like Significance Analysis of Microarrays (SAM) and Linear Models for Mi-
croarray Data (LIMMA) use significance tests based on summary statistics (mean and standard
deviation) of the two distributions. This approach tends to give non-significant results if the two
distributions are highly heterogeneous, which can be the case in many biological circumstances
(e.g sensitive vs. resistant tumor samples).

The Cramer von Mises (CVM) algorithm generates a test statistic that is the sum of the squared
values of the differences between two cumulative distribution functions (CDFs). As a result, the
test statistic tends to overestimate the similarity between two distributions and cannot effectively
handle partial matching like EMD does. However, it is one of the most commonly referenced
nonparametric two-class distribution comparison tests in non-genomic contexts.

The CVM-based algorithm implemented in EMDomics has two main steps. First, a matrix (e.g. of
expression data) is divided into data for each of the groups. Every possible pairwise CVM score is
then computed and stored in a table. The CVM score for a single gene is calculated by averaging
all of the pairwise CVM scores. Next, the labels for each of the groups are randomly permuted a
specified number of times, and an CVM score for each permutation is calculated. The median of
the permuted scores for each gene is used as the null distribution, and the False Discovery Rate
(FDR) is computed for a range of permissive to restrictive significance thresholds. The threshold
that minimizes the FDR is defined as the q-value, and is used to interpret the significance of the
CVM score analogously to a p-value (e.g. q-value < 0.05 is significant.)

Usage

calculate_cvm(data, outcomes, nperm = 100, pairwise.p = FALSE,
seq = FALSE, quantile.norm = FALSE, verbose = TRUE, parallel = TRUE)

Arguments

data A matrix containing genomics data (e.g. gene expression levels). The rownames
should contain gene identifiers, while the column names should contain sample
identifiers.

outcomes A vector containing group labels for each of the samples provided in the data
matrix. The names should be the sample identifiers provided in data.

4 calculate_cvm_gene

nperm An integer specifying the number of randomly permuted CVM scores to be com-
puted. Defaults to 100.

pairwise.p Boolean specifying whether the permutation-based q-values should be com-
puted for each pairwise comparison. Defaults to FALSE.

seq Boolean specifying if the given data is RNA Sequencing data and ought to be
normalized. Set to TRUE, if passing transcripts per million (TPM) data or raw
data that is not scaled. If TRUE, data will be normalized by first multiplying by
1E6, then adding 1, then taking the log base 2. If FALSE, the data will be handled
as is (unless quantile.norm is TRUE). Note that as a distribution comparison
function, K-S will compute faster with scaled data. Defaults to FALSE.

quantile.norm Boolean specifying is data should be normalized by quantiles. If TRUE, then the
normalize.quantiles function is used. Defaults to FALSE.

verbose Boolean specifying whether to display progress messages.

parallel Boolean specifying whether to use parallel processing via the BiocParallel pack-
age. Defaults to TRUE.

Value

The function returns an CVMomics object.

See Also

CVMomics CramerVonMisesTwoSamples

Examples

100 genes, 100 samples
dat <- matrix(rnorm(10000), nrow=100, ncol=100)
rownames(dat) <- paste("gene", 1:100, sep="")
colnames(dat) <- paste("sample", 1:100, sep="")

"A": first 50 samples; "B": next 30 samples; "C": final 20 samples
outcomes <- c(rep("A",50), rep("B",30), rep("C",20))
names(outcomes) <- colnames(dat)

results <- calculate_cvm(dat, outcomes, nperm=10, parallel=FALSE)
head(results$cvm)

calculate_cvm_gene Calculate CVM score for a single gene

Description

Calculate CVM score for a single gene

Usage

calculate_cvm_gene(vec, outcomes, sample_names)

calculate_emd 5

Arguments

vec A named vector containing data (e.g. expression data) for a single gene.

outcomes A vector of group labels for the samples. The names must correspond to the
names of vec.

sample_names A character vector with the names of the samples in vec.

Details

All possible combinations of the classes are used as pairwise comparisons. The data in vec is di-
vided based on class labels based on the outcomes identifiers given. For each pairwise computation,
the hist function is used to generate histograms for the two groups. The densities are then retrieved
and passed to CramerVonMisesTwoSamples to compute the pairwise CVM score. The total CVM
score for the given data is the average of the pairwise CVM scores.

Value

The cvm score is returned.

See Also

CramerVonMisesTwoSamples

Examples

100 genes, 100 samples
dat <- matrix(rnorm(10000), nrow=100, ncol=100)
rownames(dat) <- paste("gene", 1:100, sep="")
colnames(dat) <- paste("sample", 1:100, sep="")

"A": first 50 samples; "B": next 30 samples; "C": final 20 samples
outcomes <- c(rep("A",50), rep("B",30), rep("C",20))
names(outcomes) <- colnames(dat)

calculate_cvm_gene(dat[1,], outcomes, colnames(dat))

calculate_emd Earth Mover’s Distance for differential analysis of genomics data

Description

This is the main user interface to the EMDomics package, and will usually the only function
needed when conducting an analysis using the EMD algorithm. Analyses can also be conducted
with the Komolgorov-Smirnov Test using calculate_ks or the Cramer Von Mises algorithm using
calculate_cvm.

The algorithm is used to compare genomics data between any number of groups. Usually the data
will be gene expression values from array-based or sequence-based experiments, but data from other
types of experiments can also be analyzed (e.g. copy number variation).

6 calculate_emd

Traditional methods like Significance Analysis of Microarrays (SAM) and Linear Models for Mi-
croarray Data (LIMMA) use significance tests based on summary statistics (mean and standard
deviation) of the two distributions. This approach tends to give non-significant results if the two
distributions are highly heterogeneous, which can be the case in many biological circumstances
(e.g sensitive vs. resistant tumor samples).

The Earth Mover’s Distance algorithm instead computes the "work" needed to transform one distri-
bution into another, thus capturing possibly valuable information relating to the overall difference
in shape between two heterogeneous distributions.

The EMD-based algorithm implemented in EMDomics has two main steps. First, a matrix (e.g. of
expression data) is divided into data for each of the groups. Every possible pairwise EMD score is
then computed and stored in a table. The EMD score for a single gene is calculated by averaging
all of the pairwise EMD scores. Next, the labels for each of the groups are randomly permuted a
specified number of times, and an EMD score for each permutation is calculated. The median of
the permuted scores for each gene is used as the null distribution, and the False Discovery Rate
(FDR) is computed for a range of permissive to restrictive significance thresholds. The threshold
that minimizes the FDR is defined as the q-value, and is used to interpret the significance of the
EMD score analogously to a p-value (e.g. q-value < 0.05 is significant.)

Because EMD is based on a histogram binning of the expression levels, data that cannot be binned
will be discarded, and a message for that gene will be printed. The most likely reason for histogram
binning failing is due to uniform values (e.g. all 0s).

Usage

calculate_emd(data, outcomes, binSize = 0.2, nperm = 100,
pairwise.p = FALSE, seq = FALSE, quantile.norm = FALSE,
verbose = TRUE, parallel = TRUE)

Arguments

data A matrix containing genomics data (e.g. gene expression levels). The rownames
should contain gene identifiers, while the column names should contain sample
identifiers.

outcomes A vector containing group labels for each of the samples provided in the data
matrix. The names should be the sample identifiers provided in data.

binSize The bin size to be used when generating histograms of the data for each group.
Defaults to 0.2.

nperm An integer specifying the number of randomly permuted EMD scores to be com-
puted. Defaults to 100.

pairwise.p Boolean specifying whether the permutation-based q-values should be com-
puted for each pairwise comparison. Defaults to FALSE.

seq Boolean specifying if the given data is RNA Sequencing data and ought to be
normalized. Set to TRUE, if passing transcripts per million (TPM) data or raw
data that is not scaled. If TRUE, data will be normalized by first multiplying by
1E6, then adding 1, then taking the log base 2. If FALSE, the data will be handled
as is (unless quantile.norm is TRUE). Note that as a distribution comparison
function, EMD will compute faster with scaled data. Defaults to FALSE.

calculate_emd_gene 7

quantile.norm Boolean specifying is data should be normalized by quantiles. If TRUE, then the
normalize.quantiles function is used. Defaults to FALSE.

verbose Boolean specifying whether to display progress messages.

parallel Boolean specifying whether to use parallel processing via the BiocParallel pack-
age. Defaults to TRUE.

Value

The function returns an EMDomics object.

See Also

EMDomics emd2d

Examples

100 genes, 100 samples
dat <- matrix(rnorm(10000), nrow=100, ncol=100)
rownames(dat) <- paste("gene", 1:100, sep="")
colnames(dat) <- paste("sample", 1:100, sep="")

"A": first 50 samples; "B": next 30 samples; "C": final 20 samples
outcomes <- c(rep("A",50), rep("B",30), rep("C",20))
names(outcomes) <- colnames(dat)

results <- calculate_emd(dat, outcomes, nperm=10, parallel=FALSE)
head(results$emd)

calculate_emd_gene Calculate EMD score for a single gene

Description

Calculate EMD score for a single gene

Usage

calculate_emd_gene(vec, outcomes, sample_names, binSize = 0.2)

Arguments

vec A named vector containing data (e.g. expression data) for a single gene. Names
ought to correspond to samples.

outcomes A vector of group labels for the samples. The names must correspond to the
names of vec.

sample_names A character vector with the names of the samples in vec.

binSize The bin size to be used when generating histograms for each of the groups.

8 calculate_ks

Details

All possible combinations of the classes are used as pairwise comparisons. The data in vec is di-
vided based on class labels based on the outcomes identifiers given. For each pairwise computation,
the hist function is used to generate histograms for the two groups. The densities are then retrieved
and passed to emd2d to compute the pairwise EMD score. The total EMD score for the given data
is the average of the pairwise EMD scores.

Value

The emd score is returned.

See Also

emd2d

Examples

100 genes, 100 samples
dat <- matrix(rnorm(10000), nrow=100, ncol=100)
rownames(dat) <- paste("gene", 1:100, sep="")
colnames(dat) <- paste("sample", 1:100, sep="")

"A": first 50 samples; "B": next 30 samples; "C": final 20 samples
outcomes <- c(rep("A",50), rep("B",30), rep("C",20))
names(outcomes) <- colnames(dat)

calculate_emd_gene(dat[1,], outcomes, colnames(dat))

calculate_ks Calculate the Komolgorov-Smirnov test statistic and q-values for dif-
ferential gene expression analysis.

Description

This is only function needed when conducting an analysis using the Komolgorov-Smirnov algo-
rithm. Analyses can also be conducted with the EMD algorithm using calculate_emd or the
Cramer Von Mises (CVM) algorithm using calculate_cvm.

The algorithm is used to compare genomics data between any number of groups. Usually the data
will be gene expression values from array-based or sequence-based experiments, but data from other
types of experiments can also be analyzed (e.g. copy number variation).

Traditional methods like Significance Analysis of Microarrays (SAM) and Linear Models for Mi-
croarray Data (LIMMA) use significance tests based on summary statistics (mean and standard
deviation) of the two distributions. This approach tends to give non-significant results if the two
distributions are highly heterogeneous, which can be the case in many biological circumstances
(e.g sensitive vs. resistant tumor samples).

calculate_ks 9

Komolgorov-Smirnov instead calculates a test statistic that is the maximum distance between two
cumulative distribution functions (CDFs). Unlike the EMD score, the KS test statistic summarizes
only the maximum difference (while EMD considers quantity and distance between all differences).

The KS algorithm implemented in EMDomics has two main steps. First, a matrix (e.g. of expres-
sion data) is divided into data for each of the groups. Every possible pairwise KS score is then
computed and stored in a table. The KS score for a single gene is calculated by averaging all of the
pairwise KS scores. If the user sets pairwise.p to true, then the p-values from the KS test are ad-
justed using the Benjamini-Hochberg method and stored in a table. Next, the labels for each of the
groups are randomly permuted a specified number of times, and an EMD score for each permutation
is calculated. The median of the permuted scores for each gene is used as the null distribution, and
the False Discovery Rate (FDR) is computed for a range of permissive to restrictive significance
thresholds. The threshold that minimizes the FDR is defined as the q-value, and is used to interpret
the significance of the EMD score analogously to a p-value (e.g. q-value < 0.05 = significant). The
q-values returned by the KS test (and adjusted for multiple significance testing) can be compared to
the permuted q-values.

Usage

calculate_ks(data, outcomes, nperm = 100, pairwise.p = FALSE, seq = FALSE,
quantile.norm = FALSE, verbose = TRUE, parallel = TRUE)

Arguments

data A matrix containing genomics data (e.g. gene expression levels). The rownames
should contain gene identifiers, while the column names should contain sample
identifiers.

outcomes A vector containing group labels for each of the samples provided in the data
matrix. The names should be the sample identifiers provided in data.

nperm An integer specifying the number of randomly permuted EMD scores to be com-
puted. Defaults to 100.

pairwise.p Boolean specifying whether the user wants the pairwise p-values. Pairwise p-
values returned by ks.test are adjusted within pairwise comparison using the
Benjamini-Hochberg (BH) method. Defaults to FALSE.

seq Boolean specifying if the given data is RNA Sequencing data and ought to be
normalized. Set to TRUE, if passing transcripts per million (TPM) data or raw
data that is not scaled. If TRUE, data will be normalized by first multiplying by
1E6, then adding 1, then taking the log base 2. If FALSE, the data will be handled
as is (unless quantile.norm is TRUE). Note that as a distribution comparison
function, K-S will compute faster with scaled data. Defaults to FALSE.

quantile.norm Boolean specifying is data should be normalized by quantiles. If TRUE, then the
normalize.quantiles function is used. Defaults to FALSE.

verbose Boolean specifying whether to display progress messages.
parallel Boolean specifying whether to use parallel processing via the BiocParallel pack-

age. Defaults to TRUE.

Value

The function returns an KSomics object.

10 calculate_ks_gene

See Also

EMDomics ks.test

Examples

100 genes, 100 samples
dat <- matrix(rnorm(10000), nrow=100, ncol=100)
rownames(dat) <- paste("gene", 1:100, sep="")
colnames(dat) <- paste("sample", 1:100, sep="")

"A": first 50 samples; "B": next 30 samples; "C": final 20 samples
outcomes <- c(rep("A",50), rep("B",30), rep("C",20))
names(outcomes) <- colnames(dat)

results <- calculate_ks(dat, outcomes, nperm=10, parallel=FALSE)
head(results$ks)

calculate_ks_gene Calculate KS score for a single gene

Description

Calculate KS score for a single gene

Usage

calculate_ks_gene(vec, outcomes, sample_names)

Arguments

vec A named vector containing data (e.g. expression data) for a single gene.

outcomes A vector of group labels for the samples. The names must correspond to the
names of vec.

sample_names A character vector with the names of the samples in vec.

Details

All possible combinations of the classes are used as pairwise comparisons. The data in vec is di-
vided based on class labels based on the outcomes identifiers given. For each pairwise computation,
ks.test is used to compute the pairwise KS scores. The total KS score for the given data is the
average of the pairwise KS scores.

Value

The KS score is returned.

CVMomics 11

See Also

ks.test

Examples

100 genes, 100 samples
dat <- matrix(rnorm(100000), nrow=100, ncol=1000)
rownames(dat) <- paste("gene", 1:100, sep="")
colnames(dat) <- paste("sample", 1:1000, sep="")

assign outcomes
outcomes <- c(rep(1,500), rep(2,300), rep(3,200))
names(outcomes) <- colnames(dat)

calculate_ks_gene(dat[1,], outcomes, colnames(dat))

CVMomics Create an CVMomics object

Description

This is the constructor for objects of class ’CVMomics’. It is used in calculate_cvm to construct
the return value.

Usage

CVMomics(data, outcomes, cvm, cvm.perm, pairwise.cvm.table, pairwise.q.table)

Arguments

data A matrix containing genomics data (e.g. gene expression levels). The rownames
should contain gene identifiers, while the column names should contain sample
identifiers.

outcomes A vector of group labels for each of the sample identifiers. The names of this
vector must correspond to the column names of data.

cvm A matrix containing a row for each gene in data, and with the following columns:

• cvm The calculated cvm score.
• q-value The calculated q-value.

The row names should specify the gene identifiers for each row.

cvm.perm A matrix containing a row for each gene in data, and with a column containing
cvm scores for each random permutation calculated via calculate_cvm.

pairwise.cvm.table

A table containing the CVM scores for each pairwise comparison for each gene.
For a two-class problem, there should be only one column comparing class 1 and
class 2. The row names should be gene identifiers. The column names should
be in the format "<class 1> vs <class 2>" (e.g. "1 vs 2" or "A vs B").

12 EMDomics

pairwise.q.table

A table containing the permutation-based q-values for each pairwise comparison
for each gene. May be NULL if pairwise.p=F.

Value

The function combines its arguments in a list, which is assigned class ’CVMomics’. The resulting
object is returned.

See Also

calculate_cvm

EMDomics Create an EMDomics object

Description

This is the constructor for objects of class ’EMDomics’. It is used in calculate_emd to construct
the return value.

Usage

EMDomics(data, outcomes, emd, emd.perm, pairwise.emd.table, pairwise.q.table)

Arguments

data A matrix containing genomics data (e.g. gene expression levels). The rownames
should contain gene identifiers, while the column names should contain sample
identifiers.

outcomes A vector of group labels for each of the sample identifiers. The names of this
vector must correspond to the column names of data.

emd A matrix containing a row for each gene in data, and with the following columns:

• emd The calculated emd score.
• q-value The calculated q-value.

The row names should specify the gene identifiers for each row.

emd.perm A matrix containing a row for each gene in data, and with a column containing
emd scores for each random permutation calculated via calculate_emd.

pairwise.emd.table

A table containing the EMD scores for each pairwise comparison for each gene.
For a two-class problem, there should be only one column comparing class 1 and
class 2. The row names should be gene identifiers. The column names should
be in the format "<class 1> vs <class 2>" (e.g. "1 vs 2" or "A vs B").

pairwise.q.table

A table containing the permutation-based q-values for each pairwise comparison
for each gene. May be NULL if pairwise.p=F.

KSomics 13

Value

The function combines its arguments in a list, which is assigned class ’EMDomics’. The resulting
object is returned.

See Also

calculate_emd

KSomics Create an KSomics object

Description

This is the constructor for objects of class ’KSomics’. It is used in calculate_ks to construct the
return value.

Usage

KSomics(data, outcomes, ks, ks.perm, pairwise.ks.score, pairwise.ks.q = NULL)

Arguments

data A matrix containing genomics data (e.g. gene expression levels). The rownames
should contain gene identifiers, while the column names should contain sample
identifiers.

outcomes A vector of group labels for each of the sample identifiers. The names of this
vector must correspond to the column names of data.

ks A matrix containing a row for each gene in data, and with the following columns:

• ks The calculated KS score.
• q-value The calculated q-value (by permutation analysis).

The row names should specify the gene identifiers for each row.

ks.perm A matrix containing a row for each gene in data, and with a column containing
KS scores for each random permutation calculated via calculate_ks.

pairwise.ks.score

A table containing the KS scores for each pairwise comparison for each gene.
For a two-class problem, there should be only one column comparing class 1 and
class 2. The row names should be gene identifiers. The column names should
be in the format "<class 1> vs <class 2>" (e.g. "1 vs 2" or "A vs B").

pairwise.ks.q A table of the same dimensions as pairwise.ks.score with the q-values for the
pairwise comparisons. Q-values are computed by adjusting the p-value using the
Benjamini-Hochberg method within each pairwise comparison.

Value

The function combines its arguments in a list, which is assigned class ’KSomics’. The resulting
object is returned.

14 plot_cvmnull

See Also

calculate_ks

plot_cvmnull Plot null distribution of permuted cvm scores vs. calculated cvm
scores.

Description

The median of the randomly permuted CVM scores (i.e. the null distribution) is plotted on the
x-axis, vs. the observed CVM scores on the y-axis. The line y=x is superimposed.

Usage

plot_cvmnull(cvmobj)

Arguments

cvmobj An CVMomics object, typically returned via a call to calculate_cvm.

Value

A ggplot object is returned. If the value is not assigned, a plot will be drawn.

See Also

calculate_cvm ggplot

Examples

100 genes, 100 samples
dat <- matrix(rnorm(10000), nrow=100, ncol=100)
rownames(dat) <- paste("gene", 1:100, sep="")
colnames(dat) <- paste("sample", 1:100, sep="")

"group A" = first 50, "group B" = second 50
groups <- c(rep("A",50),rep("B",50))
names(groups) <- colnames(dat)

results <- calculate_cvm(dat, groups, nperm=10, parallel=FALSE)
plot_cvmnull(results)

plot_cvmperms 15

plot_cvmperms Plot histogram of CVM scores calculated via random permutation.

Description

The permuted CVM scores stored in cvmobj$cvm.perm are plotted as a histogram.

Usage

plot_cvmperms(cvmobj)

Arguments

cvmobj An CVMomics object, typically returned via a call to calculate_cvm.

Value

A ggplot object is returned. If the value is not assigned, a plot will be drawn.

See Also

calculate_cvm ggplot

Examples

100 genes, 100 samples
dat <- matrix(rnorm(10000), nrow=100, ncol=100)
rownames(dat) <- paste("gene", 1:100, sep="")
colnames(dat) <- paste("sample", 1:100, sep="")

"A": first 50 samples; "B": next 30 samples; "C": final 20 samples
outcomes <- c(rep("A",50), rep("B",30), rep("C",20))
names(outcomes) <- colnames(dat)

results <- calculate_cvm(dat, outcomes, nperm=10, parallel=FALSE)
plot_cvmperms(results)

plot_cvm_density Plot distributions and CVM score for a gene.

Description

The data for the specified gene is retrieved from cvmobj$data. outcomes is used to divide the data
into distributions for each group, which are then visualized as density distributions. The calculated
CVM score for the specified gene is displayed in the plot title.

16 plot_emdnull

Usage

plot_cvm_density(cvmobj, gene_name)

Arguments

cvmobj An CVMomics object, typically returned via a call to calculate_cvm.

gene_name The gene to visualize. The name should be defined as a row name in cvmobj$cvm.

Value

A ggplot object is returned. If the value is not assigned, a plot will be drawn.

See Also

calculate_cvm ggplot

Examples

100 genes, 100 samples
dat <- matrix(rnorm(10000), nrow=100, ncol=100)
rownames(dat) <- paste("gene", 1:100, sep="")
colnames(dat) <- paste("sample", 1:100, sep="")

"A": first 50 samples; "B": next 30 samples; "C": final 20 samples
outcomes <- c(rep("A",50), rep("B",30), rep("C",20))
names(outcomes) <- colnames(dat)

results <- calculate_cvm(dat, outcomes, nperm=10, parallel=FALSE)
plot_cvm_density(results, "gene5")

plot_emdnull Plot null distribution of permuted EMD scores vs. calculated EMD
scores.

Description

The median of the randomly permuted EMD scores (i.e. the null distribution) is plotted on the
x-axis, vs. the observed EMD scores on the y-axis. The line y=x is superimposed.

Usage

plot_emdnull(emdobj)

Arguments

emdobj An EMDomics object, typically returned via a call to calculate_emd.

plot_emdperms 17

Value

A ggplot object is returned. If the value is not assigned, a plot will be drawn.

See Also

calculate_emd ggplot

Examples

100 genes, 100 samples
dat <- matrix(rnorm(10000), nrow=100, ncol=100)
rownames(dat) <- paste("gene", 1:100, sep="")
colnames(dat) <- paste("sample", 1:100, sep="")

"group A" = first 50, "group B" = second 50
groups <- c(rep("A",50),rep("B",50))
names(groups) <- colnames(dat)

results <- calculate_emd(dat, groups, nperm=10, parallel=FALSE)
plot_emdnull(results)

plot_emdperms Plot histogram of EMD scores calculated via random permutation.

Description

The permuted EMD scores stored in emdobj$emd.perm are plotted as a histogram.

Usage

plot_emdperms(emdobj)

Arguments

emdobj An EMDomics object, typically returned via a call to calculate_emd.

Value

A ggplot object is returned. If the value is not assigned, a plot will be drawn.

See Also

calculate_emd ggplot

18 plot_emd_density

Examples

100 genes, 100 samples
dat <- matrix(rnorm(10000), nrow=100, ncol=100)
rownames(dat) <- paste("gene", 1:100, sep="")
colnames(dat) <- paste("sample", 1:100, sep="")

"A": first 50 samples; "B": next 30 samples; "C": final 20 samples
outcomes <- c(rep("A",50), rep("B",30), rep("C",20))
names(outcomes) <- colnames(dat)

results <- calculate_emd(dat, outcomes, nperm=10, parallel=FALSE)
plot_emdperms(results)

plot_emd_density Plot distributions and EMD score for a gene.

Description

The data for the specified gene is retrieved from emdobj$data. outcomes is used to divide the data
into distributions for each group, which are then visualized as density distributions. The calculated
EMD score for the specified gene is displayed in the plot title.

Usage

plot_emd_density(emdobj, gene_name)

Arguments

emdobj An EMDomics object, typically returned via a call to calculate_emd.

gene_name The gene to visualize. The name should be defined as a row name in emdobj$emd.

Value

A ggplot object is returned. If the value is not assigned, a plot will be drawn.

See Also

calculate_emd ggplot

Examples

100 genes, 100 samples
dat <- matrix(rnorm(10000), nrow=100, ncol=100)
rownames(dat) <- paste("gene", 1:100, sep="")
colnames(dat) <- paste("sample", 1:100, sep="")

"A": first 50 samples; "B": next 30 samples; "C": final 20 samples
outcomes <- c(rep("A",50), rep("B",30), rep("C",20))

plot_ksnull 19

names(outcomes) <- colnames(dat)

results <- calculate_emd(dat, outcomes, nperm=10, parallel=FALSE)
plot_emd_density(results, "gene5")

plot_ksnull Plot null distribution of permuted ks scores vs. calculated ks scores.

Description

The median of the randomly permuted KS scores (i.e. the null distribution) is plotted on the x-axis,
vs. the observed KS scores on the y-axis. The line y=x is superimposed.

Usage

plot_ksnull(ksobj)

Arguments

ksobj An KSomics object, typically returned via a call to calculate_ks.

Value

A ggplot object is returned. If the value is not assigned, a plot will be drawn.

See Also

calculate_ks ggplot

Examples

100 genes, 100 samples
dat <- matrix(rnorm(10000), nrow=100, ncol=100)
rownames(dat) <- paste("gene", 1:100, sep="")
colnames(dat) <- paste("sample", 1:100, sep="")

"group A" = first 50, "group B" = second 50
groups <- c(rep("A",50),rep("B",50))
names(groups) <- colnames(dat)

results <- calculate_ks(dat, groups, nperm=10, parallel=FALSE)
plot_ksnull(results)

20 plot_ks_density

plot_ksperms Plot histogram of KS scores calculated via random permutation.

Description

The permuted KS scores stored in ksobj$ks.perm are plotted as a histogram.

Usage

plot_ksperms(ksobj)

Arguments

ksobj An KSomics object, typically returned via a call to calculate_ks.

Value

A ggplot object is returned. If the value is not assigned, a plot will be drawn.

See Also

calculate_ks ggplot

Examples

100 genes, 100 samples
dat <- matrix(rnorm(10000), nrow=100, ncol=100)
rownames(dat) <- paste("gene", 1:100, sep="")
colnames(dat) <- paste("sample", 1:100, sep="")

"A": first 50 samples; "B": next 30 samples; "C": final 20 samples
outcomes <- c(rep("A",50), rep("B",30), rep("C",20))
names(outcomes) <- colnames(dat)

results <- calculate_ks(dat, outcomes, nperm=10, parallel=FALSE)
plot_ksperms(results)

plot_ks_density Plot distributions and KS score for a gene.

Description

The data for the specified gene is retrieved from ksobj$data. outcomes is used to divide the data
into distributions for each group, which are then visualized as density distributions. The calculated
KS score for the specified gene is displayed in the plot title.

plot_ks_density 21

Usage

plot_ks_density(ksobj, gene_name)

Arguments

ksobj An KSomics object, typically returned via a call to calculate_ks.

gene_name The gene to visualize. The name should be defined as a row name in ksobj$ks.

Value

A ggplot object is returned. If the value is not assigned, a plot will be drawn.

See Also

calculate_ks ggplot

Examples

100 genes, 100 samples
dat <- matrix(rnorm(10000), nrow=100, ncol=100)
rownames(dat) <- paste("gene", 1:100, sep="")
colnames(dat) <- paste("sample", 1:100, sep="")

"A": first 50 samples; "B": next 30 samples; "C": final 20 samples
outcomes <- c(rep("A",50), rep("B",30), rep("C",20))
names(outcomes) <- colnames(dat)

results <- calculate_ks(dat, outcomes, nperm=10, parallel=FALSE)
plot_ks_density(results, "gene5")

Index

calculate_cvm, 2, 3, 11, 12, 14–16
calculate_cvm_gene, 4
calculate_emd, 2, 5, 12, 13, 16–18
calculate_emd_gene, 7
calculate_ks, 2, 8, 13, 14, 19–21
calculate_ks_gene, 10
CramerVonMisesTwoSamples, 4, 5
CVMomics, 4, 11, 14–16

emd2d, 7, 8
EMDomics, 7, 10, 12, 16–18
emdomics-package, 2

ggplot, 14–21

hist, 5, 8

ks.test, 9–11
KSomics, 9, 13, 19–21

normalize.quantiles, 4, 7, 9

plot_cvm_density, 15
plot_cvmnull, 14
plot_cvmperms, 15
plot_emd_density, 18
plot_emdnull, 16
plot_emdperms, 17
plot_ks_density, 20
plot_ksnull, 19
plot_ksperms, 20

22

	emdomics-package
	calculate_cvm
	calculate_cvm_gene
	calculate_emd
	calculate_emd_gene
	calculate_ks
	calculate_ks_gene
	CVMomics
	EMDomics
	KSomics
	plot_cvmnull
	plot_cvmperms
	plot_cvm_density
	plot_emdnull
	plot_emdperms
	plot_emd_density
	plot_ksnull
	plot_ksperms
	plot_ks_density
	Index

