Package ‘MBECS’

January 21, 2026

Title Evaluation and correction of batch effects in microbiome
data-sets

Version 1.15.0

Description The Microbiome Batch Effect Correction Suite (MBECS) provides a set of func-
tions to evaluate and mitigate unwated noise due to processing in batches. To that end it incorpo-
rates a host of batch correcting algorithms (BECA) from various packages. In addition it of-
fers a correction and reporting pipeline that provides a preliminary look at the characteris-
tics of a data-set before and after correcting for batch effects.

biocViews BatchEffect, Microbiome, ReportWriting, Visualization,
Normalization, QualityControl

URL https://github.com/rmolbrich/MBECS

BugReports https://github.com/rmolbrich/MBECS/issues/new
License Artistic-2.0

Encoding UTF-8

LazyData false

RoxygenNote 7.2.3

Imports methods, magrittr, phyloseq, limma, Ime4, ImerTest, pheatmap,
rmarkdown, cluster, dplyr, ggplot2, gridExtra, ruv, sva,
tibble, tidyr, vegan, stats, utils, Matrix

Suggests knitr, markdown, BiocStyle, testthat (>= 3.0.0)
Depends R (>=4.1)

Collate 'MBECS-package.R' 'data.R' 'mbecs_classes.R'
'mbecs_analyses.R' 'mbecs_corrections.R' 'mbecs_helper.R'
'mbecs_plots.R' 'mbecs_reports.R'

VignetteBuilder knitr

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/MBECS
git_branch devel

git_last_commit 796859

git_last_commit_date 2025-10-29

https://github.com/rmolbrich/MBECS
https://github.com/rmolbrich/MBECS/issues/new

2 Contents

Repository Bioconductor 3.23
Date/Publication 2026-01-20

Author Michael Olbrich [aut, cre] (ORCID:
<https://orcid.org/0000-0003-2789-3382>)

Maintainer Michael Olbrich <M.0lbrich@protonmail.com>

Contents
.ambecGetData e 3
.mbecGetPhyloseq 5
.ambecSetData e 6
ColinScore L. e e e e e 7
dummy.list L e e e 7
dummy.mbec e 8
dummy.pso e e e e e e 9
externalPLSDA e e e 9
mbecBat L e e e e e e e 10
mbecBMC e e e e e 11
mbecBOX L e e e e e e 11
mbecBoxPlot e e 13
mbecCLR e e e e 14
mbecCOITECtION v . o it e e e e e e e e e e e 14
MbecData e e e 17
mbecDeflate 19
mbecDummy 19
mbecExplainedVariance 0oL 20
mbecGetData e 21
mbecGetData,MbecData-method 22
mbecGetPhyloseq 23
mbecGetPhyloseq,MbecData-method 24
mbecHeat 25
mbecHeatPlot 27
mbecHelpFactor L 27
mbecLM e 28
mbecMixedVariance 29
mbecModelVariance e 30
mbecModelVarianceLM 32
mbecModelVarianceLMM 33
mbecModelVariancePVCA 34
mbecModelVarianceRDAo 35
mbecModelVarianceSCOEF 36
mbecMOSaIC e e e 37
mbecMosaicPlot 38
mbecPCA e 38
mbecPCA,MbecData-method 40
mbecPCAPIot e 41

mbecPLSDA 42

https://orcid.org/0000-0003-2789-3382

.mbecGetData 3

mbecPN e 43
mbecProcessInput 44
mbecProcessInput,list-method L 44
mbecProcessInput,MbecData-methodo oL 45
mbecProcessInput,phyloseq-method o000 46
mbecPVCAStatsPlot 47
mbecRBE 48
mbecRDAStatsPlot e 48
mbecReportPosto 49
mbecReportPrelim 0oL 50
mbecRLE e e 51
mbecRLEPIot e 52
mbecRunCorrections L 53
mbecRUV2 e e e 54
mbecRUV3 e e e 55
mbecRUV4 e e 56
MBECS . . . e e e e e 57
mbecSCOEFStatsPlot e 58
mbecSetData L. e 58
mbecSetData,MbecData-method 59
mbecSVA . . . e e e 60
mbecSVD e e 61
mbecTestModel e 62
mbecTransform e e e 62
mbecUpperCase e e e e e 63
mbecValidateModel 64
mbecVarianceStats L. e e e e e e 65
mbecVarianceStatsLM L L e 65
mbecVarianceStatsLMM e e 66
mbecVarianceStatsPlot 67
percentileNorm e 67
POSCOTE . . . v v vttt it e e e e e 68
Index 70
.mbecGetData Mbec-Data Getter
Description

This function extracts abundance matrix and meta-data in the chosen orientation from the input.

4 .mbecGetData

Usage
.mbecGetData(
input.obj,
orientation = "fxs",
required.col = NULL,
type - C("Otu", Hass”’ ”COr”, "Clr—"’ ”tss”),
label = character()
)
Arguments
input.obj MbecData object
orientation Select either *fxs’ or ’sxf’ to retrieve features in rows or columns respectively.

required.col Vector of column names that are required from the covariate-table.

type Specify which type of data to add, by using one of ’ass’ (Assessement), ’cor’
(Correction), ’clr’ (Cumulative Log-Ratio) or ’tss’ (Total Scaled-Sum).
label For types "ass’ and ’cor’ this specifies the name within the lists.
Details

The parameter ’orientation” determines if the output has features as columns (sxf) or if the columns
contain samples (fxs). This is mainly used to retrieve correctly oriented matrices for the different
analysis and correction functions.

The parameter ‘required.col’ is a vector of column names (technically positions would work) in the
metadata, that are required for the analysis at hand. The function actually only checks if they are
present in the data, but it will return the whole meta-frame.

The argument type determines which slot to access, i.e. the base matrices for un-transformed counts
"otu", total sum-scaled counts "tss", camulative log-ratio transformed counts "clr" and batch effect
corrected counts "cor" and assessment vectors "ass". The later two additionally require the use of the
argument ’label’ that specifies the name within the respective lists of corrections and assessments.

Value

A list that contains count-matrix (in chosen orientation) and meta-data table.

Examples

This will return the un-transformed (OTU) abundance matrix with features as

columns and it will test if the columns "group” and "batch” are present in

the meta-data table.

data(dummy.mbec)

list.obj <- mbecGetData(input.obj=dummy.mbec, orientation="sxf",
required.col=c("group”, "batch"), type="otu")

This will return the clr-transformed abundance matrix with features as

rows and it will test if the columns "group” and "batch” are present in

the meta-data table.

list.obj <- mbecGetData(input.obj=dummy.mbec, orientation="fxs",
required.col=c("group”, "batch"), type="clr")

.mbecGetPhyloseq 5

.mbecGetPhyloseq Return Phyloseq after correction

Description

This function extracts the abundance table of choice and returns a phyloseq object for downstream

analyses.
Usage
.mbecGetPhyloseq(
input.obj,
type = C("Otu"’ llcor”’ ”Clr”’ lltssll)’
label = character()
)
Arguments
input.obj MbecData object
type Specify which type of data to add, by using one of ’cor’ (Correction), *clr’ (Cu-
mulative Log-Ratio) or ’tss’ (Total Scaled-Sum).
label For type ’cor’ this specifies the name within the list.
Details

The argument type determines which slot to access, i.e. the base matrices for un-transformed counts
"otu", total sum-scaled counts "tss", cumulative log-ratio transformed counts "clr" and batch effect
corrected counts "cor". The later additionally requires the use of the argument ’label’ that specifies
the name within the list of corrected matrices.

Value

A phyloseq object that contains the chosen abundance table as otu_table.

Examples

This will return a phyloseq object that contains the clr-transformed
abundances as otu_table

data(dummy.mbec)

ps.clr.obj <- mbecGetPhyloseq(input.obj=dummy.mbec, type="clr")

6 .mbecSetData

.mbecSetData Mbec-Data Setter

Description

Sets and/or replaces selected feature abundance matrix and handles correct orientation. The argu-
ment type determines which slot to access, i.e. the base matrices for un-transformed counts "otu",
total sum-scaled counts "tss", cumulative log-ratio transformed counts "clr" and batch effect cor-
rected counts "cor" and assessment vectors "ass". The later two additionally require the use of the
argument ’label’ that specifies the name within the respective lists of corrections and assessments.

Usage
.mbecSetData(
input.obj,
new.cnts = NULL,
type = C("otu"’ Hass”’ ”COr”, Hclr_"’ ”tss”),
label = character()
)
Arguments
input.obj MbecData object to work on.
new.cnts A matrix-like object with same dimension as ’otu_table’ in input.obj.
type Specify which type of data to add, by using one of ’ass’ (Assessement), ’cor’
(Correction), *clr’ (Cumulative Log-Ratio) or ’tss’ (Total Scaled-Sum).
label For types "ass’ and ’cor’ this sets the name within the lists.
Value

Input object with updated attributes.

Examples

This will fill the 'tss' slot with the supplied matrix.

data(dummy.mbec, dummy.list)

MBEC.obj <- mbecSetData(input.obj=dummy.mbec, new.cnts=dummy.list$cnts,
type="tss')

This will put the given matrix into the list of corrected counts under the

name "nameOfMethod".

MBEC.obj <- mbecSetData(input.obj=dummy.mbec, new.cnts=dummy.list$cnts,
type='cor', label="nameOfMethod")

colinScore 7

colinScore Variable Correlation Linear (Mixed) Models

Description
Takes a fitted model and computes maximum correlation between covariates as return value. Return
value contains actual correlation-matrix as ’vcor’ attribute.

Usage

colinScore(model.fit)

Arguments

model.fit Im() or Imm() output

Details

ToDo: maybe some additional validation steps and more informative output.

Value

Maximum amount of correlation for given model variables.

Examples

This will return the maximum colinearity score in the given model
data(dummy.list)

limimo <- 1lme4::1lmer(dummy.list$cnts[,1] ~ group + (1|batch),
data=dummy.list$meta)

num.max_corr <- colinScore(model.fit=1imimo)

dummy.list Mock-up microbiome abundance table and meta-data.

Description

An artificial data-set containing pre-processed abundance table of microbial communities and a
matrix of covariate information. The data was created using the mbecDummy function for the sole
purpose of running examples and showing the package workflow.

Usage

dummy.list

8 dummy.mbec
Format
A list object containing counts and meta-data:

cnts Compositional Abundance Data

meta Covariate Information

Examples

data(dummy.list)

dummy . mbec Mock-up microbiome abundance table and meta-data.

Description

An artificial data-set containing pre-processed abundance table of microbial communities and a
matrix of covariate information. The data was created using the mbecDummy function for the sole
purpose of running examples and showing the package workflow. This particular object was also
processed with mbecTransform function in order to generate "clr" and "tss" transformed abundance
matrices.

Usage

dummy . mbec

Format

An mbecData object including tss and clr transformed counts:

otu Compositional Abundance Data
tss Compositional Abundance Data Sum-Scaled
clr Compositional Abundance Data Log-Ratio Transformed

meta Covariate Information

Examples

data(dummy.mbec)

dummy.ps 9

dummy . ps Mock-up microbiome abundance table and meta-data.

Description

An artificial data-set containing pre-processed abundance table of microbial communities and a
matrix of covariate information. The data was created using the mbecDummy function for the sole
purpose of running examples and showing the package workflow. This particular object was then
converted using phyloseq.

Usage

dummy . ps

Format

A phyloseq object containing counts and meta-data:

otu_table Compositional Abundance Data

sam_data Covariate Information

Examples

data(dummy.ps)

externalPLSDA Partial Least Squares Discriminant Analysis Computation

Description

This function estimates latent dimensions from the explanatory matrix X. The latent dimensions are
maximally associated with the outcome matrix Y. It is a built-in function of PLSDA_batch and has

been adjusted to work in the MBECS-package. To that end, the function mixOmics::explained_variance

was replaced with a computation based on vegan::cca since this is already used in the MBECS
package. Additionally, the matrix deflation function was replaced with own code. The credit for
algorithm and implementation goes to ’https://github.com/EvaYiwenWang/PLSDAbatch’ and the
associated publication that is referenced in the documentation and vignette.

Usage

externalPLSDA(X, Y, ncomp, keepX = rep(ncol(X), ncomp))

10 mbecBat

Arguments
X A matrix of counts (samples x features).
Y An ’sxcomponents’ matrix object of orthogonal components that explain the
variance in input.mtx.
ncomp Number of columns in var.mtx that should be used. Defaults to the total number
of columns in var.mtx.
keepX Number of components to keep
Value

A vector that contains the proportional variance explained for each selected component in var.mtx.

mbecBat Combat Batch Effects (ComBat)

Description

This method uses an non-/parametric empirical Bayes framework to correct for BEs. Described by
Johnson et al. 2007 this method was initially conceived to work with gene expression data and is
part of the sva-package in R.

Usage

mbecBat(input.obj, model.vars, type = c("clr”, "otu”, "tss"))

Arguments
input.obj phyloseq object or numeric matrix (correct orientation is handeled internally)
model.vars Vector of covariate names. First element relates to batch.
type Which abundance matrix to use, one of ’otu, tss, clr’. DEFAULT is ’clr’.
Details

The input for this function is supposed to be an MbecData object that contains total sum-scaled
and cumulative log-ratio transformed abundance matrices. Output will be a matrix of corrected
abundances.

Value

A matrix of batch-effect corrected counts

mbecBMC 11

mbecBMC Batch Mean Centering (BMC)

Description

For known BEs, this method takes the batches, i.e., subgroup of samples within a particular batch,
and centers them to their mean.

Usage

n

mbecBMC(input.obj, model.vars, type = c("clr”, "otu”, "tss"))

Arguments
input.obj phyloseq object or numeric matrix (correct orientation is handeled internally)
model.vars Vector of covariate names. First element relates to batch.
type Which abundance matrix to use, one of ’otu, tss, clr’. DEFAULT is ’clr’.
Details

The input for this function is supposed to be an MbecData object that contains total sum-scaled
and cumulative log-ratio transformed abundance matrices. Output will be a matrix of corrected
abundances.

Value

A matrix of batch-effect corrected counts

mbecBox Feature Differential Abundance Box-Plot

Description

Displays the abundance of a selected feature, grouped/colored by a covariate, i.e., batch, in a box-
plot. Includes the density-plot, i.e., the distribution of counts for each sub-group. Selection meth-
ods for features are "TOP" and "ALL" which select the top-n or all features respectively. The
default value for the argument ’n’ is 10. If ’n’ is supplied with a vector of feature names, e.g.,
c("OTU1","OTUS", "OTU10"), of arbitrary length, the argument *method’ will be ignored and only
the given features selected for plotting.

12

Usage

mbecBox (

input.obj,

method = c("ALL", "TOP"),
n =10,

model.var = "batch”,

type = "clr”,

label = character(),
return.data = FALSE

Arguments

input.obj
method

n

model.var
type
label

return.data

MbecData object
One of ’ALL’ or "TOP’ for 'n’ most variable features, DEFAULT is ALL’.

mbecBox

Number of OTUs to display for "TOP’ method, or vector of specific feature

names to select.

Details

Covariate to group by, default is "batch".
Which abundance matrix to use for the calculation.

Which corrected abundance matrix to use for analysis.

logical if TRUE returns the data.frame required for plotting. Default (FALSE)
will return plot object.

The function returns either a plot-frame or the finished ggplot object. Input is an MbecData-object.
If cumulative log-ratio (clr) and total sum-scaled (tss) abundance matrices are part of the input, i.e.,
’mbecTransform()’ was used, they can be selected as input by using the ’type’ argument with either

"

otu", "clr" or "tss". If batch effect corrected matrices are available, they can be used by speci-

fying the ’type’ argument as "cor" and using the ’label’ argument to select the appropriate matrix
by its denominator, e.g., for batch correction method ComBat this would be "bat", for Remove-
BatchEffects from the limma package this is "rbe". Default correction method-labels are "ruv3",
"bmc","bat","rbe", "pn","svd".

The combination of ’type’ and ’label’ argument basically accesses the attribute ’cor’, a list that
stores all matrices of corrected counts. This list can also be accessed via getter and setter methods.

Hence, the user can supply their own matrices with own names.

Value

either a ggplot2 object or a formatted data-frame to plot from

Examples

This will return the plot-frame of all features in the data-set.

data(dummy.mbec)

data.Box <- mbecBox(input.obj=dummy.mbec, method='ALL', model.var='batch',

type='clr', return.data=TRUE)

mbecBoxPlot 13

This will return the ggplot2 object of the top 5 most variable features.
plot.Box <- mbecBox(input.obj=dummy.mbec, method='TOP', n=5,
model.var='batch', type='otu', return.data=FALSE)

mbecBoxPlot Variability boxes plotting function

Description

Takes data.frame from mbecBox and produces a ggplot2 object.

Usage

mbecBoxPlot(tmp, otu.idx, model.var, label = NULL)

Arguments
tmp Count of selected features.
otu.idx Index of selected Otus in the data.
model.var Which covariate to group Otus by.
label Name of the plot displayed as legend title.
Value
ggplot2 object
Examples

This will return a list of the five most variable features grouped by the
covariate 'batch'.

data(dummy.mbec)

box.df <- mbecBox(input.obj=dummy.mbec, method='TOP', n=5,
model.var='batch', type="otu", return.data=TRUE)

plot.box <- mbecBoxPlot(box.df[[1]], box.df[[2]], 'batch')

14 mbecCorrection

mbecCLR Centered Log-Ratio Transformation

Description

Internal function that performs CLR-transformation on input-matrix. Formula is: clr(mtx) = In(mtx
/ geometric_mean(mtx_samples))

Usage

mbecCLR(input.mtx, offset = @)

Arguments
input.mtx A matrix of counts (samples x features).
offset An (OPTIONAL) offset in case of sparse matrix. Function will add an offset of
1/#features if matrix is sparse and offset not provided.
Value

A matrix of transformed counts of same size and orientation as the input.

mbecCorrection Batch Effect Correction Wrapper

Description

Either corrects or accounts for (known) batch effects with one of several algorithms.

Usage
mbecCorrection(
input.obj,
model.vars = c("batch”, "group"),
method - C(”]_m”, HlmmH, ”SVa”, ”r_uvzll’ Hruv4ll, Hruv3”’ ”bmcll’ ”bat”, HrbeH, Hpn”’

”svd”’ ”pls”)7
type = c("clr", "otu", "tss"),
nc.features = NULL

n

mbecCorrection 15

Arguments
input.obj An MbecData object with ’tss’ and ’clr’ matrices.
model.vars Vector of covariate names. First element relates to batch.
method Denotes the algorithms to use. One of ’Im, lmm, sva, ruv2, ruv4’ for assessment
methods or one of "ruv3, bmc, bat, rbe, pn, svd’, *cqr’ for correction algorithms.
type Which abundance matrix to use, one of ’otu, tss, clr’. DEFAULT is ’clr’ but
percentile normalization is supposed to work on tss-abundances.
nc.features (OPTIONAL) A vector of features names to be used as negative controls in
RUV-2/3/4. If not supplied, the algorithm will use a linear model to find pseudo-
negative controls
Details

ASSESSMENT METHODS The assessment methods *Im, Imm, sva, ruv-2 and ruv-4" estimate the
significance of the batch effect and update the attribute ’assessments’ with vectors of p-values.

Linear (Mixed) Models: A simple linear mixed model with covariates ’treatment’ and ’batch’, or
respective variables in your particular data-set, will be fitted to each feature and the significance for
the treatment variable extracted.

Surrogate variable Analysis (SVA): Surrogate Variable Analysis (SVA): Two step approach that (1.)
identify the number of latent factors to be estimated by fitting a full-model with effect of interest
and a null-model with no effects. The function num.sv then calculates the number of latent factors.
In the next (2.) step, the sva function will estimate the surrogate variables. And adjust for them in
full/null-model . Subsequent F-test gives significance values for each feature - these P-values and
Q-values are accounting for surrogate variables (estimated BEs).

Remove unwanted Variation 2 (RUV-2): Estimates unknown BEs by using negative control vari-
ables that, in principle, are unaffected by treatment/biological effect, i.e., aka the effect of interest
in an experiment. These variables are generally determined prior to the experiment. An approach
to RUV-2 without the presence of negative control variables is the estimation of pseudo-negative
controls. To that end, an Im or Imm (depending on whether or not the study design is balanced)
with treatment is fitted to each feature and the significance calculated. The features that are not sig-
nificantly affected by treatment are considered as pseudo-negative control variables. Subsequently,
the actual RUV-2 function is applied to the data and returns the p-values for treatment, considering
unwanted BEs (whatever that means).

Remove Unwanted Variation 4 (RUV-4): The updated version of RUV-2 also incorporates the resid-
ual matrix (w/o treatment effect) to estimate the unknown BEs. To that end it follows the same pro-
cedure in case there are no negative control variables and computes pseudo-controls from the data
via I(m)m. As RUV-2, this algorithm also uses the parameter 'k’ for the number of latent factors.
RUV-4 brings the function ’getK()’ that estimates this factor from the data itself. The calculated
values are however not always reliable. A value of k=0 fo example can occur and should be set to 1
instead. The output is the same as with RUV-2.

CORRECTION METHODS The correction methods ‘ruv3, bmc, bat, rbe, pn, svd’ attempt to miti-
gate the batch effect and update the attribute ’corrections’ with the resulting abundance matrices of
corrected counts.

Remove Unwanted Variation 3 (RUV-3): This algorithm requires negative control-features, i.e.,
OTUs that are known to be unaffected by the batch effect, as well as technical replicates. The

16 mbecCorrection

algorithm will check for the existence of a replicate column in the covariate data. If the column is
not present, the execution stops and a warning message will be displayed.

Batch Mean Centering (BMC): For known BEs, this method takes the batches, i.e., subgroup of
samples within a particular batch, and centers them to their mean.

Combat Batch Effects (ComBat): This method uses an non-/parametric empirical Bayes framework
to correct for BEs. Described by Johnson et al. 2007 this method was initially conceived to work
with gene expression data and is part of the sva-package in R.

Remove Batch Effects (RBE): As part of the limma-package this method was designed to remove
BEs from Microarray Data. The algorithm fits the full- model to the data, i.e., all relevant covariates
whose effect should not be removed, and a model that only contains the known BEs. The difference
between these models produces a residual matrix that (should) contain only the full- model-effect,
e.g., treatment. As of now the mbecs-correction only uses the first input for batch-effect grouping.
ToDo: think about implementing a version for more complex models.

Percentile Normalization (PN): This method was actually developed specifically to facilitate the
integration of microbiome data from different studies/experimental set-ups. This problem is similar
to the mitigation of BEs, i.e., when collectively analyzing two or more data-sets, every study is
effectively a batch on its own (not withstanding the probable BEs within studies). The algorithm
iterates over the unique batches and converts the relative abundance of control samples into their
percentiles. The relative abundance of case-samples within the respective batches is then trans-
formed into percentiles of the associated control-distribution. Basically, the procedure assumes that
the control-group is unaffected by any effect of interest, e.g., treatment or sickness, but both groups
within a batch are affected by that BE. The switch to percentiles (kinda) flattens the effective differ-
ence in count values due to batch - as compared to the other batches. This also introduces the two
limiting aspects in percentile normalization. It can only be applied to case/control designs because
it requires a reference group. In addition, the transformation into percentiles removes information
from the data.

Singular Value Decomposition (SVD): Basically perform matrix factorization and compute singular
eigenvectors (SEV). Assume that the first SEV captures the batch-effect and remove this effect from
the data. The interesting thing is that this works pretty well (with the test-data anyway) But since
the SEVs are latent factors that are (most likely) confounded with other effects it is not obvious that
this is the optimal approach to solve this issue.

Principal Least Squares Discriminant Analysis (PLSDA) This function estimates latent dimensions
from the explanatory matrix X. The latent dimensions are maximally associated with the outcome
matrix Y. It is a built-in function of PLSDA_batch and has been adjusted to work in the MBECS-
package. To that end, the function mixOmics::explained_variance was replaced with a computation
based on vegan::cca since this is already used in the MBECS package. Additionally, the matrix
deflation function was replaced with own code. The credit for algorithm and implementation goes to
“https://github.com/EvaYiwenWang/PLSDAbatch’ and the associated publication that is referenced
in the documentation and vignette.

The input for this function is supposed to be an MbecData object that contains total sum-scaled and
cumulative log-ratio transformed abundance matrices. Output will be as input, but assessments or
corrections-lists will contain the result of the respective chosen method.

Value

An updated object of class MbecData.

MbecData 17

Examples

This call will use 'ComBat' for batch effect correction on CLR-transformed
abundances and store the new counts in the 'corrections' attribute.
data(dummy.mbec)

study.obj <- mbecCorrection(input.obj=dummy.mbec,
model.vars=c("batch”,"group”), method="bat", type="clr")

This call will use 'Percentile Normalization' for batch effect correction
on TSS-transformed counts and store the new counts in the 'corrections'

attribute.

study.obj <- mbecCorrection(dummy.mbec, model.vars=c("batch”,"group"),
method="pn", type="tss")

MbecData Define MbecData-class

Description

An extension of phyloseq-class that contains the additional attributes ’tss’, ’clt’, ’corrections’ and
“assessments’ to enable the MBECS functionality.

Constructor for the package class MbecData. Minimum input is an abundance matrix for the ar-
gument ’cnt_table’ and any type of frame that contains columns of covariate information. The
argument ’cnt_table’ requires col/row- names that correspond to features and samples. The cor-
rect orientation will be handled internally. The argument 'meta_data’ requires row-names that
correspond to samples. Although it is an exported function, the user should utilize the function
’mbecProcessInput()’ for safe initialization of an MbecData-object from phyloseq or list(counts,
metadata) inputs.

Usage
MbecData(
cnt_table = NULL,
meta_data = NULL,
tax_table = NULL,

phy_tree = NULL,
refseq = NULL,
assessments = list(),
corrections = list(),

tss = NULL,
clr = NULL
)
MbecData(

cnt_table = NULL,
meta_data = NULL,
tax_table = NULL,
phy_tree = NULL,

18 MbecData

refseq = NULL,
assessments = list(),
corrections = list(),

tss = NULL,
clr = NULL
)
Arguments
cnt_table either class phyloseq or a matrix of counts
meta_data A table with covariate information, whose row-names correspond to sample-
IDs.
tax_table Taxonomic table from phyloseq as optional input.
phy_tree Phylogenetic tree as optional input.
refseq Reference sequences as optional input.

assessments A list for the results of BEAAs.
corrections A list for the results of BECAs.

tss Total-sum-squared features matrix.
clr Cumulative log-ratio transformed feature matrix.
Details

Additional (OPTIONAL) arguments are "tax_table’, "phy_tree’ and ’ref_seq’ from phyloseq-objects.

The (OPTIONAL) arguments ’tss’ and ’clr’ are feature abundance matrices that should contain
total-sum-scaled or cumulative log-ratio transformed counts respectively. They should however be
calculated by the package-function *mbecTransform()’.

The lists for Assessments and Corrections will be initialized empty and should only be accessed via
the available Get/Set-functions.

Value

produces an R-object of type MbecData

Slots

otu_table Class phyloseq::otu_table, (usually sparse) matrix of abundance values.
sample_data Dataframe of covariate variables.

tax_table Taxonomic table from phyloseq as optional input

phy_tree Phylogenetic tree as optional input

refseq Reference sequences as optional input

assessments A list for the results of batch effect assessment algorithms (BEAA) that produce
p-values for all features.

corrections A list for the results of batch effect correction algorithms (BECA) that produce ad-
justed abundance matrices.

tss Total-sum-squared feature abundance matrix.

clr Cumulative log-ratio transformed feature abundance matrix.

mbecDeflate 19

Examples

use constructor with default parameters to create object from count-matrix
and meta-data table.

data(dummy.list)

mbec.obj <- MbecData(cnt_table=dummy.list$cnts, meta_data = dummy.list$meta)
use constructor with default parameters to create object from count-matrix
and meta-data table.

data(dummy.list)

mbec.obj <- MbecData(cnt_table=dummy.list$cnts, meta_data = dummy.list$meta)

mbecDeflate Calculate matrix residuals

Description

Internal function that performs matrix deflation to remove latent components from a sxf oriented
matrix to produce the residual matrix.

Usage

mbecDeflate(input.mtx, t)

Arguments

input.mtx A matrix of counts (samples x features).

t An sxf matrix object of latent components.
Value

A matrix of residual counts of same size and orientation as the input.

mbecDummy Creates a dummy data-set with abundance matrix and meta-data.

Description

For given number of otus and samples this will create mockup microbiome data that contains sys-
tematic and non-systematic batch effects. Comes with meta data that denotes study groups and
batches. The replicate column is fake and only used to test RUV-implementations.

Usage

mbecDummy (n.otus = 500, n.samples = 40)

20 mbecExplainedVariance

Arguments
n.otus Integer to determine number of features to "simulate".
n.samples Even integer to set number of samples to "simulate".
Details

’Group’ and ’batch’ variables are actually taken into account in data creation, but only to the degree
that the random draws for values are performed with different parameters respectively.

THIS HAS ONLY A CONCEPTUAL SIMILARITY TO MICROBIOME DATA AT BEST AND IS
IN NO WAY USEFUL OTHER THAN TESTING PACKAGE FUNCTIONS AND VISUALIZING
WORKFLOWS!

This function is also the basis for the included mockup data-sets.

Value

A list object that contains the made up abundance and the accompanying meta-data.

Examples

dummy.list <- mbecDummy(n.otus=100, n.samples=30)

mbecExplainedVariance Calculate explained variance using CCA

Description

Internal function that performs Canonical Correspondence Analysis to compute the proportion of
explained variance the can be attributed to a set of given components.

Usage

mbecExplainedVariance(input.mtx, var.mtx, n.comp = ncol(var.mtx))

Arguments
input.mtx A matrix of counts (samples x features).
var.mtx An ’sxcomponents’ matrix object of orthogonal components that explain the
variance in input.mtx
n.comp Number of columns in var.mtx that should be used. Defaults to the total number
of columns in var.mtx.
Value

A vector that contains the proportional variance explained for each selected component in var.mtx.

mbecGetData

21

mbecGetData

Mbec-Data Getter

Description

This function extracts abundance matrix and meta-data in the chosen orientation from the input.

Usage
mbecGetData(
input.obj,
orientation = "fxs",
required.col = NULL,
type = C("Otu"’ llassll’ ”Cor”’ llclrll’ ll_tssll)’
label = character()
)
Arguments
input.obj MbecData object
orientation Select either "fxs’ or ’sxf” to retrieve features in rows or columns respectively.

required.col

type

label

Details

Vector of column names that are required from the covariate-table.

Specify which type of data to add, by using one of ’ass’ (Assessement), ’cor’
(Correction), ’clr’ (Cumulative Log-Ratio) or ’tss’ (Total Scaled-Sum).

For types "ass’ and ’cor’ this specifies the name within the lists.

The parameter ’orientation” determines if the output has features as columns (sxf) or if the columns
contain samples (fxs). This is mainly used to retrieve correctly oriented matrices for the different
analysis and correction functions.

The parameter 'required.col’ is a vector of column names (technically positions would work) in the
metadata, that are required for the analysis at hand. The function actually only checks if they are
present in the data, but it will return the whole meta-frame.

The argument type determines which slot to access, i.e. the base matrices for un-transformed counts
"otu", total sum-scaled counts "tss", camulative log-ratio transformed counts "clr" and batch effect
corrected counts "cor" and assessment vectors "ass". The later two additionally require the use of the
argument ’label’ that specifies the name within the respective lists of corrections and assessments.

Value

A list that contains count-matrix (in chosen orientation) and meta-data table.

22 mbecGetData,MbecData-method

Examples

This will return the un-transformed (OTU) abundance matrix with features as

columns and it will test if the columns "group” and "batch” are present in

the meta-data table.

data(dummy.mbec)

list.obj <- mbecGetData(input.obj=dummy.mbec, orientation="sxf",
required.col=c("group”, "batch”), type="otu")

This will return the clr-transformed abundance matrix with features as

rows and it will test if the columns "group” and "batch” are present in

the meta-data table.

list.obj <- mbecGetData(input.obj=dummy.mbec, orientation="fxs",
required.col=c("group”, "batch”), type="clr")

mbecGetData,MbecData-method
Mbec-Data Getter

Description

This function extracts abundance matrix and meta-data in the chosen orientation from the input.

Usage
S4 method for signature 'MbecData’
mbecGetData(
input.obj,
orientation = "fxs",
required.col = NULL,
type = C("Otu"’ Hass”, ”Cor”, Hclrll’ ”tss”),
label = character()
)
Arguments
input.obj MbecData object
orientation Select either *fxs’ or ’sxf’ to retrieve features in rows or columns respectively.

required.col Vector of column names that are required from the covariate-table.

type Specify which type of data to add, by using one of ’ass’ (Assessement), ’cor’
(Correction), *clr’ (Cumulative Log-Ratio) or ’tss’ (Total Scaled-Sum).

label For types "ass’ and ’cor’ this specifies the name within the lists.

mbecGetPhyloseq 23

Details

The parameter ’orientation” determines if the output has features as columns (sxf) or if the columns
contain samples (fxs). This is mainly used to retrieve correctly oriented matrices for the different
analysis and correction functions.

The parameter 'required.col’ is a vector of column names (technically positions would work) in the
metadata, that are required for the analysis at hand. The function actually only checks if they are
present in the data, but it will return the whole meta-frame.

The argument type determines which slot to access, i.e. the base matrices for un-transformed counts
"otu", total sum-scaled counts "tss", camulative log-ratio transformed counts "clr" and batch effect
corrected counts "cor" and assessment vectors "ass". The later two additionally require the use of the
argument ’label’ that specifies the name within the respective lists of corrections and assessments.

Value

A list that contains count-matrix (in chosen orientation) and meta-data table.

Examples

This will return the un-transformed (OTU) abundance matrix with features as

columns and it will test if the columns "group” and "batch” are present in

the meta-data table.

data(dummy.mbec)

list.obj <- mbecGetData(input.obj=dummy.mbec, orientation="sxf",
required.col=c("group”, "batch”), type="otu")

This will return the clr-transformed abundance matrix with features as

rows and it will test if the columns "group” and "batch” are present in

the meta-data table.

list.obj <- mbecGetData(input.obj=dummy.mbec, orientation="fxs",
required.col=c("group”, "batch”), type="clr")

mbecGetPhyloseq Return Phyloseq after correction

Description

This function extracts the abundance table of choice and returns a phyloseq object for downstream
analyses.

Usage

mbecGetPhyloseq(
input.obj,
type = c("otu”, "cor”,
label = character()

)

n

n n n
clr”, "tss"),

24 mbecGetPhyloseq,MbecData-method

Arguments
input.obj MbecData object
type Specify which type of data to add, by using one of ’cor’ (Correction), *clr’ (Cu-
mulative Log-Ratio) or ’tss’ (Total Scaled-Sum).
label For type ’cor’ this specifies the name within the list.
Details

The argument type determines which slot to access, i.e. the base matrices for un-transformed counts
"otu", total sum-scaled counts "tss", camulative log-ratio transformed counts "clr" and batch effect
corrected counts "cor". The later additionally requires the use of the argument *label’ that specifies
the name within the list of corrected matrices.

Value

A phyloseq object that contains the chosen abundance table as otu_table.

Examples

This will return a phyloseq object that contains the clr-transformed
abundances as otu_table

data(dummy.mbec)

ps.clr.obj <- mbecGetPhyloseq(input.obj=dummy.mbec, type="clr")

mbecGetPhyloseq,MbecData-method
Return Phyloseq after correction

Description

This function extracts the abundance table of choice and returns a phyloseq object for downstream

analyses.
Usage
S4 method for signature 'MbecData’
mbecGetPhyloseq(
input.obj,
type = C("Otu"’ ”Cor”, ”Clr”, "tss")’
label = character()
)
Arguments
input.obj MbecData object
type Specify which type of data to add, by using one of *cor’ (Correction), ’clr’ (Cu-

mulative Log-Ratio) or ’tss’ (Total Scaled-Sum).

label For type ’cor’ this specifies the name within the list.

mbecHeat 25

Details

The argument type determines which slot to access, i.e. the base matrices for un-transformed counts
"otu", total sum-scaled counts "tss", camulative log-ratio transformed counts "clr" and batch effect
corrected counts "cor". The later additionally requires the use of the argument *label’ that specifies
the name within the list of corrected matrices.

Value

A phyloseq object that contains the chosen abundance table as otu_table.

Examples

This will return a phyloseq object that contains the clr-transformed
abundances as otu_table

data(dummy.mbec)

ps.clr.obj <- mbecGetPhyloseq(input.obj=dummy.mbec, type="clr")

mbecHeat Feature Differential Abundance Heatmap

Description

Shows the abundance value of selected features in a heatmap. By default, the function expects two
covariates group and batch to depict clustering in these groups. More covariates can be included.
Selection methods for features are "TOP" and "ALL" which select the top-n or all features respec-
tively. The default value for the argument 'n’ is 10. If ’n’ is supplied with a vector of feature names,
e.g., c("OTU1","OTUS", "OTU10"), of arbitrary length, the argument method” will be ignored and
only the given features selected for plotting.

Usage

mbecHeat (
input.obj,
model.vars = c("batch”, "group"),
center = TRUE,
scale = TRUE,
method = "TOP",
n =10,
type = "clr”,

label = character(),
return.data = FALSE

26 mbecHeat

Arguments
input.obj MbecData object
model.vars Covariates of interest to show in heatmap.
center Flag to activate centering, DEFAULT is TRUE.
scale Flag to activate scaling, DEFAULT is TRUE.
method One of "ALL’ or "'TOP’ or a vector of feature names.
n Number of features to select in method TOP.
type Which abundance matrix to use for the calculation.
label Which corrected abundance matrix to use for analysis.

return.data Logical if TRUE returns the data.frame required for plotting. Default (FALSE)
will return plot object.

Details

The function returns either a plot-frame or the finished ggplot object. Input is an MbecData-object.
If cumulative log-ratio (clr) and total sum-scaled (tss) abundance matrices are part of the input, i.e.,
’mbecTransform()’ was used, they can be selected as input by using the "type’ argument with either
"otu", "clr" or "tss". If batch effect corrected matrices are available, they can be used by speci-
fying the ’type’ argument as "cor" and using the ’label’ argument to select the appropriate matrix
by its denominator, e.g., for batch correction method ComBat this would be "bat", for Remove-
BatchEffects from the limma package this is "rbe". Default correction method-labels are "ruv3",
"bmc","bat","rbe","pn","svd".

The combination of ’type’ and ’label’ argument basically accesses the attribute ’cor’, a list that
stores all matrices of corrected counts. This list can also be accessed via getter and setter methods.
Hence, the user can supply their own matrices with own names.

Value

either a ggplot2 object or a formatted data-frame to plot from

Examples

This will return the plot-frame of all features in the data-set.
data(dummy.mbec)

data.Heat <- mbecHeat(input.obj=dummy.mbec, model.vars=c('group', 'batch'),
center=TRUE, scale=TRUE, method='ALL', return.data=TRUE)

This will return the ggplot2 object of the top 5 most variable features.
plot.Heat <- mbecHeat(input.obj=dummy.mbec, model.vars=c('group', 'batch'),
center=TRUE, scale=TRUE, method='TOP', n=5, return.data=FALSE)

mbecHeatPlot 27

mbecHeatPlot Heatmap plotting function

Description

Takes data.frame from mbecHeat()’ and produces a ggplot2 object.

Usage

mbecHeatPlot(tmp.cnts, tmp.meta, model.vars, label = NULL)

Arguments
tmp.cnts Count values of selected features.
tmp.meta Covariate information for potting.
model.vars Two covariates of interest to select by first variable selects panels and second
one determines coloring.
label Name of the plot displayed as legend title.
Value
ggplot2 object
Examples

This will return a paneled plot that shows results for the variance

assessment.

data(dummy.mbec)

heat.df <- mbecHeat(input.obj=dummy.mbec, model.vars=c('group', 'batch'),
center=TRUE, scale=TRUE, method='TOP', n=5, return.data=TRUE)

plot.heat <- mbecHeatPlot(tmp.cnts=heat.df[[1]],

tmp.meta=heat.df[[2]], model.vars=c('group', 'batch'))

mbecHelpFactor Check If Covariates Are Factors

Description
For a given covariate matrix and a vector of factor names this function tests if they are formatted as
factors and re-formats them if required.

Usage

mbecHelpFactor (tmp.meta, model.vars)

28 mbecLM

Arguments

tmp.meta A covariate matrix to check.

model.vars Names of covariates to construct to check in tmp.meta.
Value

A covariate matrix with factorized variables.

Examples

This will ensure that the covariates 'batch' and 'group' are factors.
data(dummy.list)

eval.obj <- mbecHelpFactor(tmp.meta=dummy.list$meta,
model.vars=c("group”, "batch"))

mbeclM Linear (Mixed) Model Feature to Batch Fit

Description

Helper function that fits lm/Imm with covariates ’treatment’ and "batch’ to every feature in the data-
set. Returns the fdr corrected significance value for the "treatment" variable. The method "Im’ will
fit the linear model y ~ model.vars[1] + model.vars[2] and the linear mixed model will consider
the second term as random effect, i.e., y ~ model.vars[1] + (1|model.vars[2]).

Usage
mbeclLM(
input.obj,
method = c("1Im", "1Imm"),
model.vars = c("batch”, "group"),
type = C(”Clr”’ ”Otu”’ Htssll’ llcorll)’
label = character()
)
Arguments
input.obj MbecData object
method Either ’Im’ or ’Imm’ for linear models and linear mixed models.
model.vars Covariates of interest, first relates to batch and second to treatment.
type ‘Which abundance matrix to use, one of ’otu, tss, clr, cor’. DEFAULT is clr’ and
the use of “cor’ requires the parameter label to be set as well.
label Which corrected abundance matrix to use for analysis in case *cor’ was selected

as type.

mbecMixed Variance 29

Details

The function returns either a plot-frame or the finished ggplot object. Input for th data-set can be an
MbecData-object, a phyloseq-object or a list that contains counts and covariate data. The covariate
table requires an ’sID’ column that contains sample IDs equal to the sample naming in the counts
table. Correct orientation of counts will be handled internally.

Value

A vector of fdr corrected p-values that show significance of treatment for every feature

Examples

This will return p-value for the linear model fit of every feature.
data(dummy.mbec)

val.score <- mbecLM(input.obj=dummy.mbec, model.vars=c("batch”,"group”),
method="1m")

mbecMixedVariance Mixed Model Variance-Component Extraction

Description
A helper function that extracts the variance components of linear mixed models, i.e., residuals,
random-effects, fixed-effects, scales them to sample-size and returns a list of components.

Usage

mbecMixedVariance(model.fit)

Arguments

model.fit A linear mixed model object of class "lmerMod’.

Details

Uses ’lme4::VarCorr’ to extract Residuals and random-effects components. Standard Deviation of
Residuals is stored as ’sc’ attribute in the output of *VarCorr’.

Uses 'Ime4::fixef” to extract fixed-effects components, i.e., parameter estimates. The attribute 'pp’
of the model contains the dense model matrix for fixed-effects parameters (X). The fixed effects
variance, sigma2f, is the variance of the matrix-multiplication beta times X (parameter vector by
model matrix)

Value

A named list, containing proportional variance for model terms that describe mixed effects.

30 mbecModel Variance

Examples

This will return the variance of random/mixed components.
data(dummy.list)

limimo <- 1lme4::1lmer(dummy.list$cnts[,1] ~ group + (1|batch),
data=dummy.list$meta)

list.variance <- mbecMixedVariance(model.fit=1imimo)

mbecModelVariance Estimate Explained Variance

Description

The function offers a selection of methods/algorithms to estimate the proportion of variance that
can be attributed to covariates of interest. This shows, how much variation is explained by the
treatment effect, which proportion is introduced by processing in batches and the leftover variance,
i.e., residuals that are not currently explained. Covariates of interest (Col) are selected by the user
and the function will incorporate them into the model building for the respective algorithm. The
user can select from five different approaches to adapt to the characteristics of the data-set, e.g.,
LMMs are a better choice than LMs for a very unbalanced study design. Available approaches are:
Linear Model (Im), Linear Mixed Model (Imm), Redundancy Analysis (rda), Principal Variance
Component Analysis (pvca) or Silhouette Coefficient (s.coef).

Usage
mbecModelVariance(
input.obj,
model.vars = character(),
method = c("1m”, "lmm", "rda", "pvca”, "s.coef”),
model.form = NULL,
type = C("Otu", ”Clrll’ ﬁltssﬁl, "aSS", ”COI’"”),
label = character(),
no.warning = TRUE,
na.action = NULL
)
Arguments
input.obj MbecData object
model.vars Vector of covariates to include in model-construction, in case parameter “'model.form’
is not supplied.
method Select method of modeling: Linear Model (Im), Linear Mixed Model (Imm),
Redundancy Analysis (rda), Principal Variance Component Analysis (pvca) or
Silhouette Coefficient (s.coef).
model. form string that describes a model formula, i.e., ’y ~ covariatel + (llcovariate2)’.
type Which abundance matrix to use for the calculation.

label Which corrected abundance matrix to use for analysis.

mbecModel Variance 31

no.warning (OPTIONAL) True/False-flag that should turn of singularity warnings, but it
doesn’t quite work
na.action (OPTIONAL) set NA handling, will take global option if not supplied
Details

Linear Model (Im): An additive model of all covariates is fitted to each feature respectively and the
proportion of variance is extracted for each covariate (OTU_x ~ covariate_1 + covariate_2 + ...).

Linear Mixed Model (Imm): All but the first covariate are considered mixed effects. A model is
fitted to each OTU respectively and the proportion of variance extracted for each covariate. (OTU_x
~ covariate_1 + (1lcovariate_2) + (11...)).

partial Redundancy Analysis (rda): Iterates over given covariates, builds a model of all covariates
that includes one variable as condition/constraint and then fits it to the feature abundance matrix.
The difference in explained variance between the full- and the constrained-model is then attributed
to the constraint. (cnts ~ group + Condition(batch) vs. cnts ~ group + batch)

Principal Variance Component Analysis (pvca): Algorithm - calculate the correlation of the fxs
count-matrix - from there extract the eigenvectors and eigenvalues and calculate the proportion
of explained variance per eigenvector (i.e. principal component) by dividing the eigenvalues by
the sum of eigenvalues. Now select as many PCs as required to fill a chosen quota for the total
proportion of explained variance. Iterate over all PCs and fit a linear mixed model that contains all
covariates as random effect and all unique interactions between two covariates. Compute variance
covariance components form the resulting model —> From there we get the Variance that each
covariate(variable) contributes to this particular PC. Then just standardize variance by dividing it
through the sum of variance for that model. Scale each PCs results by the proportion this PC
accounted for in the first place. And then do it again by dividing it through the total amount of
explained variance, i.e. the cutoff to select the number of PCs to take (obviously not the cutoff but
rather the actual values for the selected PCs). Finally take the average over each random variable
and interaction term and display in a nice plot.

Silhouette Coefficient (s.coef): Calculate principal components and get sample-wise distances on
the resulting (sxPC) matrix. Then iterate over all the covariates and calculate the cluster silhouette
(which is basically either zero, if the cluster contains only a single element, or it is the distance to
the closest different cluster minus the distance of the sample within its own cluster divided (scaled)
by the maximum distance). Average over each element in a cluster for all clusters and there is the
representation of how good the clustering is. This shows how good a particular covariate char-
acterizes the data, i.e., a treatment variable for instance may differentiate the samples into treated
and untreated groups which implies two clusters. In an ideal scenario, the treatment variable, i.e.,
indicator for some biological effect would produce a perfect clustering. In reality, the confounding
variables, e.g., batch, sex or age, will also influence the ordination of samples. Hence, the clustering
coefficient is somewhat similar to the amount of explained variance metric that the previous meth-
ods used. If used to compare an uncorrected data-set to a batch-corrected set, the expected result
would be an increase of clustering coefficient for the biological effect (and all other covariates -
because a certain amount of uncertainty was removed from the data) and a decrease for the batch
effect.

The function returns a data-frame for further analysis - the report functions (mbecReport and mbe-
cReportPrelim) will automatically produce plots. Input for the data-set can be an MbecData-object,
a phyloseq-object or a list that contains counts and covariate data. The covariate table requires an

32 mbecModel Variance LM

’sID’ column that contains sample IDs equal to the sample naming in the counts table. Correct
orientation of counts will be handled internally.

Value

Data.frame that contains proportions of variance for given covariates in every feature.

Examples

This will return a data-frame that contains the variance attributable to
group and batch according to linear additive model.

data(dummy.mbec)

df.var.1lm <- mbecModelVariance(input.obj=dummy.mbec,

model.vars=c("batch”, "group”), method='lm', type='clr')

This will return a data-frame that contains the variance attributable to
group and batch according to principal variance component analysis.
df.var.pvca <- mbecModelVariance(input.obj=dummy.mbec,
model.vars=c("batch”, "group”), method='pvca')

mbecModelVariancelM Estimate Explained Variance with Linear Models

Description

The function uses a linear modeling approach to estimate the proportion of variance that can be
attributed to covariates of interest. This shows, how much variation is explained by the treatment
effect, which proportion is introduced by processing in batches and the leftover variance, i.e., resid-
uals that are not currently explained. Covariates of interest (Col) are selected by the user and the
function will incorporate them into the model.

Usage

mbecModelVariancelLM(model.form, model.vars, tmp.cnts, tmp.meta, type)

Arguments
model. form Formula for linear model, function will create simple additive linear model if
this argument is not supplied.
model.vars Covariates to use for model building if argument *'model.form’ is not given.
tmp.cnts Abundance matrix in ’sample x feature’ orientation.
tmp.meta Covariate table that contains at least the used variables.
type String the denotes data source, i.e., one of "otu","clr" or "tss" for the transformed
counts or the label of the batch corrected count-matrix.
Details

Linear Model (Im): An additive model of all covariates is fitted to each feature respectively and the
proportion of variance is extracted for each covariate (OTU_x ~ covariate_1 + covariate_2 + ...).

mbecModel Variance LMM 33

Value

Data.frame that contains proportions of variance for given covariates in a linear modelling approach.

mbecModelVariancelMM Estimate Explained Variance with Linear Mixed Models

Description

The function uses a linear mixed modeling approach to estimate the proportion of variance that
can be attributed to covariates of interest. This shows, how much variation is explained by the
treatment effect, which proportion is introduced by processing in batches and the leftover variance,
i.e., residuals that are not currently explained. Covariates of interest (Col) are selected by the user
and the function will incorporate them into the model.

Usage

mbecModelVarianceLMM(model.form, model.vars, tmp.cnts, tmp.meta, type)

Arguments
model. form Formula for linear mixed model, function will create simple additive linear
mixed model if this argument is not supplied.
model.vars Covariates to use for model building if argument *'model.form’ is not given.
tmp.cnts Abundance matrix in ’sample x feature’ orientation.
tmp.meta Covariate table that contains at least the used variables.
type String the denotes data source, i.e., one of "otu","clr" or "tss" for the transformed
counts or the label of the batch corrected count-matrix.
Details

Linear Mixed Model (Imm): Only the first covariate is considered a mixed effect. A model is fitted
to each OTU respectively and the proportion of variance extracted for each covariate. (OTU_x ~
covariate_2.. + covariate_n + (1lcovariate_1)

Value

Data.frame that contains proportions of variance for given covariates in a linear mixed modelling
approach.

34 mbecModel VariancePVCA

mbecModelVariancePVCA Estimate Explained Variance with Principal Variance Component
Analysis

Description

The function offers a selection of methods/algorithms to estimate the proportion of variance that
can be attributed to covariates of interest. This shows, how much variation is explained by the
treatment effect, which proportion is introduced by processing in batches and the leftover variance,
i.e., residuals that are not currently explained. Covariates of interest (Col) are selected by the user
and the function will incorporate them into the model.

Usage

mbecModelVariancePVCA(
model.vars,
tmp.cnts,
tmp.meta,
type,
pct_threshold,
na.action

Arguments

model.vars Covariates to use for model building.
tmp.cnts Abundance matrix in ’sample x feature’ orientation.

tmp.meta Covariate table that contains at least the used variables.

"non

type String the denotes data source, i.e., one of "otu","clr" or "tss" for the transformed
counts or the label of the batch corrected count-matrix.

pct_threshold Cutoff value for accumulated variance in principal components.

na.action Set NA handling, will take global option if not supplied.

Details

Principal Variance Component Analysis (pvca): Algorithm - calculate the correlation of the fxs
count-matrix - from there extract the eigenvectors and eigenvalues and calculate the proportion
of explained variance per eigenvector (i.e. principal component) by dividing the eigenvalues by
the sum of eigenvalues. Now select as many PCs as required to fill a chosen quota for the total
proportion of explained variance. Iterate over all PCs and fit a linear mixed model that contains all
covariates as random effect and all unique interactions between two covariates. Compute variance
covariance components form the resulting model —> From there we get the Variance that each
covariate(variable) contributes to this particular PC. Then just standardize variance by dividing it
through the sum of variance for that model. Scale each PCs results by the proportion this PC
accounted for in the first place. And then do it again by dividing it through the total amount of
explained variance, i.e. the cutoff to select the number of PCs to take (obviously not the cutoff but

mbecModel VarianceRDA 35

rather the actual values for the selected PCs). Finally take the average over each random variable
and interaction term and display in a nice plot.
Value

Data.frame that contains proportions of variance for given covariates in a principal variance com-
ponent analysis approach.

mbecModelVarianceRDA Estimate Explained Variance with Redundancy Analysis

Description

The function offers a selection of methods/algorithms to estimate the proportion of variance that
can be attributed to covariates of interest. This shows, how much variation is explained by the
treatment effect, which proportion is introduced by processing in batches and the leftover variance,
i.e., residuals that are not currently explained. Covariates of interest (Col) are selected by the user
and the function will incorporate them into the model.

Usage

mbecModelVarianceRDA(model.vars, tmp.cnts, tmp.meta, type)

Arguments
model.vars Covariates to use for model building.
tmp.cnts Abundance matrix in ’sample x feature’ orientation.
tmp.meta Covariate table that contains at least the used variables.
type String the denotes data source, i.e., one of "otu","clr" or "tss" for the transformed
counts or the label of the batch corrected count-matrix.
Details

partial Redundancy Analysis (rda): Iterates over given covariates, builds a model of all covariates
that includes one variable as condition/constraint and then fits it to the feature abundance matrix.
The difference in explained variance between the full- and the constrained-model is then attributed
to the constraint. (cnts ~ group + Condition(batch) vs. cnts ~ group + batch)

Value

Data.frame that contains proportions of variance for given covariates in a partial redundancy analy-
sis approach.

36

mbecModel VarianceSCOEF

mbecModelVarianceSCOEF
Estimate Explained Variance with Silhouette Coefficient

Description

The function offers a selection of methods/algorithms to estimate the proportion of variance that
can be attributed to covariates of interest. This shows, how much variation is explained by the
treatment effect, which proportion is introduced by processing in batches and the leftover variance,
i.e., residuals that are not currently explained. Covariates of interest (Col) are selected by the user
and the function will incorporate them into the model.

Usage

mbecModelVarianceSCOEF (model.vars, tmp.cnts, tmp.meta, type)

Arguments
model.vars Covariates to use for model building.
tmp.cnts Abundance matrix in ’sample x feature’ orientation.
tmp.meta Covariate table that contains at least the used variables.
type String the denotes data source, i.e., one of "otu","clr" or "tss" for the transformed
counts or the label of the batch corrected count-matrix.
Details

Silhouette Coefficient (s.coef): Calculate principal components and get sample-wise distances on
the resulting (sxPC) matrix. Then iterate over all the covariates and calculate the cluster silhouette
(which is basically either zero, if the cluster contains only a single element, or it is the distance to
the closest different cluster minus the distance of the sample within its own cluster divided (scaled)
by the maximum distance). Average over each element in a cluster for all clusters and there is the
representation of how good the clustering is. This shows how good a particular covariate char-
acterizes the data, i.e., a treatment variable for instance may differentiate the samples into treated
and untreated groups which implies two clusters. In an ideal scenario, the treatment variable, i.e.,
indicator for some biological effect would produce a perfect clustering. In reality, the confounding
variables, e.g., batch, sex or age, will also influence the ordination of samples. Hence, the clustering
coefficient is somewhat similar to the amount of explained variance metric that the previous meth-
ods used. If used to compare an uncorrected data-set to a batch-corrected set, the expected result
would be an increase of clustering coefficient for the biological effect (and all other covariates -
because a certain amount of uncertainty was removed from the data) and a decrease for the batch
effect.

Value

Data.frame that contains proportions of variance for given covariates in a silhouette coefficient
analysis approach.

mbecMosaic 37

mbecMosaic Mosaic Sample Group Allocation

Description
Depicts the dispersion of samples over two (preferentially categorical) covariates of interest. Effec-
tively showing, the un-/evenness within and between covariates to inform the choice of methods for
the subsequent steps in an analysis.

Usage

mbecMosaic(input.obj, model.vars = c("batch”, "group”), return.data = FALSE)

Arguments
input.obj MbecData object
model.vars Two covariates of interest to the sample allocation.

return.data Logical if TRUE returns the data.frame required for plotting. Default (FALSE)
will return plot object.

Details

The function returns either a plot-frame or the finished ggplot object. Input for the data-set can be
an MbecData-object.

Value

either a ggplot2 object or a formatted data-frame to plot from

Examples

This will return the plot-df of the samples grouped by group and batch.
data(dummy.mbec)

data.Mosaic <- mbecMosaic(input.obj=dummy.mbec,

model.vars=c('group', 'batch'), return.data=TRUE)

Return the ggplot2 object of the samples grouped by group and batch
plot.Mosaic <- mbecMosaic(input.obj=dummy.mbec,
model.vars=c('group', 'batch'), return.data=FALSE)

38 mbecPCA

mbecMosaicPlot Mosaic plotting function

Description

Takes data.frame from mbecMosaic and produces a ggplot2 object.

Usage

mbecMosaicPlot (study.summary, model.vars)

Arguments

study.summary ’mbecMosaic’ output object.

model.vars two covariates of interest to select by first variable selects panels and second one
determines coloring.

Value

ggplot2 object

Examples

This will return a paneled plot that shows results for the variance

assessment.

data(dummy.mbec)

mosaic.df <- mbecMosaic(input.obj=dummy.mbec, model.vars=c('group', 'batch'),
return.data=TRUE)

plot.mosaic <- mbecMosaicPlot(study.summary=mosaic.df,

model.vars=c('group', 'batch'))

mbecPCA Principal Component Analysis Plot

Description

Takes two covariates, i.e., group and batch, and computes the ordination-plot for user-selected prin-
cipal components. Covariates determine sample-shape and color and can be switched to shift the
emphasis on either group. In addition to the ordination-plot, the function will show the distribution
of eigenvalues (colored by the second covariate) on their respective principal components.

mbecPCA 39

Usage
mbecPCA(
input.obj,
model.vars = c("batch”, "group"),
pca.axes = c(1, 2),
type = "clr”,

label = character(),
return.data = FALSE

)
Arguments

input.obj list(cnts, meta), phyloseq, MbecData object (correct orientation is handled in-
ternally)

model.vars two covariates of interest to select by first variable selects color (batch) and
second one determines shape (group)

pca.axes numeric vector which axes to plot, first is X and second is Y

type Which abundance matrix to use for the calculation.

label Which corrected abundance matrix to use for analysis.

return.data logical if TRUE returns the data.frame required for plotting. Default (FALSE)
will return plot object.

Details

The function returns either a plot-frame or the finished ggplot object. Input is an MbecData-object.
If cumulative log-ratio (clr) and total sum-scaled (tss) abundance matrices are part of the input, i.e.,
’mbecTransform()’ was used, they can be selected as input by using the ’type’ argument with either
"otu", "clr" or "tss". If batch effect corrected matrices are available, they can be used by speci-
fying the ’type’ argument as "cor" and using the ’label’ argument to select the appropriate matrix
by its denominator, e.g., for batch correction method ComBat this would be "bat", for Remove-
BatchEffects from the limma package this is "rbe". Default correction method-labels are "ruv3",
"bmc","bat","rbe","pn","svd".

The combination of ’type’ and ’label’ argument basically accesses the attribute ’cor’, a list that
stores all matrices of corrected counts. This list can also be accessed via getter and setter methods.
Hence, the user can supply their own matrices with own names.

Value

either a ggplot2 object or a formatted data-frame to plot from

Examples

This will return the data.frame for plotting.

data(dummy.mbec)

data.PCA <- mbecPCA(input.obj=dummy.mbec,

model.vars=c('group', 'batch'), pca.axes=c(1,2), return.data=TRUE)

40 mbecPCA,MbecData-method

This will return the ggplot2 object for display, saving and modification.
Selected PCs are PC3 on x-axis and PC2 on y-axis.

plot.PCA <- mbecPCA(input.obj=dummy.mbec,

model.vars=c('group', 'batch'), pca.axes=c(3,2), return.data=FALSE)

mbecPCA,MbecData-method
Principal Component Analysis Plot for MbecData

Description

Takes two covariates, i.e., group and batch, and computes the ordination-plot for user-selected prin-
cipal components. Covariates determine sample-shape and color and can be switched to shift the
emphasis on either group. In addition to the ordination-plot, the function will show the distribution
of eigenvalues (colored by the second covariate) on their respective principal components.

Usage
S4 method for signature 'MbecData’
mbecPCA(
input.obj,
model.vars = c("batch”, "group"),
pca.axes = c(1, 2),
type = "clr”,

label = character(),
return.data = FALSE

)
Arguments
input.obj MbecData object
model.vars two covariates of interest to select by first variable selects color (batch) and
second one determines shape (group).
pca.axes numeric vector which axes to plot, first is X and second is Y
type Which abundance matrix to use for the calculation.
label Which corrected abundance matrix to use for analysis.

return.data logical if TRUE returns the data.frame required for plotting. Default (FALSE)
will return plot object.

Details

The function returns either a plot-frame or the finished ggplot object. Input is an MbecData-object.
If cumulative log-ratio (clr) and total sum-scaled (tss) abundance matrices are part of the input, i.e.,
’mbecTransform()’ was used, they can be selected as input by using the "type’ argument with either
"otu", "clr" or "tss". If batch effect corrected matrices are available, they can be used by speci-
fying the ’type’ argument as "cor" and using the ’label’ argument to select the appropriate matrix

mbecPCAPIot 41

by its denominator, e.g., for batch correction method ComBat this would be "bat", for Remove-
BatchEffects from the limma package this is "rbe". Default correction method-labels are "ruv3",

non

"me”,"bat”,"rbe","pn , SVd”.

The combination of ’type’ and ’label’ argument basically accesses the attribute ’cor’, a list that
stores all matrices of corrected counts. This list can also be accessed via getter and setter methods.
Hence, the user can supply their own matrices with own names.

Value

either a ggplot2 object or a formatted data-frame to plot from

Examples

This will return the data.frame for plotting.

data(dummy.mbec)

data.PCA <- mbecPCA(input.obj=dummy.mbec,

model.vars=c('group', 'batch'), pca.axes=c(1,2), return.data=TRUE)

This will return the ggplot2 object for display, saving and modification.
Selected PCs are PC3 on x-axis and PC2 on y-axis.

plot.PCA <- mbecPCA(input.obj=dummy.mbec,

model.vars=c('group', 'batch'), pca.axes=c(3,2), return.data=FALSE)

mbecPCAPlot PCA plotting function

Description

Takes data.frame from mbecPCA and produces a ggplot2 object.

Usage

mbecPCAPlot(plot.df, metric.df, model.vars, pca.axes, label = NULL)

Arguments
plot.df Data.frame containing principal component data.
metric.df Data.frame containing covariate data.
model.vars two covariates of interest to select by first variable selects panels and second one
determines coloring.
pca.axes NMumerical two-piece vector that selects PCs to plot.
label Name of the plot displayed as legend title.
Value

ggplot2 object

42 mbecPLSDA

Examples

This will return a paneled plot that shows results for the variance
assessment.

data(dummy.mbec)

pca.df <- mbecPCA(input.obj=dummy.mbec,

model.vars=c('group', 'batch'), pca.axes=c(1,2), return.data=TRUE)
plot.pca <- mbecPCAPlot(plot.df=pca.df[[1]1], metric.df=pca.df[[2]],
model.vars=c('group', 'batch'), pca.axes=c(1,2))

mbecPLSDA Partial Least Squares Discriminant Analysis

Description

This function estimates latent dimensions from the explanatory matrix X. The latent dimensions are
maximally associated with the outcome matrix Y. It is a built-in function of PLSDA_batch and has
been adjusted to work in the MBECS-package. To that end, the function mixOmics::explained_variance
was replaced with a computation based on vegan::cca since this is already used in the MBECS pack-
age. Additionally, the matrix deflation function was replaced with own code. The near zero-variance
correction function is taken from the caret -package. The credit for algorithm and implementation
goes to https://github.com/EvaYiwenWang/PLSDAbatch’ and the associated publication that is ref-
erenced in the documentation and vignette.

Usage

mbecPLSDA(input.obj, model.vars, type = c("clr”, "otu", "tss"))

Arguments
input.obj phyloseq object or numeric matrix (correct orientation is handeled internally)
model.vars Vector of covariate names. First element relates to batch.
type Which abundance matrix to use, one of ’otu, tss, clr’. DEFAULT is ’clr’.
Value

A matrix of batch-effect corrected counts

mbecPN 43

mbecPN Percentile Normalization (PN)

Description

This method was actually developed specifically to facilitate the integration of microbiome data
from different studies/experimental set-ups. This problem is similar to the mitigation of BEs, i.e.,
when collectively analyzing two or more data-sets, every study is effectively a batch on its own (not
withstanding the probable BEs within studies). The algorithm iterates over the unique batches and
converts the relative abundance of control samples into their percentiles. The relative abundance
of case-samples within the respective batches is then transformed into percentiles of the associated
control-distribution. Basically, the procedure assumes that the control-group is unaffected by any
effect of interest, e.g., treatment or sickness, but both groups within a batch are affected by that
BE. The switch to percentiles (kinda) flattens the effective difference in count values due to batch
- as compared to the other batches. This also introduces the two limiting aspects in percentile
normalization. It can only be applied to case/control designs because it requires a reference group.
In addition, the transformation into percentiles removes information from the data.

Usage

n

mbecPN(input.obj, model.vars, type = c("clr”, "otu"”, "tss"))

Arguments
input.obj phyloseq object or numeric matrix (correct orientation is handeled internally)
model.vars Vector of covariate names. First element relates to batch.
type Which abundance matrix to use, one of *otu, tss, clr’. DEFAULT is ’tss’.
Details

The input for this function is supposed to be an MbecData object that contains total sum-scaled
and cumulative log-ratio transformed abundance matrices. Output will be a matrix of corrected
abundances.

Value

A matrix of batch-effect corrected counts

44 mbecProcessInput,list-method

mbecProcessInput Mbec-Data Constructor Wrapper

Description

This function is a wrapper for the constructor of MbecData-objects from phyloseq objects and lists
of counts and sample data.

Usage

mbecProcessInput(input.obj, required.col = NULL)

Arguments

input.obj One of MbecData, phyloseq or list(counts, meta-data).

required.col Vector of column names that need to be present in the meta-data table.

Details

The (OPTIONAL) argument ’required.col’ is a vector of column-names that will enable a sanity
test for the presence in the meta-data table. Which is also the second use-case for objects that are
already of class MbecData.

Value

An object of type MbecData that has been validated.

Examples

This will check for the presence of variables 'group' and 'batch' in the

meta-data and return an object of class 'MbecData’.

data(dummy.mbec)

MbecData.obj <- mbecProcessInput(input.obj=dummy.mbec,
required.col=c("group"”, "batch"))

mbecProcessInput,list-method
Mbec-Data Constructor Wrapper

Description

This function is a wrapper for the constructor of MbecData-objects from phyloseq objects and lists
of counts and sample data.

mbecProcessInput,MbecData-method 45

Usage

S4 method for signature 'list'
mbecProcessInput(input.obj, required.col = NULL)

Arguments

input.obj One of MbecData, phyloseq or list(counts, meta-data).

required.col Vector of column names that need to be present in the meta-data table.

Details

The (OPTIONAL) argument ’required.col’ is a vector of column-names that will enable a sanity
test for the presence in the meta-data table. Which is also the second use-case for objects that are
already of class MbecData.

Value

An object of type MbecData that has been validated.

Examples

This will check for the presence of variables 'group' and 'batch' in the

meta-data and return an object of class 'MbecData’.

data(dummy.mbec)

MbecData.obj <- mbecProcessInput(input.obj=dummy.mbec,
required.col=c("group”, "batch"))

mbecProcessInput,MbecData-method
Mbec-Data Constructor Wrapper

Description
This function is a wrapper for the constructor of MbecData-objects from phyloseq objects and lists
of counts and sample data.
Usage
S4 method for signature 'MbecData’
mbecProcessInput(input.obj, required.col = NULL)
Arguments

input.obj One of MbecData, phyloseq or list(counts, meta-data).

required.col Vector of column names that need to be present in the meta-data table.

46 mbecProcessInput,phyloseq-method

Details

The (OPTIONAL) argument ’required.col’ is a vector of column-names that will enable a sanity
test for the presence in the meta-data table. Which is also the second use-case for objects that are
already of class MbecData.

Value

An object of type MbecData that has been validated.

Examples

This will check for the presence of variables 'group' and 'batch' in the

meta-data and return an object of class 'MbecData’.

data(dummy.mbec)

MbecData.obj <- mbecProcessInput(input.obj=dummy.mbec,
required.col=c("group"”, "batch"))

mbecProcessInput, phyloseg-method
Mbec-Data Constructor Wrapper

Description
This function is a wrapper for the constructor of MbecData-objects from phyloseq objects and lists
of counts and sample data.
Usage
S4 method for signature 'phyloseq'
mbecProcessInput(input.obj, required.col = NULL)
Arguments

input.obj One of MbecData, phyloseq or list(counts, meta-data).

required.col Vector of column names that need to be present in the meta-data table.

Details

The (OPTIONAL) argument ’required.col’ is a vector of column-names that will enable a sanity
test for the presence in the meta-data table. Which is also the second use-case for objects that are
already of class MbecData.

Value

An object of type MbecData that has been validated.

mbecPVCAStatsPlot 47

Examples

This will check for the presence of variables 'group' and 'batch' in the

meta-data and return an object of class 'MbecData’.

data(dummy.ps)

MbecData.obj <- mbecProcessInput(input.obj=dummy.ps,
required.col=c("group”, "batch"))

mbecPVCAStatsPlot Plot Proportion of Variance for PVCA

Description

Covariate-Variances as modeled by PVCA will be displayed as box-plots. It works with the output
of "mbecVarianceStats()’ for the method *pvca’. Format of this output is a data.frame that contains a
column for every model variable and as many rows as there are features (OTUs, Genes, ..). Multiple
frames may be used as input by putting them into a list - IF the data.frames contain a column named
’type’, this function will use *facet_grid()’ to display side-by-side panels to enable easy comparison.

Usage

mbecPVCAStatsPlot(pvca.obj)

Arguments

pvca.obj output of *'mbecVarianceStats’ with method pvca

Value

A ggplot2 box-plot object.

Examples

This will return a paneled plot that shows results for the variance
assessment.

data(dummy.mbec)

df.var.pvca <- mbecModelVariance(input.obj=dummy.mbec,
model.vars=c('batch', 'group'), method='pvca', type='clr')

plot.pvca <- mbecPVCAStatsPlot(pvca.obj=df.var.pvca)

48 mbecRDA StatsPlot

mbecRBE Remove Batch Effects (RBE)

Description

As part of the limma-package this method was designed to remove BEs from Microarray Data.
The algorithm fits the full-model to the data, i.e., all relevant covariates whose effect should not
be removed, and a model that only contains the known BEs. The difference between these models
produces a residual matrix that (should) contain only the full-model-effect, e.g., treatment. As of
now the mbecs-correction only uses the first input for batch-effect grouping. ToDo: think about
implementing a version for more complex models.

Usage

n

mbecRBE(input.obj, model.vars, type = c("clr”, "otu”, "tss"))

Arguments
input.obj phyloseq object or numeric matrix (correct orientation is handeled internally)
model.vars Vector of covariate names. First element relates to batch.
type Which abundance matrix to use, one of ’otu, tss, clr’. DEFAULT is ’clr’.
Details

The input for this function is supposed to be an MbecData object that contains total sum-scaled
and cumulative log-ratio transformed abundance matrices. Output will be a matrix of corrected
abundances.

Value

A matrix of batch-effect corrected counts

mbecRDAStatsPlot Plot Proportion of Variance for pRDA

Description

Covariate-Variances as modeled by pRDA will be displayed as box-plots. It works with the output
of “'mbecVarianceStats()’ for the method ’rda’. Format of this output is a data.frame that contains a
column for every model variable and as many rows as there are features (OTUs, Genes, ..). Multiple
frames may be used as input by putting them into a list - IF the data.frames contain a column named
’type’, this function will use *facet_grid()’ to display side-by-side panels to enable easy comparison.

Usage

mbecRDAStatsPlot(rda.obj)

mbecReportPost 49

Arguments

rda.obj list or single output of "'mbecVarianceStats’ with method rda

Value

A ggplot2 box-plot object.

Examples

This will return a paneled plot that shows results for three variance
assessments.

data(dummy.mbec)

df.var.rda <- mbecModelVariance(input.obj=dummy.mbec,
model.vars=c('group', 'batch'), method='rda', type='clr')

plot.rda <- mbecRDAStatsPlot(rda.obj=df.var.rda)

mbecReportPost Constructs a comparative report of batch corrected data.

Description

Constructs a comparative report of batch corrected data.

Usage

mbecReportPost (
input.obj,
model.vars = c("batch”, "group"),
type = "clr”,
file.name = NULL,
file.dir = getwd(),
return.data = FALSE

)

Arguments
input.obj list of phyloseq objects to compare, first element is considered uncorrected data
model.vars required covariates to build models
type One of ’otu’, ’tss’ or "clr’ to determine the abundance matrix to use for evalua-

tion.

file.name Optional file name, parameter defaults to NULL and template name will be used
file.dir Optional output directory, parameter defaults to current working directory.

return.data TRUE will return a list of all produced plots, FALSE will start rendering the
report

50 mbecReportPrelim

Value

either a ggplot2 object or a formatted data-frame to plot from

Examples

data(dummy.list)

dummy.test <- mbecTransform(list(dummy.list$cnts[,seq(20)],
dummy.list$meta), method="clr")

dummy . corrected <- mbecCorrection(input.obj=dummy.test,
model.vars=c("batch”,"group”), method="bat"”, type="clr")

report.data <- mbecReportPost(input.obj=dummy.corrected,
model.vars=c("batch”,"group”), type="clr"”, file.name=NULL, file.dir=NULL,
return.data = TRUE)

mbecReportPrelim Constructs an initial report of a single data-set.

Description

Input can be of class MbecData, phyloseq or list(counts, meta-data). The function will check if
required covariates are present and apply normalization with default parameters according to chosen
type, i.e., clr’ (cumulative log-ratio) or ’tss’ (total sum scaled).

Usage
mbecReportPrelim(
input.obj,
model.vars = c("batch”, "group"),

type = c("clr”, "otu”, "tss"),
file.name = NULL,

file.dir = getwd(),
return.data = FALSE

)

Arguments
input.obj list of phyloseq objects to compare, first element is considered uncorrected data
model.vars required covariates to build models
type One of otu’, ’tss’ or ’clr’ to determine the abundance matrix to use for evalua-

tion.

file.name Optional file name, parameter defaults to NULL and template name will be used
file.dir Optional output directory, parameter defaults to current working directory.

return.data TRUE will return a list of all produced plots, FALSE will start rendering the
report

mbecRLE 51

Value

either a ggplot2 object or a formatted data-frame to plot from

Examples

data(dummy.list)

report.data <- mbecReportPrelim(input.obj=1list(dummy.list$cnts[,seq(20)],
dummy.list$meta), model.vars=c("batch”,"group"”),

type="clr"”, file.name=NULL, file.dir=NULL, return.data=TRUE)

mbecRLE Relative Log Expression Plot

Description

Takes two covariates, i.e., group and batch, and computes the RLE-plot over the grouping of the first
covariate, colored by the second covariate. Effectively illustrating the relative expression between
samples from different batches within the respective study groups. Other covariates can be chosen
as input and the function will check for factors and convert if necessary. Categorical factors, e.g.,
group membership, sex and batch, produce the best result.

Usage

mbecRLE (
input.obj,
model.vars = c("batch”, "group"),
type = "clr”,
label = character(),
return.data = FALSE

)
Arguments
input.obj MbecData-object
model.vars two covariates of interest to select by. First relates to “batch’ and the second to
relevant grouping.
type Which abundance matrix to use for the calculation.
label Which corrected abundance matrix to use for analysis.

return.data logical if TRUE returns the data.frame required for plotting. Default (FALSE)
will return plot object.

52 mbecRLEPIot

Details

The function returns either a plot-frame or the finished ggplot object. Input is an MbecData-object.
If cumulative log-ratio (clr) and total sum-scaled (tss) abundance matrices are part of the input, i.e.,
’mbecTransform()’ was used, they can be selected as input by using the "type’ argument with either
"otu", "clr" or "tss". If batch effect corrected matrices are available, they can be used by speci-
fying the ’type’ argument as "cor" and using the ’label’ argument to select the appropriate matrix
by its denominator, e.g., for batch correction method ComBat this would be "bat", for Remove-
BatchEffects from the limma package this is "rbe". Default correction method-labels are "ruv3",
"bmc","bat","rbe","pn","svd".

The combination of ’type’ and ’label’ argument basically accesses the attribute ’cor’, a list that
stores all matrices of corrected counts. This list can also be accessed via getter and setter methods.
Hence, the user can supply their own matrices with own names.

Value

Either a ggplot2 object or a formatted data-frame to plot from.

Examples

This will return the data.frame for plotting.
data(dummy.mbec)

data.RLE <- mbecRLE(input.obj=dummy.mbec, type="clr",
model.vars=c('group', 'batch'), return.data=TRUE)

This will return the ggplot2 object for display, saving and modification.
plot.RLE <- mbecRLE(input.obj=dummy.mbec, model.vars=c('group', 'batch'),
type="clr"”, return.data=FALSE)

mbecRLEPlot RLE plotting function

Description

Takes data.frame from mbecRLE and produces a ggplot2 object.

Usage

mbecRLEPlot(rle.df, model.vars, label = NULL)

Arguments
rle.df ’mbecRLE’ data output
model.vars two covariates of interest to select by first variable selects panels and second one

determines coloring

label Name of the plot displayed as legend title.

mbecRunCorrections 53

Value

ggplot2 object

Examples

This will return a paneled plot that shows results for the variance
assessment.

data(dummy.mbec)

rle.df <- mbecRLE(input.obj=dummy.mbec, model.vars=c('group', 'batch'),
type="clr"”, return.data=TRUE)

plot.rle <- mbecRLEPlot(rle.df, c('group', 'batch'))

mbecRunCorrections Run Correction Pipeline

Description

Run all correction algorithms selected by method and add corrected counts as matrices to the data-

set.
Usage
mbecRunCorrections(
input.obj,
model.vars = c("batch”, "group"),
type = "clr”,

method = C(Ilruv3ll’ Hbmcﬁl, "bat"’ Hr,bell, ”pn”, "SVd", lesn)7
nc.features = NULL

)
Arguments
input.obj Phyloseq object or a list that contains numeric matrix and meta-data table. Re-
quires sample names as row/col-names to handle correct orientation.
model.vars Two covariates of interest to select by first variable selects panels and second
one determines coloring.
type One of ’otu’, ’tss’ or "clr’ to determine the abundance matrix to use for evalua-
tion.
method algorithms to use
nc.features (OPTIONAL) A vector of features names to be used as negative controls in
RUV-3. If not supplied, the algorithm will use an Im’ to find pseudo-negative
controls
Value

an object of class MbecDataSet

54 mbecRUV2

Examples

This call will use 'ComBat' for batch effect correction and store the new
counts in a list-obj in the output.

data(dummy.mbec)

study.obj <- mbecRunCorrections(input.obj=dummy.mbec,
model.vars=c("batch”,"group”), method=c("bat","bmc"))

This call will use 'Percentile Normalization' for batch effect correction
and replace the old count matrix.

study.obj <- mbecRunCorrections(dummy.mbec, model.vars=c("batch"”,"group”),
method=c("pn"))

mbecRUV2 Remove unwanted Variation 2 (RUV-2)

Description

Estimates unknown BEs by using negative control variables that, in principle, are unaffected by
treatment/study/biological effect (aka the effect of interest in an experiment). These variables are
generally determined prior to the experiment. An approach to RUV-2 without the presence of
negative control variables is the estimation of pseudo-negative controls. To that end an Im or Imm
(depending on whether or not the study design is balanced) with treatment is fitted to each feature
and the significance calculated. The features that are not significantly affected by treatment are
considered as pseudo-negative control variables. Subsequently, the actual RUV-2 function is applied
to the data and returns the p-values for treatment, considering unwanted BEs (whatever that means).

Usage

mbecRUV2(
input.obj,
model.vars,
type = c("clr”, "otu”, "tss"),
nc.features = NULL

)
Arguments
input.obj phyloseq object or numeric matrix (correct orientation is handeled internally)
model.vars Vector of covariate names. First element relates to batch.
type Which abundance matrix to use, one of ’otu, tss, clr’. DEFAULT is ’clr’.
nc.features (OPTIONAL) A vector of features names to be used as negative controls in
RUV-3. If not supplied, the algorithm will use an Im’ to find pseudo-negative
controls
Details

The input for this function is supposed to be an MbecData object that contains total sum-scaled and
cumulative log-ratio transformed abundance matrices. Output will be a vector of p-values.

mbecRUV3 55

Value

A vector of p-values that indicate significance of the batch-effect for the features.

mbecRUV3 Remove Unwanted Variation 3 (RUV-3)

Description

This algorithm requires negative control-features, i.e., OTUs that are known to be unaffected by
the batch effect, as well as technical replicates. The algorithm will check for the existence of a
replicate column in the covariate data. If the column is not present, the execution stops and a
warning message will be displayed.

Usage

mbecRUV3(
input.obj,
model.vars,
type = c("clr”, "otu”, "tss"),
nc.features = NULL

)
Arguments
input.obj phyloseq object or numeric matrix (correct orientation is handeled internally)
model.vars Vector of covariate names. First element relates to batch.
type Which abundance matrix to use, one of “otu, tss, clr’. DEFAULT is ’clr’.
nc.features (OPTIONAL) A vector of features names to be used as negative controls in
RUV-3. If not supplied, the algorithm will use an Im’ to find pseudo-negative
controls
Details

The input for this function is supposed to be an MbecData object that contains total sum-scaled
and cumulative log-ratio transformed abundance matrices. Output will be a matrix of corrected
abundances.

Value

A matrix of batch-effect corrected counts

56 mbecRUV4

mbecRUV4 Remove Unwanted Variation 4 (RUV-4)

Description

The updated version of RUV-2 also incorporates the residual matrix (w/o treatment effect) to es-
timate the unknown BEs. To that end it follows the same procedure in case there are no negative
control variables and computes pseudo-controls from the data via I(m)m. As RUV-2, this algorithm
also uses the parameter 'k’ for the number of latent factors. RUV-4 brings the function *getK()’ that
estimates this factor from the data itself. The calculated values are however not always reliable. A
value of k=0 fo example can occur and should be set to 1 instead.

Usage

mbecRUV4 (
input.obj,
model.vars,
type = c("clr”, "otu", "tss"),
nc.features = NULL

)
Arguments
input.obj phyloseq object or numeric matrix (correct orientation is handeled internally)
model.vars Vector of covariate names. First element relates to batch.
type Which abundance matrix to use, one of ’otu, tss, clr’. DEFAULT is ’clr’.
nc.features (OPTIONAL) A vector of features names to be used as negative controls in
RUV-3. If not supplied, the algorithm will use an ’Im’ to find pseudo-negative
controls
Details

The input for this function is supposed to be an MbecData object that contains total sum-scaled and
cumulative log-ratio transformed abundance matrices. Output will be a vector of p-values.

Value

A vector of p-values that indicate significance of the batch-effect for the features.

MBECS 57

MBECS MBECS: Evaluation and correction of batch effects in microbiome
data-sets.

Description

The Microbiome Batch-Effect Correction Suite aims to provide a toolkit for stringent assessment
and correction of batch-effects in microbiome data sets. To that end, the package offers wrapper-
functions to summarize study-design and data, e.g., PCA, Heatmap and Mosaic-plots, and to esti-
mate the proportion of variance that can be attributed to the batch effect. The function mbecCorrection
acts as a wrapper for various batch effects correction algorithms (BECA) and in conjunction with the
aforementioned tools, it can be used to compare the effectiveness of correction methods on particu-
lar sets of data. All functions of this package are accessible on their own or within the preliminary
and comparative report pipelines respectively.

Pipeline
e mbecProcessInput
* mbecTransform
* mbecReportPrelim
* mbecCorrection
* mbecRunCorrections

* mbecReportPost

Exploratory functions

* mbecRLE
* mbecPCA
* mbecBox
* mbecHeat

e mbecMosaic

Variance functions

* mbecModelVariance

* mbecVarianceStatsPlot
* mbecRDAStatsPlot

* mbecPVCAStatsPlot

* mbecSCOEFStatsPlot

58 mbecSetData

mbecSCOEFStatsPlot Plot Silhouette Coefficient

Description

The goodness of clustering assessed by the silhouette coefficient. It works with the output of *'mbec-
VarianceStats()’ for the method ’s.coef’. Format of this output is a data.frame that contains a column
for every model variable and as many rows as there are features (OTUs, Genes, ..). Multiple frames
may be used as input by putting them into a list - IF the data.frames contain a column named ’type’,
this function will use ’facet_grid()’ to display side-by-side panels to enable easy comparison.

Usage

mbecSCOEFStatsPlot (scoef.obj)

Arguments

scoef.obj output of “'mbecVarianceStats’ with method s.coef

Value

A ggplot2 dot-plot object.

Examples

This will return a paneled plot that shows results for the variance
assessment.

data(dummy.mbec)

df.var.scoef <- mbecModelVariance(input.obj=dummy.mbec,
model.vars=c('batch', 'group'), method='s.coef', type='clr')
plot.scoef <- mbecSCOEFStatsPlot(scoef.obj=df.var.scoef)

mbecSetData Mbec-Data Setter

Description

Sets and/or replaces selected feature abundance matrix and handles correct orientation. The argu-
ment type determines which slot to access, i.e. the base matrices for un-transformed counts "otu",
total sum-scaled counts "tss", cumulative log-ratio transformed counts "clr" and batch effect cor-
rected counts "cor" and assessment vectors "ass". The later two additionally require the use of the
argument ’label’ that specifies the name within the respective lists of corrections and assessments.

mbecSetData,MbecData-method

Usage

mbecSetData(
input.obj,
new.cnts = NULL,
type = c("otu”, "ass", "cor", "clr", "tss"),
label = character()

n

)
Arguments
input.obj MbecData object to work on.
new.cnts A matrix-like object with same dimension as ’otu_table’ in input.obj.
type Specify which type of data to add, by using one of ’ass’ (Assessement), ’
(Correction), ’clr’ (Cumulative Log-Ratio) or ’tss’ (Total Scaled-Sum).
label For types "ass’ and ’cor’ this sets the name within the lists.
Value

Input object with updated attributes.

Examples

This will fill the 'tss' slot with the supplied matrix.

data(dummy.mbec, dummy.list)

MBEC.obj <- mbecSetData(input.obj=dummy.mbec, new.cnts=dummy.list$cnts,
type="tss')

This will put the given matrix into the list of corrected counts under the

name "nameOfMethod"”.

MBEC.obj <- mbecSetData(input.obj=dummy.mbec, new.cnts=dummy.list$cnts,
type='cor', label="nameOfMethod")

59

cor

mbecSetData,MbecData-method
Mbec-Data Setter

Description

Sets and/or replaces selected feature abundance matrix and handles correct orientation. The argu-
ment type determines which slot to access, i.e. the base matrices for un-transformed counts "otu",
total sum-scaled counts "tss", cumulative log-ratio transformed counts "clr" and batch effect cor-
rected counts "cor" and assessment vectors "ass". The later two additionally require the use of the
argument ’label’ that specifies the name within the respective lists of corrections and assessments.

60 mbecSVA

Usage
S4 method for signature 'MbecData’
mbecSetData(
input.obj,
new.cnts = NULL,
type - C(Hotull’ Hass”’ ”COr”, "Clr"’ ”tss”),
label = character()
)
Arguments
input.obj MbecData object to work on.
new.cnts A matrix-like object with same dimension as ’otu_table’ in input.obj.
type Specify which type of data to add, by using one of ’ass’ (Assessement), ’cor’
(Correction), ’clr’ (Cumulative Log-Ratio) or ’tss’ (Total Scaled-Sum).
label For types "ass’ and ’cor’ this sets the name within the lists.
Value

Input object with updated attributes.

Examples

This will fill the 'tss' slot with the supplied matrix.

data(dummy.mbec, dummy.list)

MBEC.obj <- mbecSetData(input.obj=dummy.mbec, new.cnts=dummy.list$cnts,
type="tss"')

This will put the given matrix into the list of corrected counts under the

name "nameOfMethod".

MBEC.obj <- mbecSetData(input.obj=dummy.mbec, new.cnts=dummy.list$cnts,
type='cor', label="nameOfMethod")

mbecSVA Surrogate variable Analysis (SVA)

Description

Two step approach that (1.) identify the number of latent factors to be estimated by fitting a full-
model with effect of interest and a null-model with no effects. The function *num.sv()’ then calcu-
lates the number of latent factors. In the next (2.) step, the sva function will estimate the surrogate
variables. And adjust for them in full/null-model . Subsequent F-test gives significance values for
each feature - these P-values and Q-values are accounting for surrogate variables (estimated BEs).

Usage

n

mbecSVA(input.obj, model.vars, type = c("clr”, "otu”, "tss"))

mbecSVD 61

Arguments
input.obj MbecData object
model.vars Vector of covariate names. First element relates to variable of interest.
type ‘Which abundance matrix to use, one of ’otu, tss, clr’. DEFAULT is ’clr’.
Details

The input for this function is supposed to be an MbecData object that contains total sum-scaled and
cumulative log-ratio transformed abundance matrices. Output will be a vector of p-values.

Value

A vector of p-values that indicate significance of the batch-effect for the features.

mbecSVD Singular Value Decomposition (SVD)

Description

Basically perform matrix factorization and compute singular eigenvectors (SEV). Assume that the
first SEV captures the batch-effect and remove this effect from the data. The interesting thing is
that this works pretty well. But since the SEVs are latent factors that are (most likely) confounded
with other effects it is not obvious to me that this is the optimal approach to solve this issue.

Usage

mbecSVD(input.obj, model.vars, type = c("clr”, "otu”, "tss"))

Arguments
input.obj phyloseq object or numeric matrix (correct orientation is handeled internally)
model.vars Vector of covariate names. First element relates to batch.
type ‘Which abundance matrix to use, one of ’otu, tss, clr’. DEFAULT is ’clr’.
Details

ToDo: IF I find the time to works on "my-own-approach" then this is the point to start from!!!

The input for this function is supposed to be an MbecData object that contains total sum-scaled
and cumulative log-ratio transformed abundance matrices. Output will be a matrix of corrected
abundances.

Value

A matrix of batch-effect corrected counts

62 mbecTransform

mbecTestModel Check If Model Is Estimable

Description
Applies Limma’s 'nonEstimable()’ to a given model and returns NULL if everything works out, or
a warning and a vector of problematic covariates in case there is a problem.

Usage

mbecTestModel (input.obj, model.vars = NULL, model.form = NULL)

Arguments
input.obj MbecData, phyloseq or list (counts, meta-data).
model.vars Names of covariates to construct formula from.
model. form Formula for a linear model to test.

Details

The usefull part is that you can just put in all the covariates of interest as model.vars and the func-
tion will build a simple linear model and its model.matrix for testing. You can also provide more
complex linear models and the function will do the rest.

Value

Either NULL if everything is fine or a vector of strings that denote covariates and their respective
problematic levels.

Examples

This will return NULL because it is estimable.
data(dummy.mbec)

eval.obj <- mbecTestModel(input.obj=dummy.mbec,
model.vars=c("group”, "batch"))

mbecTransform Normalizing Transformations

Description

Wrapper to help perform cumulative log-ratio and total sum-scaling transformations ,adapted from
packages 'mixOmics’ and robCompositions’ to work on matrices and Phyloseq objects alike.

mbecUpperCase 63

Usage

mbecTransform(
input.obj,
method = c("clr"”, "tss"),
offset = 0,
required.col = NULL

Arguments

input.obj MbecData, phyloseq, list(counts, meta-data)
method one of "CLR’ or °TSS’

offset (OPTIONAL) Offset in case of sparse matrix, for DEFAULT (0) an offset will
be calculated if required.

required.col (OPTIONAL) A vector of column names in the meta-data that need to be present.
Sanity check for subsequent steps.

Details

The function returns an MbecData object with transformed counts and covariate information. Input
for the data-set can be of type MbecData, phyloseq or a list that contains counts and covariate data.
Correct orientation of counts will be handled internally, as long as both abundance table contain
sample names.

Value

MbecData with transformed counts in "clr’ and ’tss’ attributes respectively.

Examples

This will return the cumulative log-ratio transformed counts in an

MbecData object.

data(dummy.mbec)

mbec.CLR <- mbecTransform(input.obj=dummy.mbec, method="clr", offset=0,
required.col=c("batch”,"group”))

This will return total sum-scaled counts in an MbecData object.
mbec.CLR <- mbecTransform(input.obj=dummy.mbec, method="tss", offset=0,
required.col=c("batch”,"group”))

mbecUpperCase Capitalize Word Beginning

Description

Change the first letter of the input to uppercase. Used in plotting functions to make covariates, i.e.,
axis-labels look nicer.

64 mbec ValidateModel

Usage

mbecUpperCase(input = character())

Arguments

input Any string whose first letter should be capitalized.

Value

Input with first letter capitalized

mbecValidateModel Validate Linear (Mixed) Models

Description

A helper function that calculates the collinearity between model variables and stops execution, if
the maximum value is bigger than the allowed threshold.

Usage

mbecValidateModel(model.fit, colinearityThreshold = 0.999)

Arguments
model.fit Im() or Imm() output.
colinearityThreshold
Cut-off for model rejection, I=[0,1].
Details

ToDo: maybe some additional validation steps and more informative output.

Value

No return values. Stops execution if validation fails.

Examples

This will just go through if colinearity threshold is met.
data(dummy.list)

limimo <- 1me4::1lmer(dummy.list$cnts[,1] ~ group + (1]|batch),
data=dummy.list$meta)

mbecValidateModel (model.fit=1imimo, colinearityThreshold=0.999)

mbec VarianceStats 65

mbecVarianceStats Wrapper for Model Variable Variance Extraction

Description

For a Linear (Mixed) Model, this function extracts the proportion of variance that can be explained
by terms and interactions and returns a named row-vector.

Usage

mbecVarianceStats(model.fit)

Arguments

model.fit A linear (mixed) model object of class ’Im’ or "ImerMod’.

Details

Linear Model: Perform an analysis of variance (ANOVA) on the model.fit and return the Sum of
squares for each term, scaled by the total sum of squares.

Linear Mixed Model: employ helper function ’'mbecMixedVariance’ to extract residuals, random ef-
fects and fixed effects components from the model. The components are then transformed to reflect
explained proportions of variance for the model coefficients. The function implements transforma-
tion for varying coefficients as well, but NO ADJUSTMENT for single or multiple coefficients at
this point.

Value

A named row-vector, containing proportional variance for model terms.

Examples

This will return the data.frame for plotting.

data(dummy.list)

limo <- stats::1lm(dummy.list$cnts[,1] ~ group + batch, data=dummy.list$meta)
vec.variance <- mbecVarianceStats(model.fit=1imo)

mbecVarianceStatsLM Model Variable Variance Extraction from LM

Description

For a Linear Model, this function extracts the proportion of variance that can be explained by terms
and interactions and returns a named row-vector.

66 mbec VarianceStatsLMM

Usage

mbecVarianceStatsLM(model.fit)

Arguments

model.fit A linear model object of class 'lm’.

Details
Linear Model: Perform an analysis of variance (ANOVA) on the model.fit and return the Sum of
squares for each term, scaled by the total sum of squares.

Value

A named row-vector, containing proportional variance for model terms.

mbecVarianceStatsLMM Model Variable Variance Extraction from LMM

Description

For a Linear Mixed Model, this function extracts the proportion of variance that can be explained
by terms and interactions and returns a named row-vector.

Usage

mbecVarianceStatsLMM(model.fit)

Arguments

model.fit A linear mixed model object of class "ImerMod’.

Details

Linear Mixed Model: employ helper function ’'mbecMixed Variance’ to extract residuals, random ef-
fects and fixed effects components from the model. The components are then transformed to reflect
explained proportions of variance for the model coefficients. The function implements transforma-
tion for varying coefficients as well, but NO ADJUSTMENT for single or multiple coefficients at
this point.

Value

A named row-vector, containing proportional variance for model terms.

mbec VarianceStatsPlot 67

mbecVarianceStatsPlot Plot Proportion of Variance for L(M)M

Description

Covariate-Variances as modeled by linear (mixed) models will be displayed as box-plots. It works
with the output of mbecVarianceStats()’ for methods 'Im’ and ’lmm’. Format of this output is
a data.frame that contains a column for every model variable and as many rows as there are fea-
tures (OTUs, Genes, ..). Multiple frames may be used as input by putting them into a list - IF the
data.frames contain a column named ’type’, this function will use ’facet_grid()’ to display side-by-
side panels to enable easy comparison.

Usage

mbecVarianceStatsPlot(variance.obj)

Arguments

variance.obj output of *'mbecVarianceStats’ with method Im

Value

A ggplot2 box-plot object.

Examples

This will return a paneled plot that shows results for the variance
assessments.

data(dummy.mbec)

df.var.1lm <- mbecModelVariance(input.obj=dummy.mbec,
model.vars=c('group', 'batch'), method="1lm', type='clr")

plot.1lm <- mbecVarianceStatsPlot(variance.obj=df.var.1lm)

percentileNorm Percentile Normalization

Description

Wrapper to help perform percentile normalization on a matrix of counts. Takes counts and a data-
frame of grouping variables and returns a matrix of transformed counts. This is designed (by the
Developers of the procedure) to work with case/control experiments by taking the untreated group
as reference and adjusting the other groupings of TRT x Batch to it.

Usage

percentileNorm(cnts, meta)

68 poscore

Arguments
cnts A numeric matrix of abundances (samples x features).
meta Data-frame of covariate columns, first column contains batches, second column
contains grouping.
Details

The function returns a matrix of normalized abundances.

Value

Numeric matrix of corrected/normalized counts.

Examples

This will return a matrix of normalized counts, according to the covariate
information in meta

data(dummy.list)

mtx.pn_counts <- percentileNorm(cnts=dummy.list$cnts,
meta=dummy.list$metal,c("batch”,"group”)])

poscore Percentile of Score

Description

Helper function that calculates percentiles of scores for batch-correction method *pn’ (percentile
normalization). R-implementation of Claire Duvallet’s *percentileofscore()’ for python.

Usage

poscore(cnt.vec, cnt, type = c("rank”, "weak"”, "strict”, "mean"))
Arguments

cnt.vec A vector of counts that acts as reference for score calculation.

cnt A numeric value to calculate percentile-score for.

type One of 'rank’, >weak’, ’strict’ or 'mean’ to determine how the score is calculated.
Details

Calculates the number of values that bigger than reference (left) and the number of values that
are smaller than the reference (right). Percentiles of scores are given in the interval I : [0, 100].
Depending on type of calculation, the score will be computed as follows:

rank = (right + left + ifelse(right > left, 1, @)) * 50/n
weak = right / nx100

strict =1left / nx100

mean = (right + left) * 50/n)

poscore

Value

A score for given count in relation to reference counts.

Examples

This will return a score for the supplied vector with default evaluation
(strict).

val.score <- poscore(cnt.vec=runif (100, min=0, max=100), cnt=42,
type="strict")

69

Index

+* Abundance
mbecBoxPlot, 13

* Analysis
mbecModelVariancePVCA, 34
mbecModelVarianceRDA, 35
mbecRDAStatsPlot, 48

* Assessment
mbecCorrection, 14
mbecModelVarianceSCOEF, 36
mbecRUV2, 54
mbecRUV3, 55
mbecRUV4, 56
mbecSVA, 60

+* BECA
mbecBat, 10
mbecBMC, 11
mbecPN, 43
mbecRBE, 48

x Batch-Effect
mbecCorrection, 14
mbecRunCorrections, 53
mbecRUV2, 54
mbecRUV3, 55
mbecRUV4, 56
mbecSVA, 60

+ Batch
mbecBat, 10
mbecBMC, 11
mbecLM, 28
mbecRBE, 48

* Box
mbecBox, 11

x+ CLR
mbecTransform, 62

x Centering
mbecBat, 10
mbecBMC, 11

x Class
MbecData, 17

70

+ Coefficient
mbecModelVarianceSCOEF, 36
+* Component
mbecModelVariancePVCA, 34
* Constructor
MbecData, 17
mbecProcessInput, 44
mbecProcessInput,list-method, 44
mbecProcessInput,MbecData-method,
45
mbecProcessInput,phyloseg-method,
46
* Correction
mbecCorrection, 14
mbecRunCorrections, 53
mbecRUV2, 54
mbecRUV3, 55
mbecRUV4, 56
+ Decomposition
mbecSVD, 61
+ Duvallet
mbecPN, 43
x Effects
mbecRBE, 48
+ Evaluation
mbecModelVariance, 30
+ Expression
mbecRLEPlot, 52
* Getter
.mbecGetData, 3
.mbecGetPhyloseq, 5
mbecGetData, 21
mbecGetData,MbecData-method, 22
mbecGetPhyloseq, 23
mbecGetPhyloseq,MbecData-method,
24
+ Heat
mbecHeat, 25
+* LMM

INDEX

mbecModelVariancelLMM, 33 mbecModelVarianceRDA, 35
* LM * Percentile
mbecModelVariancelM, 32 mbecPN, 43
+ Limma percentileNorm, 67
mbecRBE, 48 poscore, 68
* Linear + Phyloseq
mbeclLM, 28 .mbecGetPhyloseq, 5
* Log mbecGetPhyloseq, 23
mbecCLR, 14 mbecGetPhyloseq,MbecData-method,
mbecRLEPlot, 52 24
* MBECS + Pipeline
.mbecGetData, 3 mbecRunCorrections, 53
.mbecGetPhyloseq, 5 + Plot
.mbecSetData, 6 mbecBoxPlot, 13
MbecData, 17 mbecRLEPlot, 52
mbecGetData, 21 + Principal
mbecGetData,MbecData-method, 22 mbecModelVariancePVCA, 34
mbecGetPhyloseq, 23 * Proportion
mbecGetPhyloseq,MbecData-method, mbecModelVariancelM, 32
24 mbecModelVariancelMM, 33
mbecProcessInput, 44 * RLE
mbecProcessInput,list-method, 44 mbecHeatPlot, 27
mbecProcessInput,MbecData-method, mbecMosaicPlot, 38
45 mbecPCAPlot, 41
mbecProcessInput,phyloseg-method, mbecRLE, 51
46 mbecRLEPlot, 52
mbecSetData, 58 * Ratio
mbecSetData,MbecData-method, 59 mbecCLR, 14
* Mean + Redundancy
mbecBat, 10 mbecModelVarianceRDA, 35
mbecBMC, 11 mbecRDAStatsPlot, 48
* Mixed * Relative
mbecLM, 28 mbecRLEPlot, 52
+x Model + Remove
mbeclLM, 28 mbecRBE, 48
mbecModelVariance, 30 * SVA
* Mosaic mbecSVA, 60
mbecMosaic, 37 * Score
* Normalisation poscore, 68
mbecPN, 43 * Setter
* Normalization .mbecSetData, 6
percentileNorm, 67 mbecSetData, 58
x* PCA mbecSetData,MbecData-method, 59
mbecPCA, 38 * Significance
mbecPCA,MbecData-method, 40 mbeclLM, 28
+ PLSDA * Silhouette
mbecPLSDA, 42 mbecModelVarianceSCOEF, 36

+ Partial * Singular

72

mbecSVD, 61
x TSS
mbecTransform, 62
+ Transformation
mbecCLR, 14
mbecTransform, 62
x Value
mbecSVD, 61
* Variability
mbecBoxPlot, 13
* Variance
mbecModelVariance, 30
mbecModelVariancelM, 32
mbecModelVariancelLMM, 33
mbecModelVariancePVCA, 34
mbecModelVarianceRDA, 35
* Wrapper
mbecHelpFactor, 27
mbecProcessInput, 44
mbecProcessInput,list-method, 44
mbecProcessInput,MbecData-method,
45
mbecProcessInput,phyloseg-method,
46
mbecTestModel, 62
+ abundance
mbecBox, 11
mbecHeat, 25
+ allocation
mbecMosaic, 37
+ analysis
mbecPCA, 38
mbecPCA,MbecData-method, 40
+ and
mbecCorrection, 14
x batch
mbecPLSDA, 42
* cca
externalPLSDA, 9
mbecExplainedVariance, 20
* clustering
mbecHeat, 25
* collinearity
colinScore, 7
mbecValidateModel, 64
* components
mbecDeflate, 19
* component

INDEX

mbecPCA, 38
mbecPCA,MbecData-method, 40
* correction
mbecPLSDA, 42
+ datasets
dummy.list, 7
dummy . mbec, 8
dummy . ps, 9
* deflation
mbecDeflate, 19
* density
mbecBox, 11
* explained
externalPLSDA, 9
mbecExplainedVariance, 20
* expression
mbecHeatPlot, 27
mbecMosaicPlot, 38
mbecPCAPlot, 41
mbecRLE, 51
+ latent
mbecDeflate, 19
* limma
mbecHelpFactor, 27
mbecTestModel, 62
* linear
mbecSCOEFStatsPlot, 58
mbecVarianceStatsPlot, 67
* Imm
mbecMixedVariance, 29
mbecVarianceStats, 65
mbecVarianceStatsLMM, 66
* Im
mbecVarianceStats, 65
mbecVarianceStatsLM, 65
* log
mbecHeatPlot, 27
mbecMosaicPlot, 38
mbecPCAPlot, 41
mbecRLE, 51
* matrix
mbecDeflate, 19
* mixed
mbecSCOEFStatsPlot, 58
mbecVarianceStatsPlot, 67
* models
mbecSCOEFStatsPlot, 58
mbecVarianceStatsPlot, 67

INDEX

+* model
colinScore, 7
mbecValidateModel, 64
+ nonEstimable
mbecHelpFactor, 27
mbecTestModel, 62
x of
mbecModelVariancelM, 32
mbecModelVariancelLMM, 33
mbecModelVarianceRDA, 35
* partial
mbecRDAStatsPlot, 48
+ plot
mbecPVCAStatsPlot, 47
mbecRDAStatsPlot, 48
mbecSCOEFStatsPlot, 58
mbecVarianceStatsPlot, 67
* principal
mbecPCA, 38

mbecPCA,MbecData-method, 40

* proportion
mbecMixedVariance, 29
mbecPVCAStatsPlot, 47
mbecRDAStatsPlot, 48
mbecSCOEFStatsPlot, 58
mbecVarianceStats, 65
mbecVarianceStatsLM, 65
mbecVarianceStatsLMM, 66
mbecVarianceStatsPlot, 67

* pvea
mbecPVCAStatsPlot, 47

x relative
mbecHeatPlot, 27
mbecMosaicPlot, 38
mbecPCAPlot, 41
mbecRLE, 51

* residual
mbecDeflate, 19

* sample
mbecMosaic, 37

* uppercase
mbecUpperCase, 63

x validation
colinScore, 7
mbecValidateModel, 64

* variance
externalPLSDA, 9
mbecExplainedVariance, 20

mbecMixedVariance, 29
mbecPVCAStatsPlot, 47
mbecRDAStatsPlot, 48
mbecSCOEFStatsPlot, 58
mbecVarianceStats, 65
mbecVarianceStatsLM, 65
mbecVarianceStatsLMM, 66
mbecVarianceStatsPlot, 67
.mbecGetData, 3
.mbecGetPhyloseq, 5
.mbecSetData, 6

colinScore, 7

dummy.list, 7
dummy . mbec, 8
dummy . ps, 9

externalPLSDA, 9

mbecBat, 10
mbecBMC, 11
mbecBox, 11, 57
mbecBoxPlot, 13
mbecCLR, 14
mbecCorrection, 14, 57
MbecData, 17
mbecDeflate, 19
mbecDummy, 7-9, 19
mbecExplainedVariance, 20
mbecGetData, 21

mbecGetData,MbecData-method, 22

mbecGetPhyloseq, 23

mbecGetPhyloseq,MbecData-method, 24

mbecHeat, 25, 57
mbecHeatPlot, 27
mbecHelpFactor, 27
mbeclLM, 28
mbecMixedVariance, 29
mbecModelVariance, 30, 57
mbecModelVariancelM, 32
mbecModelVariancelLMM, 33
mbecModelVariancePVCA, 34
mbecModelVarianceRDA, 35
mbecModelVarianceSCOEF, 36
mbecMosaic, 37, 57
mbecMosaicPlot, 38
mbecPCA, 38, 57
mbecPCA,MbecData-method, 40

73

74 INDEX

mbecPCAPlot, 41

mbecPLSDA, 42

mbecPN, 43
mbecProcessInput, 44, 57
mbecProcessInput,list-method, 44
mbecProcessInput,MbecData-method, 45
mbecProcessInput,phyloseg-method, 46
mbecPVCAStatsPlot, 47, 57
mbecRBE, 48
mbecRDAStatsPlot, 48, 57
mbecReportPost, 49, 57
mbecReportPrelim, 50, 57
mbecRLE, 51, 57

mbecRLEPlot, 52
mbecRunCorrections, 53, 57
mbecRUV2, 54

mbecRUV3, 55

mbecRUV4, 56

MBECS, 57
mbecSCOEFStatsPlot, 57, 58
mbecSetData, 58
mbecSetData,MbecData-method, 59
mbecSVA, 60

mbecSVD, 61

mbecTestModel, 62
mbecTransform, 8, 57, 62
mbecUpperCase, 63
mbecValidateModel, 64
mbecVarianceStats, 65
mbecVarianceStatsLM, 65
mbecVarianceStatsLMM, 66
mbecVarianceStatsPlot, 57, 67

percentileNorm, 67
phyloseq, 9
poscore, 68

	.mbecGetData
	.mbecGetPhyloseq
	.mbecSetData
	colinScore
	dummy.list
	dummy.mbec
	dummy.ps
	externalPLSDA
	mbecBat
	mbecBMC
	mbecBox
	mbecBoxPlot
	mbecCLR
	mbecCorrection
	MbecData
	mbecDeflate
	mbecDummy
	mbecExplainedVariance
	mbecGetData
	mbecGetData,MbecData-method
	mbecGetPhyloseq
	mbecGetPhyloseq,MbecData-method
	mbecHeat
	mbecHeatPlot
	mbecHelpFactor
	mbecLM
	mbecMixedVariance
	mbecModelVariance
	mbecModelVarianceLM
	mbecModelVarianceLMM
	mbecModelVariancePVCA
	mbecModelVarianceRDA
	mbecModelVarianceSCOEF
	mbecMosaic
	mbecMosaicPlot
	mbecPCA
	mbecPCA,MbecData-method
	mbecPCAPlot
	mbecPLSDA
	mbecPN
	mbecProcessInput
	mbecProcessInput,list-method
	mbecProcessInput,MbecData-method
	mbecProcessInput,phyloseq-method
	mbecPVCAStatsPlot
	mbecRBE
	mbecRDAStatsPlot
	mbecReportPost
	mbecReportPrelim
	mbecRLE
	mbecRLEPlot
	mbecRunCorrections
	mbecRUV2
	mbecRUV3
	mbecRUV4
	MBECS
	mbecSCOEFStatsPlot
	mbecSetData
	mbecSetData,MbecData-method
	mbecSVA
	mbecSVD
	mbecTestModel
	mbecTransform
	mbecUpperCase
	mbecValidateModel
	mbecVarianceStats
	mbecVarianceStatsLM
	mbecVarianceStatsLMM
	mbecVarianceStatsPlot
	percentileNorm
	poscore
	Index

