
Package ‘MLSeq’
January 16, 2026

Type Package

Title Machine Learning Interface for RNA-Seq Data

Version 2.29.0

Date 2021-08-14

Depends caret, ggplot2

VignetteBuilder knitr

Suggests knitr, e1071, kernlab

Imports testthat, VennDiagram, pamr, methods, DESeq2, edgeR, limma,
Biobase, SummarizedExperiment, plyr, foreach, utils, sSeq,
xtable

biocViews ImmunoOncology, Sequencing, RNASeq, Classification,
Clustering

Description This package applies several machine learning methods, including SVM, bagSVM, Ran-
dom Forest and CART to RNA-Seq data.

License GPL(>=2)

NeedsCompilation no

Encoding UTF-8

RoxygenNote 7.1.1

Collate 'all_classes.R' 'all_generics.R' 'voomFunctions.R'
'classify.R' 'helper_functions.R' 'predict.R' 'methods.R'
'onAttach.R' 'package_and_suppl.R' 'plda_nblda_functions.R'

git_url https://git.bioconductor.org/packages/MLSeq

git_branch devel

git_last_commit b1aac87

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-15

1

2 Contents

Author Gokmen Zararsiz [aut, cre],
Dincer Goksuluk [aut],
Selcuk Korkmaz [aut],
Vahap Eldem [aut],
Izzet Parug Duru [ctb],
Ahmet Ozturk [aut],
Ahmet Ergun Karaagaoglu [aut, ths]

Maintainer Gokmen Zararsiz <gokmenzararsiz@hotmail.com>

Contents

MLSeq-package . 3
Available-classifiers . 3
cervical . 4
classify . 5
confusionMat . 9
control . 10
discrete.train-class . 11
discreteControl . 12
input . 13
isUpdated . 15
metaData . 16
method . 17
MLSeq-class . 19
MLSeqMetaData-class . 20
MLSeqModelInfo-class . 21
modelInfo . 22
normalization . 23
plot . 24
predict . 25
preProcessing . 27
print.confMat . 28
ref . 29
selectedGenes . 30
show . 31
trained . 32
trainParameters . 33
transformation . 35
update . 36
voom.train-class . 38
voomControl . 38

Index 40

MLSeq-package 3

MLSeq-package Machine learning interface for RNA-Seq data

Description

This package applies machine learning methods, such as Support Vector Machines (SVM), Random
Forest (RF), Classification and Regression Trees (CART), Linear Discriminant Analysis (LDA)
and more to RNA-Seq data. MLSeq combines well-known differential expression algorithms from
bioconductor packages with functions from a famous package caret, which has comprehensive
machine learning algorithms for classification and regression tasks. Although caret has 200+
classification/regression algorithm built-in, approximately 85 classification algorithms are used in
MLSeq for classifying gene-expression data. See availableMethods() for further information.

Author(s)

Dincer Goksuluk, Gokmen Zararsiz, Selcuk Korkmaz, Vahap Eldem, Ahmet Ozturk and Ahmet
Ergun Karaagaoglu

—————–

Maintainers:

Dincer Goksuluk <dincer.goksuluk@hacettepe.edu.tr>

Gokmen Zararsiz, <gokmenzararsiz@erciyes.edu.tr>

Selcuk Korkmaz <selcukorkmaz@hotmail.com>

See Also

availableMethods, getModelInfo

Package: MLSeq
Type: Package
License: GPL (>= 2)

Available-classifiers Available classification/regression methods in MLSeq

Description

This function returns a character vector of available classification/regression methods in MLSeq.
These methods are imported from caret package. See details below.

Usage

availableMethods(model = NULL, regex = TRUE, ...)

printAvailableMethods()

4 cervical

Arguments

model a character string indicating the name of classification model. If NULL, all
the available methods from MLSeq is returned. Otherwise, the methods which
are complete or partial matches to requested string is returned. See regex for
details.

regex a logical: should a regular expressions be used? If FALSE, a simple match is
conducted against the whole name of the model.

... options to pass to grepl.

Details

There are 200+ methods available in caret. We import approximately 85 methods which are
available for "classification" task. Some of these methods are available for both classification
and regression tasks. availableMethods() returns a character vector of available methods in
MLSeq. These names are directly used in classify function with arguement method. See http:
//topepo.github.io/caret/available-models.html for a complete list of available methods
in caret. Run printAvailableMethods() to print detailed information about classification meth-
ods (prints to R Console).

Value

a requested or complete character vector of available methods.

Note

Available methods in MLSeq will be regularly updated. Some of the methods might be removed as
well as some others took its place in MLSeq. Please check the available methods before fitting the
model. This function is inspired from the function getModelInfo() in caret and some of the code
chunks and help texts are used here.

See Also

classify, getModelInfo, train

cervical Cervical cancer data

Description

Cervical cancer data measures the expressions of 714 miRNAs of human samples. There are 29
tumor and 29 non-tumor cervical samples and these two groups are treated as two separete classes.

Format

A data frame with 58 observations and 714 variables (i.e miRNAs of human samples).

http://topepo.github.io/caret/available-models.html
http://topepo.github.io/caret/available-models.html

classify 5

Source

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880020/#supplementary-material-sec

References

Witten, D., et al. (2010) Ultra-high throughput sequencing-based small RNA discovery and dis-
crete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC
Biology, 8:58

Examples

Not run:
data(cervical)

End(Not run)

classify Fitting classification models to sequencing data

Description

This function fits classification algorithms to sequencing data and measures model performances
using various statistics.

Usage

classify(
data,
method = "rpart",
B = 25,
ref = NULL,
class.labels = NULL,
preProcessing = c("deseq-vst", "deseq-rlog", "deseq-logcpm", "tmm-logcpm", "logcpm"),
normalize = c("deseq", "TMM", "none"),
control = NULL,
...

)

Arguments

data a DESeqDataSet object, see the constructor functions DESeqDataSet, DESeqDataSetFromMatrix,
DESeqDataSetFromHTSeqCount in DESeq2 package.

method a character string indicating the name of classification method. Methods are
implemented from the caret package. Run availableMethods() for a list of
available methods.

B an integer. It is the number of bootstrap samples for bagging classifiers, for
example "bagFDA" and "treebag". Default is 25.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880020/#supplementary-material-sec

6 classify

ref a character string indicating the user defined reference class. Default is NULL. If
NULL is selected, first category of class labels is used as reference.

class.labels a character string indicating the column name of colData(...). Should be given
as "character". The column from colData() which matches with given column
name is used as class labels of samples. If NULL, first column is used as class
labels. Default is NULL.

preProcessing a character string indicating the name of the preprocessing method. This option
consists both the normalization and transformation of the raw sequencing data.
Available options are:

• deseq-vst: Normalization is applied with deseq median ratio method.
Variance stabiling transformation is applied to the normalized data.

• deseq-rlog: Normalization is applied with deseq median ratio method.
Regularized logarithmic transformation is applied to the normalized data.

• deseq-logcpm: Normalization is applied with deseq median ratio method.
Log of counts-per-million transformation is applied to the normalized data.

• tmm-logcpm: Normalization is applied with trimmed mean of M values
(TMM) method. Log of counts-per-million transformation is applied to the
normalized data.

• logcpm: Normalization is not applied. Log of counts-per-million transfor-
mation is used for the raw counts.

IMPORTANT: See Details for further information.

normalize a character string indicating the type of normalization. Should be one of ’deseq’,
’tmm’ and ’none’. Default is ’deseq’. This option should be used with discrete
and voom-based classifiers since no transformation is applied on raw counts.
For caret-based classifiers, the argument ’preProcessing’ should be used.

control a list including all the control parameters passed to model training process. This
arguement should be defined using wrapper functions trainControl for caret-
based classifiers, discreteControl for discrete classifiers (PLDA, PLDA2 and
NBLDA) and voomControl for voom-based classifiers (voomDLDA, voomDQDA
and voomNSC). See related functions for further details.

... optional arguments passed to selected classifiers.

Details

MLSeq consists both microarray-based and discrete-based classifiers along with the preprocessing
approaches. These approaches include both normalization techniques, i.e. deseq median ratio (An-
ders et al., 2010) and trimmed mean of M values (Robinson et al., 2010) normalization methods,
and the transformation techniques, i.e. variance- stabilizing transformation (vst)(Anders and Hu-
ber, 2010), regularized logarithmic transformation (rlog)(Love et al., 2014), logarithm of counts
per million reads (log-cpm)(Robinson et al., 2010) and variance modeling at observational level
(voom)(Law et al., 2014). Users can directly upload their raw RNA-Seq count data, preprocess
their data, build one of the numerous classification models, optimize the model parameters and
evaluate the model performances.

MLSeq package consists of a variety of classification algorithms for the classification of RNA-Seq
data. These classifiers are categorized into two class: i) microarray-based classifiers after proper
transformation, ii) discrete-based classifiers. First option is to transform the RNA-Seq data to bring

classify 7

it hierarchically closer to microarrays and apply microarray-based algorithms. These methods are
implemented from the caret package. Run availableMethods() for a list of available methods. Note
that voom transformation both exports transformed gene-expression matrix as well as the preci-
sion weight matrices in same dimension. Hence, the classifier should consider these two matrices.
Zararsiz (2015) presented voom-based diagonal discriminant classifiers and the sparse voom-based
nearest shrunken centroids classifier. Second option is to build new discrete-based classifiers to
classify RNA-Seq data. Two methods are currently available in the literature. Witten (2011) con-
sidered modeling these counts with Poisson distribution and proposed sparse Poisson linear dis-
criminant analysis (PLDA) classifier. The authors suggested a power transformation to deal with
the overdispersion problem. Dong et al. (2016) extended this approach into a negative binomial lin-
ear discriminant analysis (NBLDA) classifier. More detailed information can be found in referenced
papers.

Value

an MLSeq object for trained model.

Author(s)

Dincer Goksuluk, Gokmen Zararsiz, Selcuk Korkmaz, Vahap Eldem, Ahmet Ozturk and Ahmet
Ergun Karaagaoglu

References

Kuhn M. (2008). Building predictive models in R using the caret package. Journal of Statistical
Software, (http://www.jstatsoft.org/v28/i05/)

Anders S. Huber W. (2010). Differential expression analysis for sequence count data. Genome
Biology, 11:R106

Witten DM. (2011). Classification and clustering of sequencing data using a poisson model. The
Annals of Applied Statistics, 5(4), 2493:2518

Law et al. (2014) Voom: precision weights unlock linear model analysis tools for RNA-Seq read
counts, Genome Biology, 15:R29, doi:10.1186/gb-2014-15-2-r29

Witten D. et al. (2010) Ultra-high throughput sequencing-based small RNA discovery and dis-
crete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC
Biology, 8:58

Robinson MD, Oshlack A (2010). A scaling normalization method for differential expression anal-
ysis of RNA-Seq data. Genome Biology, 11:R25, doi:10.1186/gb-2010-11-3-r25

M. I. Love, W. Huber, and S. Anders (2014). Moderated estimation of fold change and dispersion
for rna-seq data with deseq2. Genome Biol, 15(12):550,. doi: 10.1186/s13059-014-0550-8.

Dong et al. (2016). NBLDA: negative binomial linear discriminant analysis for rna-seq data. BMC
Bioinformatics, 17(1):369, Sep 2016. doi: 10.1186/s12859-016-1208-1.

Zararsiz G (2015). Development and Application of Novel Machine Learning Approaches for RNA-
Seq Data Classification. PhD thesis, Hacettepe University, Institute of Health Sciences, June 2015.

See Also

predictClassify, train, trainControl, voomControl, discreteControl

8 classify

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,

colData = classtr, formula(~ 1))

Number of repeats (repeats) might change model accuracies
1. caret-based classifiers:
Random Forest (RF) Classification
rf <- classify(data = data.trainS4, method = "rf",

preProcessing = "deseq-vst", ref = "T",
control = trainControl(method = "repeatedcv", number = 5,

repeats = 2, classProbs = TRUE))
rf

2. Discrete classifiers:
Poisson Linear Discriminant Analysis
pmodel <- classify(data = data.trainS4, method = "PLDA", ref = "T",

class.labels = "condition",normalize = "deseq",
control = discreteControl(number = 5, repeats = 2,

tuneLength = 10, parallel = TRUE))
pmodel

3. voom-based classifiers:
voom-based Nearest Shrunken Centroids
vmodel <- classify(data = data.trainS4, normalize = "deseq", method = "voomNSC",

class.labels = "condition", ref = "T",
control = voomControl(number = 5, repeats = 2, tuneLength = 10))

vmodel

End(Not run)

confusionMat 9

confusionMat Accessors for the ’confusionMat’ slot.

Description

This slot stores the confusion matrix for the trained model using classify function.

Usage

confusionMat(object)

S4 method for signature 'MLSeq'
confusionMat(object)

S4 method for signature 'MLSeqModelInfo'
confusionMat(object)

Arguments

object an MLSeq or MLSeqModelInfo object.

Details

confusionMat slot includes information about cross-tabulation of observed and predicted classes
and corresponding statistics such as accuracy rate, sensitivity, specifity, etc. The returned object is
in confusionMatrix class of caret package. See confusionMatrix for details.

See Also

confusionMatrix

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).

10 control

nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,

colData = classtr, formula(~ 1))

Number of repeats (repeats) might change model accuracies
Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",

ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,

repeats = 3, classProbs = TRUE))

confusionMat(cart)

End(Not run)

control Accessors for the ’control’ slot.

Description

This slot stores the information about control parameters of selected classification model.

Usage

control(object)

control(object) <- value

S4 method for signature 'MLSeq'
control(object)

S4 replacement method for signature 'MLSeq,list'
control(object) <- value

Arguments

object an MLSeq or MLSeqModelInfo object.

value a list with elements for controlling trained model. It should be a list returned
from one of discreteControl, voomControl, trainControl functions.

discrete.train-class 11

See Also

discreteControl, voomControl, trainControl

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,

colData = classtr, formula(~ 1))

Number of repeats (repeats) might change model accuracies
Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",

ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,

repeats = 3, classProbs = TRUE))

control(cart)

End(Not run)

discrete.train-class discrete.train object

Description

This object is the subclass for the MLSeq.train class. It contains trained model information for
discrete classifiers such as Poisson Linear Discriminant Analysis (PLDA) and Negative Binomial
Linear Discriminant Analysis (NBLDA).

12 discreteControl

Slots

inputs: a list with elements used as input for classification task.

control: a list with control parameters for discrete classifiers, e.g. PLDA, PLDA2 and NBLDA.

crossValidatedModel: a list. It stores the results for cross validation.

finalModel: a list. This is the trained model with optimum parameters.

tuningResults: a list. It stores the results for tuning parameter if selected classifier has one or
more parameters to be optimized.

callInfo: a list. call info for selected method.

discreteControl Define controlling parameters for discrete classifiers (NBLDA and
PLDA)

Description

This function sets the control parameters for discrete classifiers (PLDA and NBLDA) while training
the model.

Usage

discreteControl(
method = "repeatedcv",
number = 5,
repeats = 10,
rho = NULL,
rhos = NULL,
beta = 1,
prior = NULL,
alpha = NULL,
truephi = NULL,
foldIdx = NULL,
tuneLength = 30,
parallel = FALSE,
...

)

Arguments

method validation method. Support repeated cross validation only ("repeatedcv").

number a positive integer. Number of folds.

repeats a positive integer. Number of repeats.

rho a single numeric value. This parameter is used as tuning parameter in PLDA
classifier. It does not effect NBLDA classifier.

input 13

rhos a numeric vector. If optimum parameter is searched among given values, this
option should be used.

beta parameter of Gamma distribution. See PLDA for details.

prior prior probabilities of each class. a numeric vector.

alpha a numeric value in the interval 0 and 1. It is used to apply power transformation
through PLDA method.

truephi a numeric value. If true value of genewise dispersion is known and constant for
all genes, this parameter should be used.

foldIdx a list including the fold indexes. Each element of this list is the vector indices of
samples which are used as test set in this fold.

tuneLength a positive integer. If there is a tuning parameter in the classifier, this value is
used to define total number of tuning parameter to be searched.

parallel if TRUE, parallel computing is performed.

... further arguments. Deprecated.

Author(s)

Dincer Goksuluk, Gokmen Zararsiz, Selcuk Korkmaz, Vahap Eldem, Ahmet Ozturk and Ahmet
Ergun Karaagaoglu

See Also

classify, trainControl, discreteControl

Examples

1L

input Accessors for the ’inputObject’ slot of an MLSeq object

Description

MLSeq package benefits from DESeqDataSet structure from bioconductor package DESeq2 for stor-
ing gene expression data in a comprehensive structure. This object is used as an input for classifi-
cation task through classify. The input is stored in inputObject slot of MLSeq object.

Usage

input(object)

S4 method for signature 'MLSeq'
input(object)

14 input

Arguments

object an MLSeq object.

See Also

classify, DESeqDataSet

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,

colData = classtr, formula(~ 1))

Number of repeats (repeats) might change model accuracies
Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",

ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,

repeats = 3, classProbs = TRUE))

input(cart)

End(Not run)

isUpdated 15

isUpdated Checks if MLSeq object is updated/modified or not.

Description

These functions are used to check whether the MLSeq object is modified and/or updated. It is possi-
ble to update classification parameters of MLSeq object which is returned by classify() function.

Usage

isUpdated(object)

isUpdated(object) <- value

isModified(object)

isModified(object) <- value

S4 method for signature 'MLSeq'
isUpdated(object)

S4 replacement method for signature 'MLSeq,logical'
isUpdated(object) <- value

S4 method for signature 'MLSeq'
isModified(object)

S4 replacement method for signature 'MLSeq,logical'
isModified(object) <- value

Arguments

object an MLSeq object.

value a logical. Change the state of update info.

Value

a logical.

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]

16 metaData

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,

colData = classtr, formula(~ 1))

Number of repeats (repeats) might change model accuracies
Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",

ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,

repeats = 3, classProbs = TRUE))

isUpdated(cart)
isModified(cart)

End(Not run)

metaData Accessors for the ’metaData’ slot of an MLSeq object

Description

This slot stores metada information of MLSeq object.

Usage

metaData(object)

S4 method for signature 'MLSeq'
metaData(object)

Arguments

object an MLSeq object.

method 17

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,

colData = classtr, formula(~ 1))

Number of repeats (repeats) might change model accuracies
Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",

ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,

repeats = 3, classProbs = TRUE))

metaData(cart)

End(Not run)

method Accessors for the ’method’.

Description

This slot stores the name of selected model which is used in classify function. The trained model
is stored in slot trainedModel. See trained for details.

18 method

Usage

method(object)

method(object) <- value

S4 method for signature 'MLSeq'
method(object)

S4 method for signature 'MLSeqModelInfo'
method(object)

S4 replacement method for signature 'MLSeq,character'
method(object) <- value

Arguments

object an MLSeq object.

value a character string. One of the available classification methods to replace with
current method stored in MLSeq object.

Details

method slot stores the name of the classification method such as "svmRadial" for Radial-based
Support Vector Machines, "rf" for Random Forests, "voomNSC" for voom-based Nearest Shrunken
Centroids, etc. For the complete list of available methods, see printAvailableMethods and
availableMethods.

See Also

trained

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

MLSeq-class 19

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,

colData = classtr, formula(~ 1))

Number of repeats (repeats) might change model accuracies
Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",

ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,

repeats = 3, classProbs = TRUE))

method(cart)

End(Not run)

MLSeq-class MLSeq object

Description

For classification, this is the main class for the MLSeq package. It contains all the information
including trained model, selected genes, cross-validation results, etc.

Details

Objects can be created by calls of the form new("MLSeq", ...). This type of objects is created as
a result of classify function of MLSeq package. It is then used in predict or predictClassify
function for predicting the class labels of new samples.

Slots

inputObject: stores the data in DESeqDataSet object.

modelInfo: stores all the information about classification model. The object is from subclass
MLSeqModelInfo. See MLSeqModelInfo-class for details.

metaData: metadata for MLSeq object. The object is from subclass MLSeqMetaData. See MLSeqMetaData-class
for details.

Note

An MLSeq class stores the results of classify function and offers further slots that are populated
during the analysis. The slot inputObject stores the raw and transformed data throughout the clas-
sification. The slot modelInfo stores all the information about classification model. These results

20 MLSeqMetaData-class

may contain the classification table and performance measures such as accuracy rate, sensitivity,
specifity, positive and negative predictive values, etc. It also contains information on classifica-
tion method, normalization and transformation used in the classification model. Lastly, the slot
metaData stores the information about modified or updated slots in MLSeq object.

Author(s)

Dincer Goksuluk, Gokmen Zararsiz, Selcuk Korkmaz, Vahap Eldem, Ahmet Ozturk and Ahmet
Ergun Karaagaoglu

See Also

MLSeqModelInfo-class, MLSeqMetaData-class

MLSeqMetaData-class MLSeqMetaData object

Description

This object is a subclass for the MLSeq class. It contains metadata information, i.e. information on
modified and/or updated elements, raw data etc..

Details

Objects can be created by calls of the form new("MLSeqMetaData", ...). This type of objects is
created as a result of classify function of MLSeq package. It is then used in update function for
updating the object in given object.

Slots

updated, modified: a logical. See notes for details.

modified.elements: a list containing the modified elements in MLSeq obejct.

rawData.DESeqDataSet: raw data which is used for classification.

classLabel: a character string indicating the name of class variable.

Note

The function update is used to re-run classification task with modified elements in MLSeq object.
This function is useful when one wish to perform classification task with modified options without
running classify function from the beginning. MLSeqMetaData object is used to store information
on updated and/or modified elements in MLSeq object.

If an MLSeq object is modified, i.e. one or more elements in MLSeq object is replaced using related
setter functions such as method, ref etc., the slot modified becomes TRUE. Similarly, the slot
updated stores the information that the MLSeq object is updated (or classification task is re-runned)
or not. If updated slot is FALSE and modified slot is TRUE, one should run update to obtain the
classification results by considering the modified elements.

MLSeqModelInfo-class 21

See Also

update, isUpdated, isModified

MLSeqModelInfo-class MLSeqModelInfo object

Description

For classification, this is the subclass for the MLSeq class. This object contains all the information
about classification model.

Details

Objects can be created by calls of the form MLSeqModelInfo(...). This type of objects is created
as a result of classify function of MLSeq package. It is then used in predictClassify function
for predicting the class labels of new samples.

Slots

method, transformation, normalization: these slots store the classification method, transfor-
mation technique and normalization method respectively. See notes for details.

preProcessing: See classify for details.

ref: a character string indicating the reference category for cases (diseased subject, tumor sample,
etc.)

control: a list with controlling parameters for classification task.

confusionMat: confusion table and accuracy measures for the predictions.

trainedModel: an object of MLSeq.train class. It contains the trained model. See notes for
details.

trainParameters: a list with training parameters from final model. These parameters are used for
test set before predicting class labels.

call: a call object for classification task.

Note

method, transformation, normalization slots give the information on classifier, transformation
and normalization techniques. Since all possible pairs of transformation and normalization are not
available in practice, we specify appropriate transformations and normalization techniques with
preProcessing argument in classify function. Finally, the information on normalization and
transformation is extracted from preProcessing argument.

MLSeq.train is a union class of train from caret package, voom.train and discrete.train
from MLSeq package. See related class manuals for details.

See Also

train, voom.train-class, discrete.train-class

22 modelInfo

modelInfo Accessors for the ’modelInfo’ slot of an MLSeq object

Description

This slot stores all the information about classification model.

Usage

modelInfo(object)

S4 method for signature 'MLSeq'
modelInfo(object)

Arguments

object an MLSeq object.

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,

colData = classtr, formula(~ 1))

Number of repeats (repeats) might change model accuracies
Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",

ref = "T", preProcessing = "deseq-vst",

normalization 23

control = trainControl(method = "repeatedcv", number = 5,
repeats = 3, classProbs = TRUE))

modelInfo(cart)

End(Not run)

normalization Accessors for the ’normalization’ slot.

Description

This slot stores the name of normalization method which is used while normalizing the count data
such as "deseq", "tmm" or "none"

Usage

normalization(object)

normalization(object) <- value

S4 method for signature 'MLSeq'
normalization(object)

S4 method for signature 'MLSeqModelInfo'
normalization(object)

S4 replacement method for signature 'MLSeq,character'
normalization(object) <- value

Arguments

object an MLSeq or MLSeqModelInfo object.

value a character string. One of the available normalization methods for voom-based
classifiers.

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

24 plot

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,

colData = classtr, formula(~ 1))

Number of repeats (repeats) might change model accuracies
Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",

ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,

repeats = 3, classProbs = TRUE))

normalization(cart)

End(Not run)

plot Plot accuracy results from ’MLSeq’ object

Description

This generic function is used to plot accuracy results from ’MLSeq’ object returned by classify
function.

Usage

S3 method for class 'MLSeq'
plot(x, y, ...)

S4 method for signature 'MLSeq,ANY'
plot(x, y, ...)

Arguments

x an MLSeq object returned from classify function.
y this parameter is not used. Deprecated.
... further arguements. Deprecated.

predict 25

Author(s)

Dincer Goksuluk, Gokmen Zararsiz, Selcuk Korkmaz, Vahap Eldem, Ahmet Ozturk and Ahmet
Ergun Karaagaoglu

predict Extract predictions from classify() object

Description

This function predicts the class labels of test data for a given model.

predictClassify and predict functions return the predicted class information along with trained
model. Predicted values are given either as class labels or estimated probabilities of each class for
each sample. If type = "raw", as can be seen in the example below, the predictions are extracted as
raw class labels.In order to extract estimated class probabilities, one should follow the steps below:

• set classProbs = TRUE within control arguement in classify

• set type = "prob" within predictClassify

Usage

S3 method for class 'MLSeq'
predict(object, test.data, ...)

predictClassify(object, test.data, ...)

S4 method for signature 'MLSeq'
predict(object, test.data, ...)

Arguments

object a model of MLSeq class returned by classify

test.data a DESeqDataSet instance of new observations.

... further arguments to be passed to or from methods. These arguements are used
in predict.train from caret package.

Value

MLSeqObject an MLSeq object returned from classify. See details.

Predictions a data frame or vector including either the predicted class probabilities or class labels
of given test data.

Note

predictClassify(...) function was used in MLSeq up to package version 1.14.x. This func-
tion is alliased with generic function predict. In the upcoming versions of MLSeq package,
predictClassify function will be ommitted. Default function for predicting new observations
will be predict from version 1.16.x and later.

26 predict

Author(s)

Dincer Goksuluk, Gokmen Zararsiz, Selcuk Korkmaz, Vahap Eldem, Ahmet Ozturk and Ahmet
Ergun Karaagaoglu

See Also

classify, train, trainControl

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,

colData = classtr, formula(~ 1))

test set
data.test <- data[,ind]
data.test <- as.matrix(data.test + 1)
classts <- data.frame(condition=class[ind,])

data.testS4 <- DESeqDataSetFromMatrix(countData = data.test,
colData = classts, formula(~ 1))

Number of repeats (repeats) might change model accuracies
Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",

ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,

repeats = 3, classProbs = TRUE))
cart

preProcessing 27

predicted classes of test samples for CART method (class probabilities)
pred.cart = predictClassify(cart, data.testS4, type = "prob")
pred.cart

predicted classes of test samples for RF method (class labels)
pred.cart = predictClassify(cart, data.testS4, type = "raw")
pred.cart

End(Not run)

preProcessing Accessors for the ’preProcessing’ slot of an MLSeq object

Description

MLSeq package benefits from DESeqDataSet structure from bioconductor package DESeq2 for stor-
ing gene expression data in a comprehensive structure. This object is used as an input for classifi-
cation task through classify. The input is stored in inputObject slot of MLSeq object.

Usage

preProcessing(object)

preProcessing(object) <- value

S4 method for signature 'MLSeq'
preProcessing(object)

S4 replacement method for signature 'MLSeq,character'
preProcessing(object) <- value

Arguments

object an MLSeq object.

value a character string. Which preProcessing should be replaced with current one?

See Also

classify, DESeqDataSet

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.

28 print.confMat

data <- cervical[c(1:150),]

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,

colData = classtr, formula(~ 1))

Number of repeats (repeats) might change model accuracies
Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",

ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,

repeats = 3, classProbs = TRUE))

preProcessing(cart)

End(Not run)

print.confMat Print method for confusion matrix

Description

This function prints the confusion matrix of the model.

Usage

S3 method for class 'confMat'
print(x, ..., mode = x$mode, digits = max(3, getOption("digits") - 3))

S4 method for signature 'confMat'
print(x, ..., mode = x$mode, digits = max(3, getOption("digits") - 3))

ref 29

Arguments

x an object of class confMat

... further arguments to be passed to print.table

mode see print.confusionMatrix

digits see print.confusionMatrix

ref Accessors for the ’ref’ slot.

Description

This slot stores the information about reference category. Confusion matrix and related statistics
are calculated using the user-defined reference category.

Usage

ref(object)

ref(object) <- value

S4 method for signature 'MLSeq'
ref(object)

S4 method for signature 'MLSeqModelInfo'
ref(object)

S4 replacement method for signature 'MLSeq,character'
ref(object) <- value

Arguments

object an MLSeq or MLSeqModelInfo object.

value a character string. Select reference category for class labels.

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

30 selectedGenes

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,

colData = classtr, formula(~ 1))

Number of repeats (repeats) might change model accuracies
Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",

ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,

repeats = 3, classProbs = TRUE))

ref(cart)

End(Not run)

selectedGenes Accessors for the ’selectedGenes’.

Description

This slot stores the name of selected genes which are used in the classifier. The trained model is
stored in slot trainedModel. See trained for details.

Usage

selectedGenes(object)

S4 method for signature 'MLSeq'
selectedGenes(object)

Arguments

object an MLSeq object.

See Also

trained

show 31

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,

colData = classtr, formula(~ 1))

Number of repeats (repeats) might change model accuracies
Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",

ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,

repeats = 3, classProbs = TRUE))

selectedGenes(cart)

End(Not run)

show Show method for MLSeq objects

Description

Prints out the information from the trained model using classify function.

Usage

show.MLSeq(object)

32 trained

S4 method for signature 'MLSeq'
show(object)

S4 method for signature 'MLSeqModelInfo'
show(object)

S4 method for signature 'MLSeqMetaData'
show(object)

S4 method for signature 'voom.train'
show(object)

S4 method for signature 'discrete.train'
show(object)

Arguments

object an MLSeq object returned from classify function.

See Also

classify

trained Accessors for the ’trainedModel’ slot.

Description

This slot stores the trained model. This object is returned from train function in caret package.
Any further request using caret functions is available for trainedModel since this object is in the
same class as the returned object from train. See train for details.

Usage

trained(object)

S4 method for signature 'MLSeq'
trained(object)

S4 method for signature 'MLSeqModelInfo'
trained(object)

Arguments

object an MLSeq or MLSeqModelInfo object.

trainParameters 33

See Also

train.default, voom.train-class, discrete.train-class

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,

colData = classtr, formula(~ 1))

Number of repeats (repeats) might change model accuracies
Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",

ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,

repeats = 3, classProbs = TRUE))

trained(cart)

End(Not run)

trainParameters Accessors for the ’trainParameters’ slot.

Description

This slot stores the transformation and normalization parameters from train set. These parameters
are used to normalize and transform test set using train set parameters.

34 trainParameters

Usage

trainParameters(object)

S4 method for signature 'MLSeq'
trainParameters(object)

S4 method for signature 'MLSeqModelInfo'
trainParameters(object)

Arguments

object an MLSeq or MLSeqModelInfo object.

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,

colData = classtr, formula(~ 1))

Number of repeats (repeats) might change model accuracies
Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",

ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,

repeats = 3, classProbs = TRUE))

trainParameters(cart)

End(Not run)

transformation 35

transformation Accessors for the ’transformation’ slot.

Description

This slot stores the name of transformation method which is used while transforming the count data
(e.g "vst", "rlog", etc.)

Usage

transformation(object)

S4 method for signature 'MLSeq'
transformation(object)

S4 method for signature 'MLSeqModelInfo'
transformation(object)

Arguments

object an MLSeq or MLSeqModelInfo object.

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class

36 update

data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,
colData = classtr, formula(~ 1))

Number of repeats (repeats) might change model accuracies
Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",

ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,

repeats = 3, classProbs = TRUE))

transformation(cart)

End(Not run)

update Update MLSeq objects returnd from classify()

Description

This function updates the MLSeq object. If one of the options is changed inside MLSeq object, it
should be updated to pass its effecs into classification results.

Usage

S3 method for class 'MLSeq'
update(object, ..., env = .GlobalEnv)

S4 method for signature 'MLSeq'
update(object, ..., env = .GlobalEnv)

Arguments

object a model of MLSeq class returned by classify

... optional arguements passed to classify function.

env an environment. Define the environment where the trained model is stored.

Value

same object as an MLSeq object returned from classify.

Note

When an MLSeq object is updated, new results are updated on the given object. The results before
update process are lost when update is done. To keep the results before update, one should copy the
MLSeq object to a new object in global environment.

update 37

See Also

classify

Examples

Not run:
library(DESeq2)
data(cervical)

a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]

defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))

n <- ncol(data) # number of samples
p <- nrow(data) # number of features

number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)

train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,

colData = classtr, formula(~ 1))

test set
data.test <- data[,ind]
data.test <- as.matrix(data.test + 1)
classts <- data.frame(condition=class[ind,])

data.testS4 <- DESeqDataSetFromMatrix(countData = data.test,
colData = classts, formula(~ 1))

Number of repeats (repeats) might change model accuracies
Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",

ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,

repeats = 3, classProbs = TRUE))
cart

Change classification model into "Random Forests" (rf)
method(cart) <- "rf"
rf <- update(cart)

rf

38 voomControl

End(Not run)

voom.train-class voom.train object

Description

This object is the subclass for the MLSeq.train class. It contains trained model information for
voom based classifiers, i.e. "voomDLDA", "voomDQDA" and "voomNSC".

Slots

weigtedStats: a list with elements of weighted statistics which are used for training the model.
Weights are calculated from voom transformation.

foldInfo: a list containing information on cross-validated folds.

control: a list with control parameters for voom based classifiers.

tuningResults: a list. It stores the cross-validation results for tuning parameter(s).

finalModel: a list. It stores results for trained model with optimum parameters.

callInfo: a list. call info for related function.

voomControl Define controlling parameters for voom-based classifiers

Description

This function sets the control parameters for voom based classifiers while training the model.

Usage

voomControl(method = "repeatedcv", number = 5, repeats = 10, tuneLength = 10)

Arguments

method validation method. Support repeated cross validation only ("repeatedcv").

number a positive integer. Number of folds.

repeats a positive integer. Number of repeats.

tuneLength a positive integer. If there is a tuning parameter in the classifier, this value is
used to define total number of tuning parameter to be searched.

Author(s)

Dincer Goksuluk, Gokmen Zararsiz, Selcuk Korkmaz, Vahap Eldem, Ahmet Ozturk and Ahmet
Ergun Karaagaoglu

voomControl 39

See Also

classify, trainControl, discreteControl

Examples

1L

Index

∗ RNA-seq
classify, 5
discreteControl, 12
predict, 25
voomControl, 38

∗ classification
classify, 5
discreteControl, 12
predict, 25
voomControl, 38

∗ package
MLSeq-package, 3

Available-classifiers, 3
availableMethods, 3, 18
availableMethods

(Available-classifiers), 3

cervical, 4
classify, 4, 5, 13, 14, 21, 25–27, 32, 36, 37,

39
confusionMat, 9
confusionMat,MLSeq-method

(confusionMat), 9
confusionMat,MLSeqModelInfo-method

(confusionMat), 9
confusionMatrix, 9
control, 10
control,MLSeq-method (control), 10
control<- (control), 10
control<-,MLSeq,list-method (control),

10

DESeqDataSet, 5, 14, 19, 27
DESeqDataSetFromHTSeqCount, 5
DESeqDataSetFromMatrix, 5
discrete.train-class, 11
discreteControl, 6, 7, 10, 11, 12, 13, 39

getModelInfo, 3, 4

grepl, 4

input, 13
input,MLSeq-method (input), 13
isModified, 21
isModified (isUpdated), 15
isModified,MLSeq-method (isUpdated), 15
isModified<- (isUpdated), 15
isModified<-,MLSeq,logical-method

(isUpdated), 15
isUpdated, 15, 21
isUpdated,MLSeq-method (isUpdated), 15
isUpdated<- (isUpdated), 15
isUpdated<-,MLSeq,logical-method

(isUpdated), 15

metaData, 16
metaData,MLSeq-method (metaData), 16
method, 17, 20
method,MLSeq-method (method), 17
method,MLSeqModelInfo-method (method),

17
method<- (method), 17
method<-,MLSeq,character-method

(method), 17
MLSeq-class, 19
MLSeq-package, 3
MLSeqMetaData-class, 20
MLSeqModelInfo-class, 21
modelInfo, 22
modelInfo,MLSeq-method (modelInfo), 22

normalization, 23
normalization,MLSeq-method

(normalization), 23
normalization,MLSeqModelInfo-method

(normalization), 23
normalization<- (normalization), 23
normalization<-,MLSeq,character-method

(normalization), 23

40

INDEX 41

plot, 24
plot,MLSeq,ANY-method (plot), 24
plot.MLSeq (plot), 24
predict, 19, 25
predict,MLSeq-method (predict), 25
predict.MLSeq (predict), 25
predict.train, 25
predictClassify, 7, 19
predictClassify (predict), 25
preProcessing, 27
preProcessing,MLSeq-method

(preProcessing), 27
preProcessing<- (preProcessing), 27
preProcessing<-,MLSeq,character-method

(preProcessing), 27
print,confMat-method (print.confMat), 28
print.confMat, 28
print.confusionMatrix, 29
printAvailableMethods, 18
printAvailableMethods

(Available-classifiers), 3

ref, 20, 29
ref,MLSeq-method (ref), 29
ref,MLSeqModelInfo-method (ref), 29
ref<- (ref), 29
ref<-,MLSeq,character-method (ref), 29

selectedGenes, 30
selectedGenes,MLSeq-method

(selectedGenes), 30
show, 31
show,discrete.train-method (show), 31
show,MLSeq-method (show), 31
show,MLSeqMetaData-method (show), 31
show,MLSeqModelInfo-method (show), 31
show,voom.train-method (show), 31
show.MLSeq (show), 31

train, 4, 7, 21, 26, 32
train.default, 33
trainControl, 6, 7, 10, 11, 13, 26, 39
trained, 17, 18, 30, 32
trained,MLSeq-method (trained), 32
trained,MLSeqModelInfo-method

(trained), 32
trainParameters, 33
trainParameters,MLSeq-method

(trainParameters), 33

trainParameters,MLSeqModelInfo-method
(trainParameters), 33

transformation, 35
transformation,MLSeq-method

(transformation), 35
transformation,MLSeqModelInfo-method

(transformation), 35

update, 20, 21, 36
update,MLSeq-method (update), 36
update.MLSeq (update), 36

voom.train-class, 38
voomControl, 6, 7, 10, 11, 38

	MLSeq-package
	Available-classifiers
	cervical
	classify
	confusionMat
	control
	discrete.train-class
	discreteControl
	input
	isUpdated
	metaData
	method
	MLSeq-class
	MLSeqMetaData-class
	MLSeqModelInfo-class
	modelInfo
	normalization
	plot
	predict
	preProcessing
	print.confMat
	ref
	selectedGenes
	show
	trained
	trainParameters
	transformation
	update
	voom.train-class
	voomControl
	Index

