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MetaboDynamics-package
MetaboDynamics: Bayesian analysis of longitudinal metabolomics
data

Description

MetaboDynamics is an R-package that provides a framework of probabilistic models to analyze
longitudinal metabolomics data. It enables robust estimation of mean concentrations despite varying
spread between timepoints and reports differences between timepoints as well as metabolite specific
dynamics profiles that can be used for identifying "dynamics clusters" of metabolites of similar
dynamics. Provides probabilistic over-representation analysis of KEGG functional modules and
pathways as well as comparison between clusters of different experimental conditions.

Author(s)
Maintainer: Katja Danielzik <katja.danielzik@uni-due.de> (ORCID)

Other contributors:

¢ Simo Kitanovski (ORCID) [contributor]
¢ Johann Matschke (ORCID) [contributor]
¢ Daniel Hoffmann (ORCID) [contributor]

See Also
Useful links:

* https://github.com/KatjaDanielzik/MetaboDynamics
* Report bugs at https://github.com/KatjaDanielzik/MetaboDynamics/issues

.calculate_distances compare_dynamics()

Description

compare_dynamics()

Usage

.calculate_distances(group_a, group_b, dynamics)
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4 .check_fit_dynamics_input

Arguments

group_a dataframe of one cluster of one condition

group_b dataframe of one cluster of a different condition than group_a

dynamics character vector specifying the columns that hold dynamic estimates in data
Value

matrix of pairwise euclidean distances between two groups of vectors

.calculate_jaccard Function to calculate Jaccard index on two character vectors of
metabolite names

Description

Function to calculate Jaccard index on two character vectors of metabolite names

Usage

.calculate_jaccard(group_a, group_b)

Arguments
group_a group of clusters of metabolites
group_b group of clusters of metabolites
Value

the Jaccard index

.check_fit_dynamics_input
input checks for fit_dynamics_model

Description

input checks for fit_dynamics_model
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Usage

.check_fit_dynamics_input(
model,
data,
scaled_measurement,
counts,
assay,
chains,
cores,
adapt_delta,
max_treedepth,

iter,
warmup
)
Arguments
model which model to fit. Two options are available: "scaled_log": taking in normal-
ized and scaled metabolite concentrations (see scaled measurement) "raw_plus_counts":
tailored for in vitro untargeted LC-MS experiments, taking in "raw" (i.e. not
normalized and not scaled) metabolite concentrations and cell counts. This
model assumes independent measurement (i.e. different wells) of cell counts
and metabolite concentrations. Additionally it assumes that cell counts were
estimated e.g. by cell counters (i.e. that cells were not counted under the micro-
scope) leading to a small uncertainty of the true cell count.
data concentration table with at least three replicate measurements per metabolite.

Must contain columns named "metabolite" (containing names or IDs), "time"
(categorical, the same for all conditions), and "condition" or colData of a Sum-
marizedExperiment object Time column needs to be sorted in ascending order

scaled_measurement
column of "data" that contains the concentrations per cell, centered and normal-
ized per metabolite and experimental condition (mean=0, sd=1)

counts data frame with at least one replicate per time point and condition specifying
the cell counts, must contain columns "time", and "condition" equivalent to the
specifications of "data". Must contain a column named "counts" that specifies
the cell counts. Model assumes that the replicates of the cell counts and metabo-
lite concentrations are independent of each other (i.e. cell counts were measured
in in different wells than metabolite concentrations)

assay if input is a SummarizedExperiment specify the assay that should be used for in-
put, colData has to hold the columns, "condition" and "metabolite", rowData the
timepoint specifications, in case of the model "scaled_log" assay needs to hold
scaled log-transformed metabolite concentrations (mean=0,sd=1 per metabolite
and experimental condition), if model "raw_plus_counts" is chosen must hold
the non-transformed and non-scaled metabolite concentrations

chains how many Markov-Chains should be used for model fitting, use at least two,
default=4



cores

adapt_delta

max_treedepth

iter

warmup

Value

.eu

how many cores should be used for model fitting; this parallelizes the model
fitting and therefore speeds it up; default=4

target average acceptance probability, can be adapted if divergent transitions are
reported, default is 0.95

can be adapted if model throws warnings about hitting max_treedepth, warn-
ings are mostly efficiency not validity concerns and treedepth can be raised,
default=10

how many iterations are run, increasing might help with effective sample size
being to low, default=2000

how many iterations the model warms up for, increasing might facilitate effi-
ciency, must be at least 25% of ITER, default=iter/4

description error messages

.eu

euclidean distance compare_dynamics()

Description

euclidean distance compare_dynamics()

Usage

.eu(a, b)

Arguments

Value

a numeric vector

a numeric vector of same length as a

euclidean distance between vectors
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.get_boot_ph get bootstrapps for clustering of dynamics vectors (cluster_dynamics
function)

Description

get bootstrapps for clustering of dynamics vectors (cluster_dynamics function)

Usage

.get_boot_ph(x, distance, agglomeration, B)

Arguments
X posterior of dynamics model
distance distance measure used for hierarchical clustering

agglomeration agglomeration method used for hierarchical clustering

B number of bootstrapps

Value

bootsstrapps of clustering solution

.hierarchical_clustering
hierarchical clustering

Description

hierarchical clustering

Usage

.hierarchical_clustering(
data_clust,
distance,
agglomeration,
minClusterSize,
deepSplit
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Arguments
data_clust element "mu" of estimates
distance distance method

agglomeration agglomeration method of hierarchical clustering

minClusterSize minimum number of metabolites per of cluster cutreeDynamic

deepSplit rough control over sensitivity of cluster analysis. Possible values are 0:4, the
higher the value, the more and smaller clusters will be produced by cutreeDy-
namic
Value

list of input data including clustering solution, dendrogram, phylogram

.similarity Jaccard Index: intersection/union compare_metabolites()

Description

Jaccard Index: intersection/union compare_metabolites()

Usage

.similarity(a, b)

Arguments
a a vector
b a vector
Value

Jaccard Index of a and b



cluster_dynamics

cluster_dynamics

cluster dynamics profiles of metabolites

Description

Convenient wrapper function for clustering of metabolite dynamics employing the "hybrid" method
of the dynamicTreeCut package for clustering and hclust for computing of distance matrix and
hierarchical clustering needed as input for dynamicTreeCut. Provides bootstrapping of clustering
solution from posterior estimates of the model.

Usage

cluster_dynamics(

data =
fit,

estimates =
distance =

NULL,

NULL,
"euclidean”,

agglomeration = "ward.D2",
minClusterSize = 1,
deepSplit = 2,

B = 1000

Arguments

data

fit

estimates

distance

agglomeration

minClusterSize

deepSplit

data frame or colData of a SummarizedExperiment used to fit dynamics model

model fit obtained by fit_dynamics_model(). Needed if data is not a Summa-
rizedExperiment object for which the model fit is saved in "dynamic_fit" of
metadata

output of estimates_dynamics function, needed if data is not a SummarizedEx-
periment object for which the model estimates are saved in "estimates_dynamics"
of metadata

distance method to be used as input for hierarchical clustering dist can be "eu-

clidean", " canberra”, "binary" or "minkowski"

non

maximum",

non

manhattan",

agglomerative method to be used for hierarchical clustering hclust can be "ward.D",

"ward.D2", "single", " median" or "centroid"

non

complete",

average ,

"non

mcquitty",
minimum number of metabolites per of cluster cutreeDynamic

rough control over sensitivity of cluster analysis. Possible values are 0:4, the
higher the value, the more and smaller clusters will be produced by cutreeDy-
namic

number of bootstraps



10 compare_dynamics

Value

a list with one list per condition. The elements per condition are ’data’ (mean estimates of mu plus
the clustering solution), mean_dendro’ the dendrogram of the mean estimates, and mean_phylo’ the
phylogram of the mean estimates. if data is a SummarizedExperiment object clustering results are
stored in metadata under "cluster" Element dynamics’ contains column names of time points

See Also

fit_dynamics_model(), estimates_dynamics(), plot_cluster()

Examples

data("longitudinalMetabolomics")

data <- longitudinalMetabolomics[, longitudinalMetabolomics$condition == "A" &
longitudinalMetabolomics$metabolite %in% c("ATP", "L-Alanine"”, "GDP")]

data <- fit_dynamics_model(

data = data,

scaled_measurement = "m_scaled”, assay = "scaled_log",

max_treedepth = 14, adapt_delta = 0.95, iter = 2000, cores = 1, chains =1
)
data <- estimates_dynamics(

data = data
)

data <- cluster_dynamics(data, B = 1000)
S4Vectors: :metadata(data)[["cluster"11[["A"]]
plot(S4Vectors: ::metadata(data)[["cluster”]]1[["A"1]1[["mean_dendro”]1])

compare_dynamics Comparison of metabolite dynamics clusters under different experi-
mental conditions

Description

Employs a Bayesian model that assumes a normal distribution of Euclidean distances between dy-
namics vectors (metabolite abundances at different time points) of two clusters that come from
different experimental conditions to estimate the mean distance between clusters.

Usage

compare_dynamics(data, cores = 4)

Arguments
data result of cluster_dynamics() function: either a list of data frames or a Sum-
marizedExperiment object
cores how many cores should be used for model fitting; this parallelizes the model

fitting and therefore speeds it up; default=4
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Value

a list holding a 1) the model fit 2) dataframe of estimates of the mean distance between #’ clusters
of different experimental conditions ("mean") and the standard deviation ("sigma"). If data input
was a SummarizedExperiment results are stored in metadata(data) under "comparison_dynamics"

See Also

Visualization of estimates heatmap_dynamics()/ compare metabolite composition of clusters compare_metabolites()

Examples

data("longitudinalMetabolomics”)

data <- longitudinalMetabolomics[, longitudinalMetabolomics$condition %in% c("A", "B") &
longitudinalMetabolomics$metabolite %in% c("ATP", "L-Alanine"”, "GDP")]

data <- fit_dynamics_model(

data = data,

scaled_measurement = "m_scaled”, assay = "scaled_log",

max_treedepth = 14, adapt_delta = 0.95, iter = 2000, cores = 1, chains =1
)
data <- estimates_dynamics(

data = data
)

data <- cluster_dynamics(data, B = 1)
data <- compare_dynamics(

data = data,

cores =1
)

S4Vectors: :metadata(data)[["comparison_dynamics"]]

compare_metabolites Comparison of metabolite sets between dynamics clusters of different
experimental conditions

Description
Uses the Jaccard Index to compare metabolite names between dynamics clusters of different exper-
imental conditions

Usage

compare_metabolites(data)

Arguments

data result of cluster_dynamics() function: either a list of data frames or a Sum-
marizedExperiment object
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Value

a data frame of Jaccard indices between data or if data input was a SummarizedExperiment results
are stored in metadata(data) under "comparison_metabolites"

See Also

Visualization of metabolite similarity heatmap_metabolites()/ compare dynamics of clusters
compare_dynamics()

Examples

data("longitudinalMetabolomics")
longitudinalMetabolomics <- compare_metabolites(
data = longitudinalMetabolomics

)

S4Vectors: :metadata(longitudinalMetabolomics)[["comparison_metabolites"]]

diagnostics_dynamics  Extracts diagnostic criteria from numeric fit of Bayesian model of dy-
namics

Description

gathers number of divergences, rhat values, number of effective samples (n_eff) and provides plots
for diagnostics criteria as well as posterior predictive checks. Output dataframe "model_diagnostics"
contains information about experimental condition, number of divergent transitions and rhat and
neff values for all timepoints.

Usage
diagnostics_dynamics(
data,
assay = "scaled_log",
iter = 2000,
warmup = iter/4,
chains = 4,
fit = metadata(data)[["dynamic_fit"]]
)
Arguments
data dataframe or a SummarizedExperiment used to fit dynamics model column of
"time" that contains time must be numeric, has to contain columns specifying the
metabolite named "metabolite”, and column specifiying the time point named
"time", a column named "condition" must specify the experimental condition.
assay of the SummarizedExperiment object that was used to fit the dynamics model

iter number of iterations used for model fit
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warmup number of warmup iterations used for model fit
chains number of chains used for model fit
fit model fit for which diagnostics should be extracted, is the object that gets re-

turned by fit_dynamics_model(), or if a SummarizedExperiment object the re-
sults of fit_dynamics_model() are stored in metadata(data) under "dynamic_fit"
Value

a list which contains diagnostics criteria of all conditions in a dataframe (named "model_diagnostics")
and one dataframe per condition that contains necessary information for Posterior predictive check
(named "PPC_condition"). If data is a summarizedExperiment object the diagnostics are stored in
metadata(data) "diagnostics_dynamics"

See Also

estimates_dynamics() parent function fit_dynamics_model() visualization functions: plot_diagnostics()/plot_PPC

Examples

data("longitudinalMetabolomics")

data <- longitudinalMetabolomics[, longitudinalMetabolomics$condition %in% c("A", "B") &
longitudinalMetabolomics$metabolite == "ATP"]
data <- fit_dynamics_model(
model = "scaled_log",
data = data,
scaled_measurement = "m_scaled”, assay = "scaled_log",
max_treedepth = 14, adapt_delta = 0.95, iter = 2000, cores = 1, chains =1
)
data <- diagnostics_dynamics(
data = data, assay = "scaled_log",

iter = 2000, chains =1,

fit = metadata(data)[["dynamic_fit"]]
)
S4Vectors: :metadata(data)[["diagnostics_dynamics”]]1[["model_diagnostics"]]
S4Vectors: :metadata(data)[["diagnostics_dynamics”]][["posterior”]]

estimates_dynamics Extracts parameter estimates from numeric fit of Bayesian model of
dynamics

Description

Extracts the mean concentrations (mu) at every time point from the dynamics model fit, the 95%
highest density interval (HDI), the estimated standard deviation of metabolite concentrations at
every time point (sigma), and the pooled standard deviation of every metabolite over all timepoints
(lambda). Additionally samples from the posterior of mu can be drawn. This can be helpful if p.e.
one wants to estimate the clustering precision. Lambda can be used for clustering algorithms such
as VSClust that also take the variance into account.
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Usage
estimates_dynamics(
data,
assay = "scaled_log",
fit = metadata(data)[["dynamic_fit"]]
)
Arguments
data data frame or colData of a SummarizedExperiment used to fit dynamics model,
must contain a column named "condition" specifiyng the experimental condi-
tion and a column named "time" specifying the timepoints. If it is a Summa-
rizedExperiment object the dynamic fits must be stores in metadata(data) under
"dynamic_fits"
assay of the SummarizedExperiment object that was used to fit the dynamics model
fit model fit for which estimates should be extracted
Value

a list of dataframes (one per parameters mu, sigma, lambda, delta_mu and euclidean distance) that
contains the estimates: mu: is the estimated mean metabolite abundance sigma: the estimated stan-
dard deviation of metabolite abundance lambda: pooled sigma per condition delta_mu: differences
of mu between time points euclidean_distances: estimated euclidean distance of time vectors of one
metabolite between conditions If data is a summarizedExperiment object the estimates are stored in
metadata(data) under "estimates_dynamics"

See Also
Fit the dynamic model fit_dynamics_model (). Diagnostics of the dynamic model diagnostics_dynamics()

Visualization of estimates with plot_estimates()

Examples

data("longitudinalMetabolomics™)

data <- longitudinalMetabolomics[, longitudinalMetabolomics$condition == "A" &
longitudinalMetabolomics$metabolite == "ATP"]

data <- fit_dynamics_model(
data = data,
scaled_measurement = "m_scaled”, assay = "scaled_log",

max_treedepth = 14, adapt_delta = 0.95, iter = 2000, cores = 1, chains =1
)
data <- estimates_dynamics(

data = data
)

S4Vectors: :metadata(data)[["estimates_dynamics"]]
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fit_dynamics_model Fits dynamics model

Description

Employs a hierarchical model that assumes a normal distribution of standardized (mean=0, sd=1)
log(cpe) (cpc = normalized metabolite abundance) values for robust estimation of mean concentra-
tions over time of single metabolites at single experimental conditions. At least three replicates for
metabolite concentrations per time point and condition are needed. If cell counts are provided at
least one replicate per time point and condition is needed.

Usage
fit_dynamics_model(
model = "scaled_log",
data,
scaled_measurement = "m_scaled”,
counts = NULL,
assay = "scaled_log",
chains = 4,
cores = 4,

adapt_delta = 0.95,
max_treedepth = 10,

iter = 2000,
warmup = iter/4
)
Arguments
model which model to fit. Two options are available: "scaled_log": taking in normal-
ized and scaled metabolite concentrations (see scaled measurement) "raw_plus_counts":
tailored for in vitro untargeted LC-MS experiments, taking in "raw" (i.e. not
normalized and not scaled) metabolite concentrations and cell counts. This
model assumes independent measurement (i.e. different wells) of cell counts
and metabolite concentrations. Additionally it assumes that cell counts were
estimated e.g. by cell counters (i.e. that cells were not counted under the micro-
scope) leading to a small uncertainty of the true cell count.
data concentration table with at least three replicate measurements per metabolite.

Must contain columns named "metabolite” (containing names or IDs), "time"

(categorical, the same for all conditions), and "condition" or colData of a Sum-

marizedExperiment object Time column needs to be sorted in ascending order
scaled_measurement

column of "data" that contains the concentrations per cell, centered and nor-

malized per metabolite and experimental condition (mean=0, sd=1), must be
numeric
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counts

assay

chains

cores

adapt_delta

max_treedepth

iter

warmup

Value

fit_dynamics_model

data frame with at least one replicate per time point and condition specifying
the cell counts, must contain columns "time", and "condition" equivalent to the
specifications of "data". Must contain a column named "counts" that specifies
the cell counts. Model assumes that the replicates of the cell counts and metabo-
lite concentrations are independent of each other (i.e. cell counts were measured
in in different wells than metabolite concentrations)

if input is a SummarizedExperiment specify the assay that should be used for in-
put, colData has to hold the columns, "condition" and "metabolite", rowData the
timepoint specifications, in case of the model "scaled_log" assay needs to hold
scaled log-transformed metabolite concentrations (mean=0,sd=1 per metabolite
and experimental condition), if model "raw_plus_counts" is chosen must hold
the non-transformed and non-scaled metabolite concentrations

how many Markov-Chains should be used for model fitting, use at least two,
default=4

how many cores should be used for model fitting; this parallelizes the model
fitting and therefore speeds it up; default=4

target average acceptance probability, can be adapted if divergent transitions are
reported, default is 0.95

can be adapted if model throws warnings about hitting max_treedepth, warn-
ings are mostly efficiency not validity concerns and treedepth can be raised,
default=10

how many iterations are run, increasing might help with effective sample size
being to low, default=2000

how many iterations the model warms up for, increasing might facilitate effi-
ciency, must be at least 25% of ITER, default=iter/4

returns a list of model fits. One model fit named "condition" per experimental condition. If input is
a summarizedExperiment object the dynamic fits are stored metadata(data) under "dynamic_fits"

See Also

Example data setlongitudinalMetabolomics. Get model diagnostics diagnostics_dynamics() Get
model estimates estimates_dynamics()

Examples

## on scaled log-transformed metabolite concentrations

data("longitudinalMetabolomics")

data <- longitudinalMetabolomics[, longitudinalMetabolomics$condition %in% c("A", "B") &
longitudinalMetabolomics$metabolite == "ATP"]

data <- fit_dynamics_model(
model = "scaled_log”,

data = data,

assay = "scaled_log”,
max_treedepth = 14, adapt_delta = 0.95, iter = 2000, cores = 1, chains =1

)
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S4Vectors: :metadata(data)[["dynamic_fit"]]

get_ORA_annotations Retrieve background and annotation information for over-
representation analysis (ORA)

Description

Uses the package KEGGREST to retrieve background and annotation information needed for over-
representation analysis. As KEGGREST only allows 10 queries per second this might take some
time to run, depending on the size of the dataset and organism. The user should check afterwards if
all functional modules are applicable for the analysis of the dataset (p.e. organism, tissue).

Usage
get_ORA_annotations(
data,
kegg = "KEGG",
metabolite_name = "metabolite”,
update_background = TRUE
)
Arguments
data data frame to be analyzed with ORA. Must at least contain a column with KEGG
IDs or a SummarizedExperiment where the metabolite names or IDs are stored
in colData
kegg column name of "data" that holds KEGG IDs

metabolite_name
column name of "data" that holds metabolite names

update_background
logical. Should the background information be updated? Should be set to TRUE
of this is the first time using this function. If TRUE this may take some time.

Value

a list with dataframes "background" and "annotation" needed for ORA, if data is a SummarizedEx-

periment SummarizedExperiment object annotations are stored in metadata(data) under "KEGG_annotations"
See Also

Do over-representation analysis of KEGG functional modules ORA_hypergeometric()



18 heatmap_dynamics

Examples

data("longitudinalMetabolomics™)

data <- longitudinalMetabolomics[, longitudinalMetabolomics$condition == "A" &
longitudinalMetabolomics$metabolite == "ATP"]
data <- get_ORA_annotations(
data = data,
kegg = "KEGG",
metabolite_name = "metabolite”,
update_background = FALSE
)

S4Vectors: :metadata(data)[["KEGG_annotations"]]

heatmap_dynamics plot bubble heatmap from the numerical fit of compare_dynamics()

Description

plot bubble heatmap from the numerical fit of compare_dynamics()

Usage

heatmap_dynamics(
estimates = metadata(data)[["comparison_dynamics”]][["estimates”]],

data
)
Arguments
estimates dataframe of estimates of the mean distance between clusters of different ex-
perimental conditions ("mean") and the standard deviation ("sigma") obtain by
function compare_dynamics()
data a dataframe or containing a column specifying the metabolite names to be com-
pared and cluster IDs (column named "cluster") of clusters of similar dynamics,
as well as a column "condition" specifying the experimental conditions. to be
compared or a SummarizedExperiment storing the same information in meta-
data(data) under "cluster”
Value

a bubble heat map where the color of the bubble represents the similarity of two clusters in regards
to their dynamics in the color and the size the uncertainty of the similarity. Big bright bubbles mean
high similarity with low uncertainty.

See Also

Do calculations for comparison of dynamics between clusters compare_dynamics()
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Examples

data("longitudinalMetabolomics")

data <- longitudinalMetabolomics[, longitudinalMetabolomics$condition %in% c("A", "B") &
longitudinalMetabolomics$metabolite %in% c("ATP", "L-Alanine"”, "GDP")]

data <- fit_dynamics_model(

data = data,

scaled_measurement = "m_scaled”, assay = "scaled_log",

max_treedepth = 14, adapt_delta = 0.95, iter = 2000, cores = 1, chains =1
)
data <- estimates_dynamics(

data = data
)

data <- cluster_dynamics(data, B = 1)
data <- compare_dynamics(
data = data,
cores =1
)
S4Vectors: :metadata(data) [["comparison_dynamics"”]]
heatmap_dynamics(data = data)

heatmap_metabolites plot heatmap from comparison of metabolite composition com-
pare_metabolites()

Description

plot heatmap from comparison of metabolite composition compare_metabolites()

Usage

heatmap_metabolites(
distances = metadata(data)[["comparison_metabolites”]],

data
)
Arguments
distances dataframe of Jaccard indices between clusters obtained by function compare_metabolites().
If compare_metabolites() was executed on as SummarizedExperiment or a Sum-
marizedExperiment than this is stored in metadata(data) under "comparison_metabolites"
data a dataframe containing the columns "metabolite" specifying the metabolite names
to be compared and cluster IDs(column named "cluster") of clusters of similar
dynamics, as well as a column "condition" specifying the experimental condi-
tions to be compared
Value

a heatmap where the color of the tile represents the similarity of two clusters in regards to their
metabolite composition. The brighter the color the more similar the metabolite compositions.
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See Also

Do calculations for comparison of metabolites between clusters compare_metabolites()

Examples

data("longitudinalMetabolomics”)

longitudinalMetabolomics <- compare_metabolites(
data = longitudinalMetabolomics

)

heatmap_metabolites(data = longitudinalMetabolomics)

IDs KEGG ID mapping of metabolites in data set longitudinal-
Metabolomics

Description

Example data set of KEGG ID annotations of metabolites as needed for ORA_hypergeometric()

Usage

data("IDs")

Format

A dataframe

KEGG KEGG ID of metabolites

replicate column that specifies the measurement replicate

longitudinalMetabolomics

A simulated data set of longitudinal concentration tables of metabo-
lites.

Description

A simulated data set of 98 metabolites. 3 replicate measurements of 4 time points and at 2 exper-
imental conditions. Metabolites are in 8 dynamics groups per experimental condition. 4 groups
have varying dynamics between conditions. Is represented as a SummarizedExperiment object
where concentration tables of each experimental condition are stored in assays (raw concentrations
in "concentrations", log-transformed transformations in "log_con" and scaled log-transformed con-
centrations" in "scaled_log") and metabolite names, KEGG IDs, experimental conditions and clus-
tering solutions per experimental condition are stored in colData and timepoint specifications in
rowData. (SummarizedExperiment).
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Usage

data("longitudinalMetabolomics”)

Format

A SummarizedExperiment object with concentration tables in assays. RowData contains the time
point specification. ColData as specified below.

condition experimental condition

metabolite metabolite name

KEGG KEGG ID of metabolites

replicate column that specifies the measurement replicate

cluster cluster ID that is condition specific for every metabolite

Source

Script used to create simulated data set.seed(1234) # load KEGG database for assignment of
metabolite names: data("metabolite_modules")

# metabolite_db <- metabolite_modules # Group <- middle_hierarchy

library(dplyr) library(SummarizedExperiment) library(tidyverse) # Parameters (as before)
n_features <- 98

n_groups <- 8 # Number of groups (randomly choose between 6-8)

n_time_points <- 4 # Number of time points

n_replicates <- 3 # Number of replicates for all features and time points

n_conditions <- 2 # Number of experimental conditions

X_varying_groups <- 4 # Number of groups with varying dynamics across conditions
condition_names <- c("A","B")

# Probability matrix for assigning metabolites from different database groups to dynamic groups #
For simplicity, we assume equal probability; customize as needed

group_probabilities <- matrix(c(0.8,rep(0.01,7), #amino acid metabolism rep(0.01,7),0.8, #nucleotide
metabolism 0.1,0.8,0.8,rep(0.1,5), # energy and carbohydrate metabolism runif(5 * length(unique(metabolite_modules$midd
nrow = n_groups, ncol = length(unique(metabolite_modules$middle_hierarchy)))

# Generate group dynamics (base trends over time) for each condition
group_dynamics <- list()
# Define the base group dynamics for condition 1

group_dynamics[[1]] <- lapply(1:n_groups, function(g) trend <- rnorm(n_time_points, mean = g *
2, sd = 0.5) return(trend) )

# Define varying dynamics for selected groups across other conditions
varying_groups <- sample(1:n_groups, x_varying_groups, replace = FALSE)

for (cond in 2:n_conditions) group_dynamics[[cond]] <- group_dynamics[[1]] for (g in varying_groups)
group_dynamics[[cond]][[g]] <- rnorm(n_time_points, mean = g * 2, sd = 1)
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# Assign each feature to a group

feature_to_group <- sample(1:n_groups, n_features, replace = TRUE)
# Initialize a list to store the simulated data

simulated_data <- list()

# Assign metabolite names to features

available_metabolites <- metabolite_modules # Copy of metabolite database to keep track of unused
names

# Simulate data for each feature across all conditions

for (feature in 1:n_features)

# Get the group for this feature

group <- feature_to_group[feature]

# Determine probability of each metabolite database group for this dynamic group
group_probs <- group_probabilities[group, ]

# Subset the metabolite database for selection based on group probabilities

metabolite_candidates <- available_metabolites group_by(middle_hierarchy) mutate(Probability =
group_probs[match(middle_hierarchy, unique(metabolite_modules$middle_hierarchy))]) ungroup()
filter(metabolite

# Randomly sample a metabolite based on these probabilities
metabolite_name <- sample(metabolite_candidates$metabolite, 1, prob = metabolite_candidates$Probability)
# Remove this metabolite from available pool

available_metabolites <- available_metabolites[available_metabolites$metabolite != metabolite_name,

]

# Generate a random base mean for this feature between 0.001 and 1000
base_mean <- runif(1, min = 0.1, max = le5)

# Generate feature-specific variances for each time point
feature_variances <- runif(n_time_points, min = 0.1, max = 2)

# Store data for each condition

for (cond in 1:n_conditions) trend <- group_dynamics[[cond]][[group]] feature_means <- base_mean
* trend / max(abs(trend))

feature_data <- data.frame( metabolite = metabolite_name, # Assign metabolite name here condi-
tion = pasteO(condition_names[[cond]]), time = rep(1:n_time_points, each = n_replicates), replicate
= rep(l:n_replicates, times = n_time_points) )

# Generate the actual data points with strictly positive concentrations

feature_data$measurement <- unlist(lapply(1:n_time_points, function(t) rinorm(n_replicates, mean-
log = log(feature_means[t]), sdlog = feature_variances|[t]) ))

simulated_data[[length(simulated_data) + 1]] <- feature_data

rm(base_mean,cond,feature,feature_means,feature_to_group,feature_variances, g,group,group_probs,metabolite_name,n_cc
n_time_points,trend,varying_groups,X_varying_groups,available_metabolites,feature_data,group_dynamics,
group_probabilities,metabolite_candidates)
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# Combine all features and conditions into one data frame
simulated_data_df <- do.call(rbind, simulated_data)

simulated_data_df <- simulated_data_df group_by(metabolite, condition) mutate( log_m = log10(measurement),
m_scaled = (log_m - mean(log_m)) / sd(log_m) )

# add KEGG IDs name_map_HMDB_CAS <- readr::read_csv("name_map_HMDB_CAS.csv")
longitudinalMetabolomics <- dplyr::left_join(simulated_data_df,name_map_HMDB_CAS[,c("Query","KEGG")],join_by(";

## concentrations temp <- longitudinalMetabolomics temp <- temp select(condition,metabolite, KEGG,time,measurement,ref
pivot_wider(id_cols=c(condition,metabolite, KEGG,replicate), names_from = time, values_from =

measurement) concentrations <- temp ## transform matrix so that conditions are in columns to facil-

itate access ## with colData -> se[,se$condition="A"] concentrations <- t(as.matrix(concentrations))
row.names(concentrations) <- NULL # prepare log_transformed data temp <- longitudinalMetabolomics

temp <- temp select(condition,metabolite, KEGG,time,log_m,replicate) pivot_wider(id_cols=c(condition,metabolite, KEGG1
names_from = time, values_from = log_m) log_con <- temp log_con <- t(as.matrix(log_con))

row.names(log_con) <- NULL # prepare scaled log_transformed data temp <- longitudinalMetabolomics

temp <- temp select(condition,metabolite, KEGG,time,m_scaled,replicate) pivot_wider(id_cols=c(condition,metabolite, KEG
names_from = time, values_from = m_scaled) scaled_log <- temp scaled_log <- t(as.matrix(scaled_log))
row.names(scaled_log) <- NULL

# simulate cell counts ## I am assuming that all cell counts are from a poisson distribution with the
same ## location parameter (not the case for real life applications). One parameter is just used to
show application of the dynamics model including cell counts

counts <- rbind(rpois(ncol(concentrations), 1e5), rpois(ncol(concentrations),1e5), rpois(ncol(concentrations),1e5),
rpois(ncol(concentrations), 1e5)) # 882 columns, three entries for same metabolite, four time points

# prepare row and colData #### row_data <- DataFrame(time_points=c("time_point_1","time_point_2","time_point_3",
"time_point_4")) col_data <- DataFrame(condition=temp$condition,metabolite=temp$metabolite,
KEGG=temp$KEGG,replicate=temp$replicate)

se <- SummarizedExperiment(assays=SimpleList(concentrations=concentrations, log_con=log_con,
scaled_log=scaled_log, cell_counts = counts), rowData = row_data, colData = col_data) # set row

and colnames #### rownames(se) <- c("'time_point_1","time_point_2","time_point_3", "time_point_4")
colnames(se) <- temp$metabolite

# add metadata #### metadata(se)[["data origin"]] <- "Simulated data of 98 metabolites with three
concentration observations at four time points and at three different biological conditions. Script to
construct dataset can be seen with ?longitudinalMetabolomics"

data <- se data <- fit_dynamics_model( data = data, scaled_measurement = "m_scaled", assay =
"scaled_log", max_treedepth = 14, adapt_delta = 0.999, iter = 5000, cores = 2, chains =2 )

data <- estimates_dynamics( data = data ) data <- cluster_dynamics(data,B=10) metadata(data)[["dynamic_fit"]]
<- NULL

data("modules_compounds") data("metabolite_modules") data("IDs") data <- ORA_hypergeometric(data
= data, background = modules_compounds, IDs = IDs, annotations = metabolite_modules, tested_column
= "middle_hierarchy")

# save shortened analysis in metadata of se metadata(se)[["estimates_dynamics"]] <- metadata(data)[["estimates_dynamics"]]
metadata(se)[["dynamics"]] <- metadata(data)[["dynamics"]] metadata(se)[["cluster"]] <- metadata(data)[["cluster"]]
metadata(se)[["ORA_middle_hierarchy"]] <- metadata(data)[["ORA_middle_hierarchy"]]

longitudinalMetabolomics <- se usethis::use_data(longitudinalMetabolomics,overwrite = TRUE)
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longitudinalMetabolomics_df <- dplyr::left_join(simulated_data_df,name_map_HMDB_CAS[,c("Query","KEGG")],join_b
usethis::use_data(longitudinalMetabolomics_df,overwrite = TRUE)

longitudinalMetabolomics_df
A simulated data set of longitudinal concentration tables of metabo-
lites. In contrast to "longitudinalMetabolomics" this dataset is in data
frame format. It was simulated with a different seed compared to lon-
gitudinalMetabolomics so the results can deviate.

Description

A simulated data set of 98 metabolites. 3 replicate measurements of 4 time points and at 3 exper-
imental conditions. Metabolites are in 8 dynamics groups per experimental condition. 4 groups
have varying dynamics between conditions. Is represented as a SummarizedExperiment object
where concentration tables of each experimental condition are stored in assays (raw concentrations
in "concentrations", log-transformed transformations in "log_con" and scaled log-transformed con-
centrations" in "scaled_log") and metabolite names, KEGG IDs, experimental conditions and clus-
tering solutions per experimental condition are stored in colData and timepoint specifications in
rowData. (SummarizedExperiment).

Usage

data("longitudinalMetabolomics™)

Format

A SummarizedExperiment object with concentration tables in assays. RowData contains the time
point specification. ColData as specified below.

condition experimental condition

metabolite metabolite name

KEGG KEGG ID of metabolites

replicate column that specifies the measurement replicate

cluster cluster ID that is condition specific for every metabolite

Source

Script used to create simulated data

# load KEGG database for assignment of metabolite names: data("metabolite_modules")
# metabolite_db <- metabolite_modules # Group <- middle_hierarchy

library(dplyr) library(SummarizedExperiment) # Parameters (as before)

n_features <- 98

n_groups <- 8 # Number of groups (randomly choose between 6-8)
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n_time_points <- 4 # Number of time points

n_replicates <- 3 # Number of replicates for all features and time points
n_conditions <- 2 # Number of experimental conditions

Xx_varying_groups <- 4 # Number of groups with varying dynamics across conditions
condition_names <- c("A","B")

# Probability matrix for assigning metabolites from different database groups to dynamic groups #
For simplicity, we assume equal probability; customize as needed

group_probabilities <- matrix(c(0.8,rep(0.01,7), #amino acid metabolism rep(0.01,7),0.8, #nucleotide
metabolism 0.1,0.8,0.8,rep(0.1,5), # energy and carbohydrate metabolism runif(5 * length(unique(metabolite_modules$midd.
nrow = n_groups, ncol = length(unique(metabolite_modules$middle_hierarchy)))

# Generate group dynamics (base trends over time) for each condition
group_dynamics <- list()
# Define the base group dynamics for condition 1

group_dynamics[[1]] <- lapply(1:n_groups, function(g) trend <- rnorm(n_time_points, mean = g *
2, sd = 0.5) return(trend) )

# Define varying dynamics for selected groups across other conditions
varying_groups <- sample(1:n_groups, x_varying_groups, replace = FALSE)

for (cond in 2:n_conditions) group_dynamics[[cond]] <- group_dynamics[[1]] for (g in varying_groups)
group_dynamics[[cond]][[g]] <- rnorm(n_time_points, mean =g * 2, sd = 1)

# Assign each feature to a group

feature_to_group <- sample(1:n_groups, n_features, replace = TRUE)
# Initialize a list to store the simulated data

simulated_data <- list()

# Assign metabolite names to features

available_metabolites <- metabolite_modules # Copy of metabolite database to keep track of unused
names

# Simulate data for each feature across all conditions

for (feature in 1:n_features)

# Get the group for this feature

group <- feature_to_group[feature]

# Determine probability of each metabolite database group for this dynamic group
group_probs <- group_probabilities[group, ]

# Subset the metabolite database for selection based on group probabilities

metabolite_candidates <- available_metabolites group_by(middle_hierarchy) mutate(Probability =
group_probs[match(middle_hierarchy, unique(metabolite_modules$middle_hierarchy))]) ungroup()
filter(metabolite

# Randomly sample a metabolite based on these probabilities
metabolite_name <- sample(metabolite_candidates$metabolite, 1, prob = metabolite_candidates$Probability)

# Remove this metabolite from available pool
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available_metabolites <- available_metabolites[available_metabolites$metabolite != metabolite_name,

]

# Generate a random base mean for this feature between 0.001 and 1000
base_mean <- runif(1, min = 0.001, max = 1000)

# Generate feature-specific variances for each time point
feature_variances <- runif(n_time_points, min = 0.1, max = 2)

# Store data for each condition

for (cond in 1:n_conditions) trend <- group_dynamics[[cond]][[group]] feature_means <- base_mean
* trend / max(abs(trend))

feature_data <- data.frame( metabolite = metabolite_name, # Assign metabolite name here condi-
tion = pasteO(condition_names[[cond]]), time = rep(1:n_time_points, each = n_replicates), replicate
= rep(1:n_replicates, times = n_time_points) )

# Generate the actual data points with strictly positive concentrations

feature_data$measurement <- unlist(lapply(1:n_time_points, function(t) rlnorm(n_replicates, mean-
log = log(feature_means|[t]), sdlog = feature_variances[t]) ))

simulated_data[[length(simulated_data) + 1]] <- feature_data

rm(base_mean,cond,feature,feature_means,feature_to_group,feature_variances, g,group,group_probs,metabolite_name,n_cc
n_time_points,trend,varying_groups,X_varying_groups,available_metabolites,feature_data,group_dynamics,
group_probabilities,metabolite_candidates)

# Combine all features and conditions into one data frame
simulated_data_df <- do.call(rbind, simulated_data)

simulated_data_df <- simulated_data_df group_by(metabolite, condition) mutate( log_m =log10(measurement),
m_scaled = (log_m - mean(log_m)) / sd(log_m) )

# add KEGG IDs name_map_HMDB_CAS <- readr::read_csv("name_map_HMDB_CAS.csv")
longitudinalMetabolomics_df <- dplyr::left_join(simulated_data_df,name_map_HMDB_CAS[,c("Query","KEGG")],join_b
usethis::use_data(longitudinalMetabolomics_df,overwrite = TRUE)

metabolite_modules KEGG Query Results of experimental metabolites

Description

Using the package KEGGREST (https://www.bioconductor.org/packages/release/bioc/html/KEGGREST.html)
all experimental metabolites (see data("intra")) were queried with there KEGG-IDs and all func-
tional modules recorded to which the metabolite is annotated in the KEGG-database.

Usage

data("metabolite_modules")
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Format
A data frame with 348 observations on the following 8 variables.

.. .1 row number of the dataframe

metabolite name of the experimental metabolite

KEGG KEGG ID of the experimental metabolite

module_id ID of the KEGG module to which the metabolite is annotated

module_name name of the KEGG module to which the metabolite is annotated

upper_hierarchy name of the highest hierachy level of module organisation

middle_hierarchy name of the middle hierachy = functional module, p.e. "Amino acid metabolism"

lower_hierarchy name of the lowest level of modules, this often contain only a couple pathways
p.e. "Arginine and proline metabolism"

Source

https://www.genome.jp/kegg/module.html

See Also

modules_compounds

modules_compounds Background KEGG Query Results Of Functional Modules

Description

Using the package KEGGREST (https://www.bioconductor.org/packages/release/bioc/html/KEGGREST.html)
a list of all KEGG-modules (KeggList("module")) including their upper, middle and lower hierachy
as given by the KEGG-database and the corresponding annotated metabolites was queried.

Usage

data("modules_compounds™)

Format
A data frame with 1988 observations on the following 6 variables.

KEGG KEGG ID of a metabolite annotated to a functional module
upper_hierarchy name of the highest hierachy level of module organisation
middle_hierarchy name of the middle hierachy = functional module, p.e. "Amino acid metabolism"

lower_hierarchy name of the lowest level of modules, this often contain only a couple pathways
p.e. "Arginine and proline metabolism"

module_id the ID of the KEGG functional module

module_name name of the KEGG module
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Source

https://www.genome.jp/kegg/module.html

See Also

metabolite_modules

ORA_hypergeometric OverRepresentationAnalysis with a hypergeometric model

Description

Testing the hypothesis that certain KEGG modules are over-represented in clusters of metabolites.
A module is considered over-represented in a cluster the number of metabolites in a cluster being
annotated to a functional module (n_obs) is higher than the expected number of metabolites in a
cluster of this size being annotated to a functional module (n_theo). We can calculate the OVE (Ob-
served versus Expected = n_obs/n_theo) and show the probabilities of these ratios. log(p(OvE))>0
indicates an over-representation of the functional module in the cluster, log(p(OvE))<0 an under-

representation.
Usage
ORA_hypergeometric(
background,
annotations,
data,
IDs,
tested_column = "middle_hierarchy”
)
Arguments
background dataframe that contains KEGG IDs of metabolites that are assigned to functional
modules, is incorporated in the package modules_compounds
annotations dataframe tha contains information to which functional modules our experimen-
tal metabolites are annotated in KEGG, can be constructed by filtering the pro-
vided KEGG background modules_compounds for the experimental metabolites
data result of cluster_dynamics() function: either a list of data frames or a Sum-
marizedExperiment object
IDs dataframe with two columns 'metabolite’ and "’KEGG’ mapping KEGG IDs to

metabolites. If function get_ORA_annotations() is used to retrieve IDs these
are stored under "KEGG_annotations" of metadata(data)

tested_column column that is in background and annotations and on which the hypergeometric
model will be executed
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Value

a dataframe containing the ORA results or if data is SummarizedExperiment SummarizedExperi-
ment object the output is stored in metadata(data) under "ORA_tested_column"

See Also

Function to obtain data cluster_dynamics() Function to visualize ORA results plot_ORA()

get_ORA_annotations()

Examples

data("longitudinalMetabolomics"”)
data("modules_compounds™)
head(modules_compounds)
data("metabolite_modules”)
head(metabolite_modules)
data("IDs")

head(IDs)

longitudinalMetabolomics <- ORA_hypergeometric(
data = longitudinalMetabolomics,
annotations = metabolite_modules,
background = modules_compounds,
IDs = IDs,
tested_column = "middle_hierarchy”
)
S4Vectors: :metadata(longitudinalMetabolomics)[["ORA_middle_hierarchy”]]

plot_cluster visualize clustering solution of cluster_dynamics()

Description

visualize clustering solution of cluster_dynamics()

Usage

plot_cluster(data)

Arguments

data result of cluster_dynamics() function: either a list of data frames or a Sum-
marizedExperiment object
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Value

a list of plots. Per experimental condition: 1) a "bubbletree’: a phylogram with numbers on nodes
indicating in how many bootstraps of the posterior estimates the same clustering solution was gen-
erated, 2) cluster affiliation of metabolites, 3) dynamics of metabolites per cluster, 4) patchwork of
1-3, 5) order of the tips in bubbletree: needed for matching cluster plots and ORA

See Also

cluster_dynamics()

Examples

data("longitudinalMetabolomics")
plots <- plot_cluster(longitudinalMetabolomics[, longitudinalMetabolomics$condition == "A"])

plots[["trees"]1J[["A"]]

plot_diagnostics Plot diagnostic criteria of numerical fit of Bayesian model of dynamics

Description

Plot diagnostic criteria of numerical fit of Bayesian model of dynamics

Usage
plot_diagnostics(
data,
assay = "scaled_log",

diagnostics = metadata(data)[["diagnostics_dynamics”J]1[["model_diagnostics”1],
divergences = TRUE,

max_treedepth = TRUE,

Rhat = TRUE,
n_eff = TRUE
)
Arguments
data dataframe or colData of a SummarizedExperiment used to fit dynamics model
must contain column "time"
assay of the SummarizedExperiment object that was used to fit the dynamics model
diagnostics dataframe containing diagnostics criteria from the numerical fit of Bayesian
model of dynamics obtained by function diagnostics_dynamics()
divergences should number of divergent transitions be visualized?

max_treedepth should number of exeeded maximum treedepth be visualized?
Rhat should Rhat be visualized?

n_eff should number of effective samples be visualized?
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Value

plots of diagnostic criteria of numerical fit of Bayesian model of dynamics

See Also

parent function diagnostics_dynamics() visualization function for posterior predictive check
plot_PPC()

Examples

data("longitudinalMetabolomics™)

data <- longitudinalMetabolomics[, longitudinalMetabolomics$condition == "A" &
longitudinalMetabolomics$metabolite %in% c("ATP", "ADP")]

data <- fit_dynamics_model(

model = "scaled_log",
data = data,
scaled_measurement = "m_scaled”, assay = "scaled_log",

max_treedepth = 14, adapt_delta = 0.95, iter = 2000, cores = 1, chains = 1
)
data <- diagnostics_dynamics(

data = data, assay = "scaled_log",

iter = 2000, chains =1,

fit = metadata(data)[["dynamic_fit"]]
)

plot_diagnostics(data = data, assay = "scaled_log")

plot_estimates Visualization of parameter estimates from numeric fit of Bayesian
model of dynamics

Description

Visualization of parameter estimates from numeric fit of Bayesian model of dynamics

Usage

plot_estimates(
data = NULL,
estimates = metadata(data)[["estimates_dynamics"]1],
delta_t = TRUE,
dynamics = TRUE,
distance_conditions = TRUE
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Arguments
data SummarizedExperiment used to fit dynamics model and extract the estimates
estimates a list of data frames (elements: mu, sigma, lambda, euclidean_distance) that
contains the model estimates by estimates_dynamics() or if data is a Summa-
rizedExperiment estimates must be stored in metadata(data) under "estimates_dynamics"
delta_t should differences between time points be plotted?
dynamics should dynamics be plotted?

distance_conditions
should differences in metabolite specific dynamic should be plotted?

Value

Visualization of differences between time points(delta_t) and dynamics profiles of single metabo-
lites

See Also

parent function estimates_dynamics()

Examples

data("longitudinalMetabolomics")

data <- longitudinalMetabolomics[, longitudinalMetabolomics$condition %in% c("A", "B") &
longitudinalMetabolomics$metabolite %in% c("ATP")]

data <- fit_dynamics_model(

data = data,

scaled_measurement = "m_scaled”, assay = "scaled_log",

max_treedepth = 14, adapt_delta = 0.95, iter = 2000, cores = 1, chains = 1
)
data <- estimates_dynamics(

data = data
)

plot_estimates(data = data, delta_t = TRUE, dynamic = FALSE, distance_conditions = FALSE)
plot_estimates(data = data, delta_t = FALSE, dynamic = TRUE, distance_conditions = FALSE)
plot_estimates(data = data, delta_t = FALSE, dynamic = FALSE, distance_conditions = TRUE)

plot_ORA Plot results of over-representation analysis with
ORA_hypergeometric()

Description

Plot results of over-representation analysis with ORA_hypergeometric()
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Usage

plot_ORA(
data,
tested_column = "middle_hierarchy”,
patchwork = FALSE,
plot_cluster = NULL

Arguments

data result dataframe from ORA_hypergeometric() or SummarizedExperiment ob-
ject where the ORA_hypergeometric() results are stored in metadata(data) under
"ORA_tested_column"

tested_column KEGG module hierarchy level on which ORA was executed
patchwork should result be patchworked to results of plot_cluster()?

plot_cluster if patchwork = TRUE this needs to be the result of plot_cluster()

Value

a plot of the over-representation analysis and Isit of plots suitable to patchwork with cluster visual-
ization if patchwork=TRUE

See Also

do over-represenation analysis of KEGG functional modules ORA_hypergeometric()

Examples

data("longitudinalMetabolomics”)

data("modules_compounds™)

head(modules_compounds)

data(”"metabolite_modules")

head(metabolite_modules)

data("IDs")

head(IDs)

# middly hierachy

longitudinalMetabolomics <- ORA_hypergeometric(
data = longitudinalMetabolomics,
annotations = metabolite_modules,
background = modules_compounds,
tested_column = "middle_hierarchy”,
IDs = IDs

)

plot_ORA(longitudinalMetabolomics)
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plot_PPC Plots posterior predictive check of numerical fit of Bayesian dynamics
model

Description

Plots posterior predictive check of numerical fit of Bayesian dynamics model

Usage
plot_PPC(
posterior = metadata(data)[["diagnostics_dynamics"]1],
data,
assay = "scaled_log",
scaled_measurement = "scaled_measurement”
)
Arguments
posterior a dataframe that contains necessary information for Posterior predictive check
obtained by function diagnostics_dynamics()(named "PPC_condition")
data dataframe or colData of a SummarizedExperiment used to fit dynamics model
assay of the SummarizedExperiment object that was used to fit the dynamics model

scaled_measurement
column name of concentration values used to model fit, should be normalized by
experimental condition and metabolite to mean of zero and standard deviation
of one

Value

a list of visual posterior predictive check, one per experimental condition

See Also

parent function diagnostics_dynamics() visualization function for diagnostics plot_diagnostics()

Examples

data("longitudinalMetabolomics™)

data <- longitudinalMetabolomics[, longitudinalMetabolomics$condition == "A" &
longitudinalMetabolomics$metabolite %in% c("ATP", "ADP")]

data <- fit_dynamics_model(

model = "scaled_log",
data = data,
scaled_measurement = "m_scaled”, assay = "scaled_log",

max_treedepth = 14, adapt_delta = 0.95, iter = 2000, cores = 1, chains = 1
)

data <- diagnostics_dynamics(



plot_PPC

data = data, assay = "scaled_log",
iter = 2000, chains =1,
fit = metadata(data)[["dynamic_fit"]]
)
plot_PPC(
data = data, assay = "scaled_log"

)
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-similarity, 8 longitudinalMetabolomics_df, 24
MetaboDynamics-package, 3
.calculate_distances, 3 MetaboDynamics
.calculate_jaccard, 4 (MetaboDynamics-package), 3
.check_fit_dynamics_input, 4 MetaboDynamics-package, 3
.eu, 6 metabolite_modules, 26, 28
.get_boot_ph, 7 modules_compounds, 27, 27, 28
.hierarchical_clustering, 7
.similarity, 8 ORA_hypergeometric, 28

ORA_hypergeometric(), 17, 20, 33
cluster_dynamics, 9

cluster_dynamics(), 10, 11, 28-30 plot_cluster, 29
compare_dynamics, 10 plot_cluster(), 10, 33
compare_dynamics(), 12, 18 plot_d}agnost%c3,30
compare_metabolites, 11 plot_diagnostics(), 13, 34
compare_metabolites(), /1, 20 plot_est}mate5,31
cutreeDynamic, 8, 9 plot_estimates(), /4
plot_ORA, 32
diagnostics_dynamics, 12 plot_ORA(), 29
diagnostics_dynamics(), 14, 16, 31, 34 plot_PPC, 34
dist, 9 plot_PPC(), 13, 31

dynamicTreeCut, 9 . .
SummarizedExperiment, 5, 9, 10, 12, 14, 15,

estimates_dynamics, 13 17-20, 24, 29, 30, 32-34

estimates_dynamics(), 10, 13, 16, 32

fit_dynamics_model, 15
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