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annotate_cpg_sites Annotate CpG sites

Description

A simple method to test whether your trinucleotide context contains a CpG site. Vectorized version
of Biostrings::vcountPattern is used.

Usage

annotate_cpg_sites(mutation_data, motif = "CG"”, column_query = "context”, ...)

Arguments

mutation_data A dataframe or GRanges object containing the genomic regions of interest in
which to look for CpG sites.

motif Default "CG", which returns CpG sites. You could in theory use an arbitrary
string to look at different motifs. Use with caution. In this case the pattern being
searched must be a column in the mutation data.

column_query Default "context" but can be any column in the mutation data that you wish to
look for a motif in.

Additional arguments to vcountPattern()

Value

A data frame with the same number of rows as there were ranges in the input, but with an additional
metadata column indicating CpG sites in the target sequence of the mutation.

bmd_proast BMD modeling using PROAST

Description

Calculate the benchmark dose (BMD) of continuous, individual-level data with optional model av-
eraging. This function is intended to model the dose-response of mutation frequency. This function
is an extension of the PROAST software (copyright RIVM National Institute for Public Health and
the Environment).
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Usage

bmd_proast(
mf_data,
dose_col = "dose”,
response_col = "mf_min”,
covariate_col = NULL,
bmr = 0.5,
adjust_bmr_to_group_sd = FALSE,
model_averaging = TRUE,
num_bootstraps = 200,
plot_results = FALSE,
output_path = NULL,
raw_results = FALSE,

seed = 125
)
Arguments

mf_data A data frame containing the data to be analyzed. Data should be individual for
each sample. Required columns are the column containing the dose dose_col
the column(s) containing the mutation frequency response_col, and the col-
umn containing the covariate covariate_col, if applicable.

dose_col The column in mf_data containing the dose data. Values must be numeric.

Default is "dose".

response_col  The column(s) in mf_data containing the mutation frequency. Multiple response_cols
can be provided. Default is "mf_min".

covariate_col The column in mf_data containing the covariate. If no covariate is present, set
to NULL (default).

bmr The Benchmark Response value. The BMR is defined as a bmr-percent change
in mean response relative to the controls. Default is 0.5 (50% change).

adjust_bmr_to_group_sd
A logical value indicating whether the group standard deviation should be used
as the BMR. If TRUE, the BMR will be bet set to one standard deviation above
the control group mean. Default is FALSE.

model_averaging
A logical value indicating whether confidence intervals should be calculated
using model averaging. Default is TRUE (recommended).

num_bootstraps The number of bootstrap resamples to be used in the model averaging. Default
is 200 (recommended).

plot_results A logical value indicating whether to plot the BMD models and/or the Cleveland
plots. Default is FALSE. Plots may be exported directly to an output_path, or
returned within a list to the user.

output_path The file path indicating where to save the plots. If NULL, the plots will automat-
ically be displayed to the graphics window and then returned as a list alongside
the bmd results.
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raw_results A logical value indicating whether to return the raw results from the PROAST
analysis. If FALSE, data is returned as a summary table.

seed An integer value to set the random seed for reproducibility when using model
averaging. Default is 125. Use O for a random seed each time.

Details

This function is a modified version of the original interactive PROAST software (https://www.
rivm.nl/en/proast that allows for batch processing of data. The function is designed to be used
with the output of calculate_mf for the purpose of calculating the Benchmark Dose of mutation
frequency data. As such, some functionality of the original PROAST software has been removed.

This function will accept continuous data, with an observation for each individual subject. It is
assumed that data are lognormally distributed. The response data is log-transformed, then back-
transformed after the statistical analysis. The function will fit model 3 or 5 from various families
of models (Exponential, Hill, Inverse Exponential, LogNormal). It will then compare the fits of
models 3 and 5 for each model family and select the model with the lowest AIC. The BMD 90%
confidence intervals will be calculated based on the selected model (3 or 5) for each model family
using the profile likelihood method. The BMD 90% confidence interval may also be calculated
using the bootstrap method if model_averaging = TRUE. It is recommended to use 200 bootstraps
for model averaging.

To replicate these results in the PROAST interactive software, select the following menu options:

1. f.proast(mf_data)

2. What type of response data do you want to consider? I: continuous, individual data

(O8]

Do you want to fit a single model or fit various nested families of models? 3: select model 3
or 5 from various families of models

Q1: Which variable do you want to consider as the independent variable? # : dose_col
Give number(s) of the response(s) you want to analyse. # : response_col

Give number of factor serving as potential covariate (e.g.sex) type 0 if none. # : covariate_col

N A

Do you want to adjust CES to within group SD? I: no, 2: yes | adjust_bmr_to_group_sd:
FALSE/TRUE

®

Give value for CES (always positive) type O to avoid calculation of CIs. bmr

9. Do you want to calculate the BMD confidence interval by model averaging? I: no 2: yes |
model_averaging: FALSE/TRUE

10. give number of bootstrap runs for calculating BMD confidence interval based on MA (e.g.
200) num_bootstraps

11. Which models do you want to be fitted? 4 : previous option with lognormal DR model added

Value

A summmary data frame of final results. If plots or raw results are selected, all data will be returned
within a list.

The summary will include the following for each response variable and covariate subgroup (if ap-
plicable):


https://www.rivm.nl/en/proast
https://www.rivm.nl/en/proast
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* Model: The m3 or m5 model selected for each model family (Exponential, Hill, Inverse Ex-
ponential, LogNormal).

* Response: The response variable.

* Covariate: The covariate subgroup, if applicable.

 bmr: The specified Benchmark Response.

* BMD: The Benchmark Dose, in original dose units, estimated for the given model.

* BMDL: The lower bound of the 90% confidence interval for the BMD, calculated by the profile
likelihood method.

* BMDU: The upper bound of the 90% confidence interval for the BMD, calculated by the profile
likelihood method.

e AIC: The Akaike Information Criterion for the selected model. Lower values indicate a better
fit. It is advised to choose the BMD value from the model with the lowest AIC.

* weights: The weight of the model in the model averaging process, if applicable.

* Model averaging: The BMDL and BMDU calculated by the bootstrap method if model_averaging
= TRUE.

If there is no significant response in the data, the function will return an empty data frame.

If plot_results = TRUE the function will create the following plots for each response variable.
The plots will be saved to the output_path. If no output_path is provided, then they will be returned
within a list alongside the summary data frame.

* Model Plots. The following plot will be created for each model family (Exponential, Hill,
Inverse Exponential, LogNormal): The fitted curve of the selected (3 or 5) model. Data is
log-transformed. Individual data points are plotted using small triangles. The geometric mean
(median) at each dose is plotted as a large triangle. The BMD is indicated by the dotted line.
If applicable, the covariate subgroup is indicated by color. When output_path = NULL, plots
are returned alongside results as recordedPlot objects. View plots with replayPlot().

* bootstrap_curves If model_averaging = TRUE, the bootstrap curves based on model averag-
ing. The geometric mean (median) at each dose is plotted as a large triangle. Data is log-
transformed. When output_path = NULL, plots are returned alongside results as recordedPlot
objects. View plots with replayPlot().

* cleveland plot if model_averaging = TRUE The BMD estimate for each model is plotted as
a red point alongside the 90% confidence intervals. The size of the BMD point represents
the model weight assigned during model averaging, based on the AIC. When output_path =
NULL, plots are returned alongside results as ggplots. View plots by calling object name.

If raw_results = TRUE, the function will return the raw results of the PROAST analysis alongside
the summary data frame. PROAST raw_results is a list of variables and data that is continuously
modified as it is passed through the proast functions. It can be given to f.proast() to resume analysis.

Examples

# Example data consists of 24 mouse bone marrow

# samples exposed to three doses of BaP alongside vehicle controls.
# Libraries were sequenced with Duplex Sequencing using

# the TwinStrand Mouse Mutagenesis Panel which consists of 20 2.4kb
# targets = 48kb of sequence. Example data can be retrieved from
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# MutSeqRData, an ExperimentHub data package:
## library(ExperimentHub)
## eh <- ExperimentHub()
## query(eh, "MutSeqRData")
# Mutation frequency data was precalculated using
## mf_data_global <- calculate_mf(mutation_data = eh[["EH9861"]1],
##  cols_to_group = "sample”,
##  retain_metadata_cols = c("dose_group”, "dose"))
mf_example <- readRDS(system.file("extdata/Example_files/mf_data_global.rds"”,
package = "MutSegR”
)
# We will calculate the BMD for a 50% increase in mutation frequency from
# control with Model averaging.
# For the purpose of this example, num_bootstraps is set to 3 to reduce
# run time. 200 bootstraps is recommended.
bmd <- bmd_proast(
mf_data = mf_example,
dose_col = "dose",
response_col = "mf_min",
bmr = 0.5,
model_averaging = TRUE,
num_bootstraps = 3

BS_org_map BS genome organism dictionary

Description

A dictionary to map common organism names to their corresponding BSgenome organism names.

Usage

BS_org_map

Format

A list with organism names as keys and corresponding BSgenome organism names as values.

Examples

BS_org_map["Hsapiens"]
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calculate_mf Calculate mutation frequency

Description

Calculates mutation frequencies for arbitrary groupings and creates a new dataframe with the re-
sults. Mutation frequency is calculated by dividing the sum of mutations by the sum of the to-
tal_depth for a given group (mutations/bp). The operation is run using both the minimum and
maximum independent mutation counting methods.

Usage

calculate_mf(
mutation_data,
cols_to_group = "sample”,
subtype_resolution = "none",
variant_types = c("snv", "deletion”, "insertion", "complex”, "mnv", "sv", "ambiguous”,

"uncategorized”),

calculate_depth = TRUE,
correct_depth = TRUE,
correct_depth_by_indel_priority = FALSE,
precalc_depth_data = NULL,
d_sep = "\t",
summary = TRUE,
retain_metadata_cols = NULL

Arguments

mutation_data The data frame (or GRanges) to be processed containing mutation data. Re-
quired columns are listed in details.

cols_to_group A vector of grouping variables. This should be the groups of interest that
you want to calculate a frequency for. For instance, getting the frequency by
"sample”. Other options might include an experimental group Ex. "dose"” or a
locus Ex. c("sample”, "locus”). All listed variables must be a column in the
mutation_data. Do not include mutation subtype columns in this field. Please
refer to subtype_resolution to group by subtype as the calculation will differ.

subtype_resolution
The degree at which to resolve the mutation subtypes when calculating frequen-
cies. Mutation frequency will be calculated across all col_to_groups for each
mutation subtype given the desired resolution. Subtype proportions will also
be calculated. Options are "none", "type", "base_6", "base_12", "base_96", and
"base_192". See details for definitions.

variant_types Use this parameter to choose which variation types to include in the mutation
counts. Provide a character vector of the variation types that you want to include.
Alternatively, provide a character vector of the variation types that you want to
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"non "non

exclude preceded by "-". Options are: "snv", "complex", "deletion", "insertion",
"mnv", "sv", "ambiguous", "uncategorized". EX. inclusion: "snv", exclusion:
"-snv". Default includes all variants. For calculate_depth = TRUE: Regardless
of whether or not a variant is included in the mutation counts, the total_depth
for that position will be counted.
calculate_depth

A logical variable, whether to calculate the per-group total_depth from the mu-
tation data. If set to TRUE, the mutation data must contain a total_depth value
for every sequenced base (including variants AND no-variant calls). If set to
FALSE, pre-calculated per-group total_depth values may be supplied at the de-
sired subtype_resolution using the precalc_depth_data parameter. Alternatively,
if no per-group total_depth is available, per-group mutation counts will be cal-
culated, but mutation frequency will not. In such cases, mutation subtype pro-
portions will not be normalized to the total_depth.

correct_depth A logical value. If TRUE, the function will correct the total_depth column
in mutation_data in order to prevent double-counting the total_depth values
for the same genomic position. For rows with the same sample, contig, and start
values, the total_depth will be retained for only one row. All other rows in the
group will have their total_depth set to 0. The default is TRUE.

correct_depth_by_indel_priority
A logical value. If TRUE, during depth correction, should there be differ-
ent total_depth values within a group of rows with the same sample, con-
tig, and start values, the total_depth value for the row with the highest pri-
ority variation_type will be retained, while the other rows will have their
total_depth set to 0. variation_type priority order is: deletion, complex,
insertion, snv, mnv, sv, uncategorised, ambiguous, no_variant. If FALSE, the
total_depth value for the first row in the group will be retained, while the
other rows will have their total_depth set to 0. The default is FALSE.

precalc_depth_data
A data frame or a file path to a text file containing pre-calculated per-group to-
tal_depth values. This data frame should contain the columns for the desired
grouping variable(s) and the reference context at the desired subtype resolu-
tion (if applicable). The precalculated total_depth column(s) should be called
one of group_depth and subtype_depth. group_depth is used for subtype
resolutions of "none", "type", and all non-snv mutations in "base_6", "base_12",
"base_96", and "base_192". subtype_depth is used for snv mutations in "base_6",
"base_12", "base_96", and "base_192". You can access a list of context values
for each subtype resolution using MutSeqR: : context_list$your_subtype_resolution.

d_sep The delimiter used in the precalc_depth_data, if applicable. Default is tab-
delimited.
summary A logical variable, whether to return a summary table (i.e., where only rele-

vant columns for frequencies and groupings are returned). Setting this to false

returns all columns in the original mutation_data, which might make plotting

more difficult, but may provide additional flexibility to power users.
retain_metadata_cols

a character vector that contains the names of the metadata columns that you

would like to retain in the summary table. This may be useful for plotting your

summary data. Ex. retain the "dose" column when summarising by "sample".
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Details
Required columns:

* contig: (or segnames) The reference sequence name.

* start: 1-based start position of the feature.

* alt_depth: The read depth supporting the alternate allele.

e variation_type: The category to which this variant is assigned.

* subtype_col: The column containing the mutation subtype. This column depends on the
subtype_resolution parameter.

* reference context: The column containing the referene base(s) for the mutation. This column
depends on the subtype_resolution parameter.

* cols to group: all columns across which you want to calculate the mutation frequency. Ex.
c("tissue”, "dose"). These columns should be listed in cols_to_group.

It is also required to include the total_depth column if you are calculating depth from the mutation
data. If you are using precalculated depth data, the total_depth column is not required.

Subtype Resolutions:

* "none" calculates mutation frequencies across all selected grouping columns.

* "type" calculates mutation frequencies across all selected grouping columns for each variation_type
seperately; snv, mnv, deletion, insertion, complex, sv, ambiguous, uncategorized.

* "base_6" calculates mutation frequencies across all selected grouping columns for each vari-
ation_type with snv mutations separated by normalized_subtype; C>A, C>G, C>T, T>A,
T>C, T>G. The reference context is normalized_ref.

* "base_12" calculates mutation frequencies across all selected grouping columns for each vari-
ation_type with snv mutations separated by subtype; A>C, A>G, A>T, C>A, C>G, C>T,
G>A, G>C, G>T, T>A, T>C, T>G. The reference context is short_ref.

* "base_96" calculates mutation frequencies across all selected grouping columns for each vari-
ation_type with snv mutations separated by normalized_context_with_mutation, i.e. the
96-base trinucleotide context. Ex. A[C>T]A. The reference context is normalized_context.

* "base_192" calculates mutation frequencies across all selected grouping columns for each
variation_type with snv mutations separated by context_with_mutation, i.e. the 192-base
trinucleotide context. Ex A[G>A]A. The reference context is context.

Subtype depth: For SNV subtypes, the total_depth is summed based on the sequence context
in which the SNV subtype occurs. Ex. for base_6, the two possible reference bases are C or
T; hence, the total_depth is summed seperately for C:G positions and T:A positions. The MF
for C>T mutations is calculated as total # C>T mutations / total_depth for C>G positions (sum /
subtype_depth). Non-SNV mutation types will be caluclated as their sum / group_depth, since they
can occur in the context of any nucleotide.

retain_metadata_cols at subtype_resolution: The summary table uses a pre-defined list of possi-
ble subtypes for each resolution. If a particular subtype within a given group is not recorded in the
mutation data, the summary table will have no frame of reference for populating the metadata_cols.
Thus, for subtypes that do not occur in the mutation data for a given group, the corresponding
metadata_col will be NA.
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Variant filtering: Variants flagged as TRUE in the filter_mut column will be excluded from the
mutation counts. However, the total_depth of these variants will be included in the group/subtype
depths if calculating depth.

Depth correction is important for preventing double-counting of reads in mutation data when sum-
ming the total_depth across samples or other groups. Generally, when several mutations have been
detected at the same genomic position, within a sample, the total_depth value will be the same for
all of them. However, in some datasets, whenever a deletion is detected, the data may contain an
additional row with the same genomic position calling a "no_variant". The total_depth will differ
between the deletion and the no_variant. In these cases, correct_depth_by_indel_priority == TRUE
will ensure that the total_depth value for the deletion is retained, while the total_depth value for the
no_variant is removed.

Value

A data frame with the mutation frequency calculated. If summary is set to TRUE, the data frame
will be a summary table with the mutation frequency calculated for each group. If summary is set
to FALSE, the mutation frequency will be appended to each row of the original mutation_data.

e sum_min: The sum of all mutations within the group, calculated using the "min" method for
mutation counting. All identical mutations within a samples are assumed to be the result of
clonal expansion and are thus only counted once.

e sum_max: The sum of all mutations within the group, calculated using the "max" method for
mutaiton counting. All identical mutations within a sample are assumed to be idenpendant
mutational evens and are included in the mutation frequency calculation.

e group_depth: The total_depth summed across groups.

* subtype_depth: The total_depth summed across groups for a given sequence context. Used
for calculating subtype frequencies.

* mf_min: The mutation frequency calculated using the "min" method for mutation counting.
mf_min = sum_min / depth.

* mf_max: The mutation frequency calculated using the "max" method for mutation counting.
mf_max = sum_max / depth.

* proportion_min: The proportion of each mutation subtype within the group, normalized to
the depth. Calculated using the "min" method. This is only calculated if subtype_resolution
is not "none". If no depth is calculated or provided, proportion is calculated without normal-
ization to the depth.

* proportion_max: The proportion of each mutation subtype within the group, normalized to
its read depth. Calculated using the "max" method. This is only calculated if subtype_resolution
is not "none". If no depth is calculated or provided, proportion is calculated without normal-
ization to the depth.

Examples

# Mutation data is just for example purposes. It does not reflect real data

mutation_data <- readRDS(system.file("extdata”, "Example_files"”,
"filtered_simple_mutation_data.rds”,
package = "MutSegR"))

# Calculate mutation frequency by sample.
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# Calculate depth from the mutation data (default)
# Correct the Depth (default) with indel priority (set)
mf_example <- calculate_mf(
mutation_data = mutation_data,
cols_to_group = "sample”,
correct_depth_by_indel_priority = TRUE
)

characterize_variants Characterize Variants

Description
This function generates additional columns for the mutation data, including a breakdown of the
mutation subtypes at various resolutions.

Usage

characterize_variants(mutation_data)

Arguments

mutation_data A data frame containing mutation data.

Value

A data frame with additional columns for variant characterization.

check_required_columns
Check that all required columns are present before proceeding with
the function

Description

A utility function that will check that all required columns are present.

Usage

check_required_columns(data, required_columns)

Arguments

data mutation data
required_columns
a list of required column names.
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Value

an error

Examples

df <- data.frame(
contig = c("chr1”, "chr2", "chr3"),
start = c(100, 200, 300),
end = c(100, 200, 300),
sample = c("s1", "S2", "S3"),
ref = c("G", "C", "T"),
alt = c("A", "T", "G")
)

check_required_columns(df, required_columns = op$base_required_mut_cols)

classify_variation classify_variation

Description

Classify the variation type of a mutation based on its ref and alt values.

Usage

classify_variation(ref, alt)

Arguments
ref The reference allele.
alt The alternate allele.
Value

A character indicating the type of variation.

Examples

df <- data.frame(
ref = c("A”, "CAGT", "GCC", "T", "ACG", "C", "G", "T", "A"),
alt = c("R", "TGA”, "G", "TC”, "TAC", "C", "<DEL>", "G", "222")
)
df$variation_type <- mapply(classify_variation, df$ref, df$alt)
df
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cleveland_plot Cleveland Plot

Description

Make a Cleveland plot for the PROAST results.

Usage

cleveland_plot(results, covariate_col = NULL, output_path = NULL)

Arguments

results PROAST results object.
covariate_col Covariate column name.

output_path Output path for the plot. If the output_path doesn’t exist, it will be created. If
NULL, the plots will not be exported.

Value

A single ggplot object with facets for each response.

cluster_spectra Hierarchical Clustering

Description

perform hierarchical clustering of samples based on the mutation spectra.

Usage
cluster_spectra(
mf_data,
group_col = "sample”,
response_col = "proportion_min",
subtype_col = "normalized_subtype”,
dist = "cosine”,
cluster_method = "ward.D"
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Arguments

mf_data

group_col

response_col

subtype_col
dist

context_list

A data frame containing the mutation data. This data must include a column con-
taining the mutation subtypes, a column containing the sample/cohort names,
and a column containing the response variable.

The name of the column in data that contains the sample/cohort names.

The name of the column in data that contains the response variable. Typical
response variables can be the subtype mf, proportion, or count.

The name of the column in data that contains the mutation subtypes.

the distance measure to be used. This must be one of "cosine", "euclidean",
nn

"maximum", "manhattan","canberra", "binary" or "minkowski". See dist for
details.

cluster_method The agglomeration method to be used. See hclust for details.

Details

The cosine distance measure represents the inverted cosine similarity between samples:

. i larito 1 AB
Cosine Dissimilarity = 1 TATTBT

This equation calculates the cosine dissimilarity between two vectors A and B.

Leaves are sorted using dendsort, if installed, otherwise leaves are unsorted.

Value

A dendrogram object representing the hierarchical clustering of the samples.

context_list

A list of reference contexts at different resolutions

Description

A list of reference contexts at different resolutions

Usage

context_list

Format

A list with corresponding values

Examples

context_list[["base_6"1]
context_list[["base_12"]]
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denominator_dict Values used for denominators in frequency calculations

Description

These values are used to cross reference base substitution types to their appropriate denominators
for calculations. That is", "for example, the 6 base substitution frequency should be subsetted based
on the normalized_ref column which would contain only T or C (i.e., the pyrimidine context for
base substitutions).

Usage

denominator_dict

Format

A vector with corresponding values

Examples

denominator_dict["type"]

f.plot.gui Manages plotting for PROAST

Description

Runs through the plotting functions depending on data type and plot type.

Usage

f.plot.gui(
ans.all,
HTML = FALSE,
model.summ = TRUE,
display_plots = TRUE,
.proast_env = NULL,
output_type = NULL,
filename = NULL,
interactive_mode = TRUE,
knitting = FALSE,
return_plots = FALSE
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Arguments
ans.all The proast object that gets passed to all functions.
HTML Keep FALSE
model. summ Keep TRUE
display_plots A logical variable - whether we want to display the plots or not.
.proast_env environment
output_type The format that you wish to export the plots as.
filename The name of the file to be read.
interactive_mode
A TRUE/FALSE value specifying whether you want to run interactively (i.e.,
TRUE, the default) or using command-line mode (i.e., FALSE, non-interactive).
If FALSE, you must provide all other parameters.
knitting A TRUE/FALSE value specifying whether you are knitting a document. If
TRUE, the function will adjust the plot display accordingly.
return_plots A logical variable indicating whether you want to return the plots as a list
(TRUE) or not (FALSE, the default). If TRUE, the function will return a list
of recorded plots.
Value

Either the proast object (default) or a list of recorded plots if return_plots = TRUE.

f.plot.result

Plot the PROAST results

Description

Independently generate the model plots from the raw results.

Usage

f.plot.result(

proast_results_list,
output_path = NULL,
output_type = "svg",
prefix = NULL,
model_averaging = FALSE
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proast_results_list

output_path

output_type

prefix

The raw results list. This is the output of f.proast

The file path to the output directory. If the output_path is NULL, it will save it
to the working directory. If the output_path doesn’t exist, it will be created.
The file type to export the plots. Options are ’svg’, ’jpeg’, pdf’, 'png’, ’tiff’, or
‘none’. If "none", the plots will be displayed to the graphics window, recorded
with recordPlot(), and returned as a list.

A custom prefix to append to the file names. Default is "PROAST_".

model_averaging

Value

A logical variable indicating whether you want to generate the model averaging
figure (TRUE) or the plots of the individual models (FALSE). You plot one or
the other, not both. Plotting the model averaging figure will require the function
to re-run the bootstrapping so it might take a while. You may think this seems
rather inefficient. Well, it is, but I'm too tired to fix it, so we all just have to deal
with it for now.

Generates plots. Either saves them to an output path or records them and returns them as a list.

f.proast

Run dose-response modeling using PROAST.

Description

Run dose-response modeling using PROAST.

Usage

f.proast(

odt = list(),

ans.all = 0,

er = FALSE,

resize = FALSE,
scale.ans = FALSE,
const.var = FALSE,
show.warnings = FALSE,
interactive_mode = TRUE,
datatype = NULL,
model_choice = NULL,
setting_choice = NULL,
nested_model_choice = NULL,
indep_var_choice = NULL,
Vyans_input = NULL,
covariates = NULL,
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adjust_CES_to_group_SD = NULL,

= TRUE,

FALSE,
NULL,

List. Internal state object/list passed between PROAST functions. Usually, users
do not need to set this.

Output from a previous fit, or internal results object. Used to resume or adjust
analyses. Usually O (default) to start a new session.

Logical. If TRUE, attempt to resume analysis from previously stored state. Used
internally/recoverably. Defaults to FALSE.

Logical. If TRUE, resize the graphics window during execution; passed to
graphics helper functions. Defaults to FALSE.

Logical. If TRUE, applies scaling to the answers/results (advanced use only).
Defaults to FALSE.
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custom_CES = 0.05,
model_selection = NULL,
lower_dd = NULL,
upper_dd = NULL,
selected_model = NULL,
model_averaging = NULL,
num_bootstraps = NULL,
display_plots
add_nonzero_val_to_dat
nonzero_val =
detection_limit = NULL,
seed = 125

)

Arguments

odt

ans.all

er

resize

scale.ans

const.var

show.warnings

Logical. If TRUE, constrains variance during model fitting (advanced option for
troubleshooting). Defaults to FALSE.

Logical. If TRUE, print extra warning messages during model fitting (for de-
bugging or detailed output). Defaults to FALSE.

interactive_mode

datatype

model_choice

setting_choice

A TRUE/FALSE value specifying whether you want to run interactively (i.e.,
TRUE, the default) or using command-line mode (i.e., FALSE, non-interactive).
If FALSE, you must provide all other parameters.

Non-interactive mode parameter. What type of response data do you want to
consider? Options are ’continuous, individual data’.

Non-interactive mode parameter. Do you want to fit a single model or fit various
nested families of models? Options are ’single model’, ’select model 3 or 5
from various families of models’, ’select model 3 from various nested families
of models’, ’select model 5 from various nested families of models’, ’select
model 15 in terms of RPF’. Recommended: ’select model 3 or 5 from various
families of models’.

Non-interactive mode parameter. Do you want to fit a set of models, or choose a
single model? Options are ’single model’, ’set of models’. Recommended: ’set
of models’.
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nested_model_choice

Non-interactive mode parameter. Which subset of nested models to fit, if chang-
ing model settings non-interactively. Options match those provided in interac-
tive menus. See details in documentation.

indep_var_choice

Vyans_input

covariates

custom_CES

model_selection

lower_dd

upper_dd

selected_model

Non-interactive mode parameter. The column name for the independent variable
to use.

Non-interactive mode parameter. The column name(s) for the response vari-
able(s) to use. If multiple, provide as a vector.

Non-interactive mode parameter. The column name for the covariate to use. If
none, enter 0.

Non-interactive mode parameter. The critical effect size (BMR) to use, when
adjust_CES_to_group_SD =1 (FALSE).

Non-interactive mode parameter. The model selection to use. Options are "Ex-
ponential model only", "Exponential and Hill model", "previous option with
inverse exponential model added" (run Expon, Hill, and Inv-Expon), "previous
option with lognormal DR model added" (run Expon, Hill, Inv-Expon, and LN).
Recommended: "previous option with lognormal DR model added".

Non-interactive mode parameter. The lower constraint on d parameter. If NULL,
existing defaults are used.

Non-interactive mode parameter. The upper constraint on d parameter. If NULL,
existing defaults are used.

Non-interactive mode parameter. Which model do you want to continue with?
Options are "exponential”, "Hill", "inverse exponential", "lognormal DR". The-
function will output results for all models regardless of this choice. Really just
to bypass the menu option. Recommended: "exponential".

adjust_CES_to_group_SD

model_averaging

num_bootstraps

display_plots

Non-interactive mode parameter. Set the BMR to the group standard deviation.
Options are 1 (FALSE) or 2 (TRUE).

Non-interactive mode parameter. Whether to perform model averaging to cal-
culate 90% confidence intervals. TRUE/FALSE.

Non-interactive mode parameter. The number of bootstraps to perform for model
averaging. Recommended: 200.

Non-interactive mode parameter. Whether to display plots. TRUE/FALSE.

add_nonzero_val_to_dat

nonzero_val

Non-interactive mode parameter. When the response data contains Os, whether
to add a non-zero value to each observation. TRUE/FALSE. If TRUE, set the
nonzero_val parameter with your desired (positive) number. If FALSE, a detec-
tion limit will used. Provide the detection limit in the detection_limit parameter.
If no detection_limit is given, the function will use the minimum non-zero value
in the data. Values below the detection limit will be plotted as half the detection
limit.

Non-interactive mode parameter. The non-zero value to add to each observation
when add_nonzero_val_to_dat = TRUE. Must be a positive number.
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detection_limit

Non-interactive mode parameter. The detection limit to use when add_nonzero_val_to_dat
= FALSE. If NULL, the minimum non-zero value in the data will be used. This
paramater accepts a numeric value, which will be applied to all response values,

or a column name in the data, which will be used to apply different detection

limits to different observations.

seed Integer. Random seed for reproducibility. Defaults to 125. Use 0 to get a random
seed each time.

Value

Results from PROAST.

filter_mut Filter your mutation data

Description

This function creates a filter_mut™~ column that will be read by the \code{calculate_mf} function and other c
ter_mut == TRUE* will be excluded from group mutation counts. This function may also remove

records upon on user specification. Running this function again on the same data will not overide

the previous filters. To reset previous filters, set the filter_mut column values to FALSE.

Usage

filter_mut(
mutation_data,
vaf_cutoff = 1,
snv_in_germ_mnv = FALSE,
rm_abnormal_vaf = FALSE,
custom_filter_col = NULL,
custom_filter_val = NULL,
custom_filter_rm = FALSE,
regions = NULL,
regions_filter,
allow_half_overlap = FALSE,
rg_sep = "\t",
is_0_based_rg = TRUE,
rm_filtered_mut_from_depth = FALSE,
return_filtered_rows = FALSE

Arguments

mutation_data Your mutation data. This can be a data frame or a GRanges object.
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vaf_cutoff Filter out ostensibly germline variants using a cutoff for variant allele fraction
(VAF). Any variant with a vaf larger than the cutoff will be filtered. The default
is 1 (no filtering). It is recommended to use a value of 0.01 (i.e. 1%) as a
conservative approach to retain only somatic variants.

snv_in_germ_mnv
Filter out snv variants that overlap with germline mnv variants within the same
samples IF they show the same variation at the same position. mnv variants will
be considered germline if their vaf > vaf_cutoff. Default is FALSE. Ex. Position
101-103 MNV is CAG > TGG. SNV at position 101 C>T will be filtered out
but SNV at position 101 C>A will not be filtered out. Helps identify sequencing
artifacts generated by N-calls in MNVs.

rm_abnormal_vaf
A logical value. If TRUE, rows in mutation_data with a variant allele frac-
tion (VAF) between 0.05 and 0.45 or between 0.55 and 0.95 will be removed.
We expect variants to have a VAF ~0. 0.5, or 1, reflecting rare somatic muta-
tions, heterozygous germline mutations, and homozygous germline mutations,
respectively. Default is FALSE.

custom_filter_col
The name of the column in mutation_data to apply a custom filter to. This
column will be checked for specific values, as defined by custom_filter_val.
If any row in this column contains one of the specified values, that row will either
be flagged in the filter_mut column or, if specified by custom_filter_rm,
removed from mutation_data.

custom_filter_val
A set of values used to filter rows inmutation_data based on custom_filter_col.
If a row in custom_filter_col matches any value in custom_filter_val, it
will either be set to TRUE in the filter_mut column or removed, depending
on custom_filter_rm.

custom_filter_rm
A logical value. If TRUE, rows in custom_filter_col that match any value in cus-
tom_filter_val will be removed from the mutation_data. If FALSE, filter_mut
will be set to TRUE for those rows.

regions Remove rows that are within/outside of specified regions. regions can be ei-
ther a file path, a data frame, or a GRanges object containing the genomic
ranges by which to filter. File paths will be read using the rg_sep. Users can
also choose from the built-in TwinStrand’s Mutagenesis Panels by inputting
"TSpanel_human", "TSpanel_mouse", or "TSpanel_rat". Required columns for

non

the regions file are "contig", "start", and "end". In a GRanges object, the required

non

columns are "seqnames", "start", and "end".

regions_filter Specifies how the provided regions should be applied to mutation_data. Ac-
ceptable values are "remove_within" or "keep_within". If set to "remove_within",
records that fall within the specified regions wil be removed from mutation_data.
If set to "keep_within", only records within the specified regions will be kept in
mutation_data, and all other records will be removed.

allow_half_overlap
A logical value. If TRUE, records that start or end in your regions, but extend
outside of them in either direction will be included in the filter. If FALSE,
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rg_sep

is_0_based_rg

filter_mut

only records that start and end within the regions will be included in the filter.
Default is FALSE.

The delimiter for importing the custom_regions. The default is tab-delimited
”\t”_

A logical variable. Indicates whether the position coordinates in regions are
0 based (TRUE) or 1 based (FALSE). If TRUE, positions will be converted to
1-based (start + 1). Need not be supplied for TSpanels. Default is TRUE.

rm_filtered_mut_from_depth

A logical value. If TRUE, the function will subtract the alt_depth of records
that were flagged by the filter_mut column from their total_depth. This
will treat flagged variants as No-calls. This will not apply to variants flagged as
germline by the vaf_cutoff. However, if the germline variant has additional
filters applied, then the subtraction will still occur. If FALSE, the alt_depth
will be retained in the total_depth for all variants. Default is FALSE.

return_filtered_rows

Value

A logical value. If TRUE, the function will return both the filtered mutation
data and the records that were removed/flagged in a seperate data frame. The
two dataframes will be returned inside a list, with names mutation_data and
filtered_rows. Default is FALSE.

A data frame or a list of two data frames, depending on the value of return_filtered_rows. If
return_filtered_rows is FALSE (default), a data frame of the same structure as mutation_data
is returned, with an additional column, filter_mut, indicating whether each record has been
flagged for filtering (TRUE) or not (FALSE). If return_filtered_rows is TRUE, a list containing
two data frames is returned. The first data frame, named mutation_data, is the filtered mutation
data as described above. The second data frame, named filtered_rows, contains all records that
were either removed from mutation_data or flagged with filter_mut == TRUE.

Examples

# Mutation data is just for example purposes. It does not reflect real data.
mutation_data <- readRDS(system.file("extdata”, "Example_files"”,

#
#
#
#
#

In this examp
1) Filter out
2) Flag snv v
3) Subtract t

(treat the

"simple_mutation_data.rds"”,
package = "MutSeqR"))
le, we will apply the following filters:
putative germline variants using a VAF cutoff of 0.01
ariants that overlap with germline mnv variants and
he alt_depth of these variants from their total_depth
m as No-calls).

filter_example <- filter_mut(

)

mutation_data
vaf_cutoff =

= mutation_data,
0.01,

snv_in_germ_mnv = TRUE,
rm_filtered_mut_from_depth = TRUE,

return_filter

ed_rows = FALSE

# Flagging germline mutations...
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# Found 15 germline mutations.

# Flagging SNVs overlapping with germline MNVs...

# Found 1 SNVs overlapping with germline MNVs.

# Removing filtered mutations from the total_depth...
# Filtering complete.

find_BS_genome Find the appropriate BS genome for the specified organism and
genome.

Description

This function will browse available BSgenomes, indicating which one should be installed for the
specified organism and genome assembly version. If you cannot specify both organism and genome,
the function can return a list of available genomes for a specified species.

Usage

find_BS_genome(organism, genome, masked = FALSE)

Arguments
organism the name of the organism for which to install the reference genome. This can be
the scientific name or a common name. For example Homo Sapiens, H. sapiens,
or human
genome The reference genome assembly version. Ex. hgl18, mm10, 6.
masked Logical value. Whether to search for the masked’ BSgenome. Default is
FALSE.
Value

a BSgenome package name or a dataframe of possibilities

Examples

# Find the reference genome for Mouse, mm1@ assembly:
mouse_mm1@ <- find_BS_genome("mouse”, "mm10")
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get_binom_ci Add binomial confidence intervals to mutation frequencies.

Description

Uses the binomial distribution to create confidence intervals for mutation frequencies calculated
from a single point estimate. Calculating binomial confidence intervals for mutation frequencies is
not part of MutSeqR’s recommended workflow, but is provided here for users who wish to use it.

Usage

get_binom_ci(
mf_data,
sum_col = "sum_min",
depth_col = "group_depth”,
conf_level = 0.95,

method = "wilson”
)
Arguments
mf_data The data frame containing the mutation frequencies per sample. Obtained as an
output from calculate_mf.
sum_col Column name that specifies the mutation count (e.g., sum_min)
depth_col Column name that specifies the sequencing depth (e.g., total_depth)
conf_level Confidence interval to calculate, default 95% (0.95)
method The method used by binom::binom.confint to calculate intervals. Default is "wil-
son" (recommended).
Value

A mf data frame with added columns indicating the confidence intervals.

Examples

Example data consists of 24 mouse bone marrow

samples exposed to three doses of BaP alongside vehicle controls.
Libraries were sequenced with Duplex Sequencing using

the TwinStrand Mouse Mutagenesis Panel which consists of 20 2.4kb
targets = 48kb of sequence. Example data can be retrieved from
MutSegRData, an ExperimentHub data package:

## library(ExperimentHub)

## eh <- ExperimentHub()

## query(eh, "MutSeqRData")

# Mutation frequency data was precalculated using

## mf_data_global <- calculate_mf(mutation_data = eh[["EH9861"]1],
##  cols_to_group = "sample”,

ER T T TS
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## retain_metadata_cols = c("dose_group”, "dose"))

mf <- readRDS(system.file("extdata”, "Example_files”,
"mf_data_global.rds"”,
package = "MutSeqgR"))
confint <- get_binom_ci(
mf_data = mf,
sum_col = "sum_min",
depth_col = "group_depth”
)

get_cpg_mutations Get mutations at CpG sites.

Description

Needs to be reworked for variants >1bp. Subset the mutation data and return only mutations that
are found at positions with a specific motif. The default is CpG sites, but can be customizable.

Usage

get_cpg_mutations(
mutation_data,

regions,
variant_types = c("-no_variant"),
motif = "CG",
filter_mut = TRUE
)
Arguments

mutation_data A dataframe or GRanges object containing the mutation data to be interrogated.
If supplying a data frame, the genomic coordinates must be 1-based (true for
mutation data imported using import_mut_data or import_vcf_data).

regions A GRanges object containing the genomic regions of interest in which to look
for CpG sites. Must have the metadata column "sequence" populated with the
raw nucleotide sequence to search for CpGs. This object can be obtained using
the get_seq.R function.

variant_types Use this parameter to choose which variation_types to include in the output.
Provide a character vector of the variation _types that you want to include. Op-

non non non non

tions are "ambiguous", "complex", "deletion", "insertion", "mnv", "no_variant",
"snv", "sv", "uncategorized". Alternatively, provide a character vector of the
variation_types that you want to exclude preceded by "-". All variation_types
except those excluded will be returned. Ex. inclusion: variant_types = "snv",
will return only rows with variation_type == "snv". Ex. exclusion: variant_types
= "-no_variant" will return all rows, except those with variation_type == "no_variant"

(default).
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motif Default "CG", which returns CpG sites. You could in theory use an arbitrary
string to look at different motifs. Use with caution.

filter_mut A logical value indicating whether the function should exclude rows flagged in
the filter_mut column from the output. Default is TRUE.
Value

A GRanges object where each range is a mutation at a CpG site (a subset of mutations from the
larger object provided to the function).

get_cpg_regions Get the coordinates of the CpG sites within your genomic regions

Description

Filters the ranges of your genomic regions to find all positions with a specific motif. The default is
CpG sites, but can be customizable.

Usage

get_cpg_regions(regions, motif = "CG")

Arguments
regions A GRanges object containing the genomic regions of interest in which to look
for CpG sites. Must have the metadata column "sequence” populated with the
raw nucleotide sequence to search for CpGs. This object can be obtained using
the get_seq() function.
motif Default "CG", which returns CpG sites. You could in theory use an arbitrary
string to look at different motifs. Use with caution.
Value

A GRanges object where each range is a CpG site (a subset of ranges from the larger object provided
to the function).

get_mutation_palette  Get Mutation Palette

Description
Internal helper function to determine the color palette based on resolution. Supports types, base_6,
base_12, base_96, base_192

Usage

get_mutation_palette(custom_palette = NULL, subtype_resolution, num_colours)



get_ref_of_mut

29

get_ref_of_mut A utility function that will return the reference context of a mutation

Description

A utility function that will return the reference context of a mutation

Usage

get_ref_of_mut(mut_string)

Arguments

mut_string the mutation. Ex. T>C, ALG>T]C

Value

the reference context of the mutation

get_seq Get sequence of genomic target regions

Description

Create a GRanges object from the genomic target ranges and import raw nucleotide sequences.

Usage

get_seq(
regions,
rg_sep = "\t",
is_0_based_rg = TRUE,
padding = 0,
BS_genome = NULL,
ucsc = FALSE,
species = NULL,
genome = NULL
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Arguments

regions

rg_sep

is_0_based_rg

padding

BS_genome

ucsc

species

genome

Details

get_seq

The regions metadata file to import. Can be either a file path, a data frame,
or a GRanges object. File paths will be read using the rg_sep. Users can
also choose from the built-in TwinStrand’s Mutagenesis Panels by inputting
"TSpanel_human", "TSpanel_mouse", or "TSpanel_rat". Required columns for
the regions file are "contig", "start", and "end". In a GRanges object, the required

columns are "seqnames", "start", and "end".
The delimiter for importing the regions file. The default is tab-delimited ("\t").

A logical variable. Indicates whether the position coordinates in regions are
0 based (TRUE) or 1 based (FALSE). If TRUE, positions will be converted to
1-based (start + 1). Need not be supplied for TSpanels. Default is TRUE.

An integer value by which the function will extend the range of the target se-
quence on both sides. Start and end coordinates will be adjusted accordingly.
Default is 0.

The name of the appropriate BSgenome package to use for sequence retrieval.
Ex. "BSgenome.Hsapiens.UCSC.hg38", "BSgenome.Mmusculus.UCSC.mm10",
"BSgenome.Rnorvegicus.UCSC.rn6". Use the function find_BS_genome() to
help identify the appropriate BSgenome package if needed. Need not be sup-
plied for TSpanels. BS_genome must be installed if using this method.

A logical value. If TRUE, the function will retrieve the sequences from the
UCSC genome browser using an API. If FALSE, the function will retrieve se-
quences using the appropriate BSgenome package, which will be installed as
needed. Default is FALSE.

The species for which to retrieve the sequences. Only required if using the
UCSC method. Species may be given as the scientific name or the common
name. Ex. "Human", "Homo sapien". Used to choose the appropriate BS
genome. Need not be supplied for TSpanels.

The genome assembly version for which to retrieve the sequences. Only re-
quired if using the UCSC method. Ex. hg38, hgl9, mm10, mm39, rn6, rn7.
Need not be supplied for TSpanels.

Consult available.genomes(splitNameParts=FALSE, type=getOption("pkgType")) fora full
list of the available BS genomes and their associated species/genome/masked values. The BSgenome
package will be installed if not already available. If using the UCSC API, the function will retrieve
the sequences from the UCSC genome browser using the DAS API. See the UCSC website for
available genomes: https://genome.ucsc.edu.

Value

a GRanges object with sequences of targeted regions.

Examples

# Retrieve the sequences for custom regions
# We will load the TSpanel_human regions file as an example


https://genome.ucsc.edu
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# and supply it to the function as a GRanges object.
human <- load_regions_file("TSpanel_human")
regions_seq <- get_seq(

regions = human,

is_0_based_rg = FALSE,

BS_genome = "BSgenome.Hsapiens.UCSC.hg38",

padding = 0
)
import_mut_data Import tabular mutation data
Description

Imports tabular mutation file into the local R environment.

Usage

import_mut_data(
mut_file,
mut_sep = "\t",
is_0_based_mut = TRUE,
sample_data = NULL,

sd_sep = "\t",
regions = NULL,
rg_sep = "\t",
is_0_based_rg = TRUE,
padding = 0,

BS_genome = NULL,
custom_column_names = NULL,
output_granges = FALSE

)
Arguments

mut_file The mutation data file(s) to be imported. This can be either a data frame object
or a filepath to a file or directory. If you specify a directory, the function will
attempt to read all files in the directory and combine them into a single data
frame. Mutation data should consist of a row for each variant. Required columns
are listed in details.

mut_sep The delimiter for importing the mutation file. Default is tab-delimited.

is_0_based_mut A logical variable. Indicates whether the position coordinates in the mutation
data are 0 based (TRUE) or 1 based (FALSE). If TRUE, positions will be con-
verted to 1-based.

sample_data An optional file containing additional sample metadata (dose, timepoint, etc.).
This can be a data frame or a file path. Metadata will be joined with the muta-
tion data based on the sample column. Required columns are sample and any
additional columns you wish to include.
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sd_sep The delimiter for importing sample data. Default is tab-delimited.

regions An optional file containing metadata of genomic regions. Region metadata will
be joined with mutation data and variants will be checked for overlap with the
regions. regions can be either a file path, a data frame, or a GRanges ob-
ject. File paths will be read using the rg_sep. Users can also choose from
the built-in TwinStrand’s Mutagenesis Panels by inputting "TSpanel_human",
"TSpanel_mouse", or "TSpanel_rat". Required columns for the regions file are

"contig", "start", and "end". For a GRanges object, the required columns are
"seqnames", "start", and "end". Default is NULL.

rg_sep The delimiter for importing the custom_regions. The default is tab-delimited
"\t"_

is_0@_based_rg A logical variable. Indicates whether the position coordinates in regions are
0 based (TRUE) or 1 based (FALSE). If TRUE, positions will be converted to
1-based (start + 1). Need not be supplied for TSpanels. Default is TRUE.

padding An integer >= 0. Extend the range of your regions in both directions by the given
amount. Ex. Structural variants and indels may start outside of the regions.
Adjust the padding to include these variants in your region’s ranges.

BS_genome The pkgname of a BS genome. A BS genome must be installed prior to import
to populate the context column (trinucleotide context for each position). Only
required if data does not already include a context column. Please install the ap-
propriate BS genome using BiocManager::install("pkgname") where pkgname
is the name of the BSgenome package. The pkgname can be found using the
find_BS_genome() function, which requires the species and assembly version.
Ex."BSgenome.Hsapiens.UCSC.hg38" | "BSgenome.Hsapiens.UCSC.hg19" | "BSgenome.Mmusculus. U
| "BSgenome.Mmusculus.UCSC.mm39" | "BSgenome.Rnorvegicus.UCSC.rn6".
custom_column_names
A list of names to specify the meaning of column headers. Since column names
can vary with data, this might be necessary to digest the mutation data properly.
Typical defaults are set, but can be substituted in the form of 1ist(my_custom_contig_name
="contig", my_custom_sample_column_name = "sample”). You can change
one or more of these. Set column synonyms are defined in MutSeqR::op$column
and will automatically be changed to their default value.

output_granges A logical variable; whether you want the mutation data to output as a GRanges
object. Default output (FALSE) is as a dataframe.

Details
Required columns for mut files are:

» contig: The name of the reference sequence.
* start: The start position of the feature.

* end: The half-open end position of the feature.
* sample: The sample name.

* ref: The reference allele at this position

e alt: The left-aligned, normalized, alternate allele at this position. Multiple alt alleles called
for a single position should be represented as separate rows in the table.
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The following columns are not required, but are recommended for full package functionality:

alt_depth: The read depth supporting the alternate allele. If not included, the function will
add this column, assuming a value of 1.

total_depth: The total read depth at this position, excluding no-calls (N calls). If not present,
the function will attempt to calculate the total_depth as depth - no_calls. If no_calls is
not present, the function will use depth as the total_depth.

depth: The total read depth at this position, including no-calls.

no_calls: The number of no-calls (N-calls) at this position.

We recommend that files include a record for every sequenced position, regardless of whether a
variant was called, along with the total_depth for each record. This enables site-specific depth
calculations required for some downstream analyses.

Value

A table where each row is a mutation, and columns indicate the location, type, and other data. If
output_granges is set to TRUE, the mutation data will be returned as a GRanges object, otherwise
mutation data is returned as a dataframe.

Output Column Definitions:

short_ref: The reference base at the start position.
normalized_ref: The short_ref in C/T-base notation for this position (e.g. A -> T, G -> C).

context The trinucleotide context at this position. Consists of the reference base and the two
flanking bases (e.g. TAC).

normalized_context: The trinucleotide context in C/T base notation for this position (e.g.
TAG -> CTA).

variation_type The type of variant (snv, mnv, insertion, deletion, complex, sv, no_variant,
ambiguous, uncategorized).

subtype The substitution type for the snv variant (12-base spectrum; e.g. A>C).

normalized_subtype The C/T-based substitution type for the snv variant (6-base spectrum;
e.g. A>C ->T>G).

context_with_mutation: The substitution type for the snv variant including the two flanking
nucleotides (192-trinucleotide spectrum; e.g. TLA>C]G)

normalized_context_with_mutation: The C/T-based substitution type for the snv variant
including the two flanking nucleotides (96-base spectrum e.g. TLA>CIG -> C[T>G]A).

nchar_ref: The length (in bp) of the reference allele.
nchar_alt: The length (in bp) of the alternate allele.
varlen: The length (in bp) of the variant.

ref_depth: The depth of the reference allele. Calculated as total_depth - alt_depth, if
applicable.

vaf : The variant allele fraction. Calculated as alt_depth/total_depth.
gc_content: % GC of the trinucleotide context at this position.
is_known: TRUE or FALSE. Flags known variants (ID !=".").
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* row_has_duplicate: TRUE or FALSE. Flags rows whose position is the same as that of at
least one other row for the same sample.

e filter_mut : A logical value, initially set to FALSE that indicates to calculte_mf() if the
variant should be excluded from mutation counts. See the filter_mut function for more detail.

Examples

# Mutation data is just for example purposes. It does not reflect real data
file <- system.file("extdata”, "Example_files",
"simple_mut_import.txt"”, package = "MutSegR")
# Import the data
imported_example_data <- import_mut_data(mut_file = file)

import_regions_metadata
Join Regions Metadata

Description

This function imports the regions metadata and joins it with the mutation data.

Usage

import_regions_metadata(
mutation_granges,
regions,

rg_sep,
is_0_based_rg,
padding

Arguments

mutation_granges
A data frame containing mutation data.

regions The path to the file containing the regions metadata. Alternatively, a data frame
can be provided directly.

rg_sep The separator used in the regions metadata file. Default is tab (\t).

is_0_based_rg A logical value indicating whether the regions file is 0-based (TRUE) or 1-based
(FALSE). Default is FALSE.

padding An integer value indicating the number of base pairs to pad the regions on either
side. Default is 0.

Value

A GRanges object that combines the mutation data with the regions metadata.
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import_sample_data Join Sample Metadata

Description

This function imports the sample metadata and joins it with the mutation data.

Usage

import_sample_data(mutation_data, sample_data, sd_sep = "\t")

Arguments

mutation_data A data frame containing mutation data.

sample_data The path to the file containing the sample metadata. Alternatively, a data frame
can be provided directly.
sd_sep The separator used in the sample metadata file. Default is tab (\t).
Value

A data frame that combines the mutation data with the sample metadata.

import_vcf_data Import a VCF file

Description

The function reads VCEF file(s) and extracts the data into a dataframe.

Usage

import_vcf_data(
vcf_file,
sample_data = NULL,
sd_sep = "\t",
regions = NULL,
rg_sep = "\t",
is_0_based_rg = FALSE,
padding = 0,

BS_genome = NULL,
output_granges = FALSE
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Arguments

vef_file

sample_data

sd_sep

regions

rg_sep

is_0_based_rg

padding

BS_genome

output_granges

Details

import_vct_data

The path to the .vef (.gvcf, gzip, bgzip) to be imported. If you specify a directory,
the function will attempt to read all files in the directory and combine them into
a single table. VCF files should follow the VCF specifications, version 4.5.
Multisample VCF files are not supported; VCF files must contain one sample
each. Required fields are listed in details.

An optional file containing additional sample metadata (dose, timepoint, etc.).
This can be a data frame or a file path. Metadata will be joined with the muta-
tion data based on the sample column. Required columns are sample and any
additional columns you wish to include.

The delimiter for importing sample metadata tables. Default is tab-delimited.

An optional file containing metadata of genomic regions. Region metadata will
be joined with mutation data and variants will be checked for overlap with the
regions. regions can be either a file path, a data frame, or a GRanges ob-
ject. File paths will be read using the rg_sep. Users can also choose from
the built-in TwinStrand’s Mutagenesis Panels by inputting "TSpanel_human",
"TSpanel_mouse", or "TSpanel_rat". Required columns for the regions file are

"contig", "start", and "end". For a GRanges object, the required columns are
"seqnames", "start", and "end". Default is NULL.

The delimiter for importing the custom_regions. The default is tab-delimited
"\t"_

A logical variable. Indicates whether the position coordinates in regions are
0 based (TRUE) or 1 based (FALSE). If TRUE, positions will be converted to
1-based (start + 1). Need not be supplied for TSpanels. Default is TRUE.

Extend the range of your regions in both directions by the given amount. Ex.
Structural variants and indels may start outside of the regions. Adjust the padding
to include these variants in your region’s ranges.

The pkgname of a BS genome. A BS genome must be installed prior to import
to populate the context column (trinucleotide context for each position). Only
required if data does not already include a context column. Please install the ap-
propriate BS genome using BiocManager::install("pkgname") where pkgname
is the name of the BSgenome package. The pkgname can be found using the
find_BS_genome() function, which requires the species and assembly version.
Ex. "BSgenome.Hsapiens.UCSC.hg38" | "BSgenome.Hsapiens.UCSC.hg19" |
"BSgenome.Mmusculus.UCSC.mm10" | "BSgenome.Mmusculus.UCSC.mm39"
| "BSgenome.Rnorvegicus.UCSC.rn6"

TRUE or FALSE; whether you want the mutation data to output as a GRanges
object. Default output is as a dataframe.

The required fields are:

FIXED FIELDS

* CHROM: The name of the reference sequence. Equivalent to contig.

* POS: The 1-based start position of the feature. Equivalent to start.
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* REF: The reference allele at this position.
* ALT: The left-aligned, normalized, alternate allele at this position. Multiple alt alleles called
for a single position should be represented as separate rows in the table.

INFO FIELDS

* END: The half-open end position of the feature.
* sample: An identifying field for your samples; either in the INFO field or as the header to the
FORMAT field.
SUGGESTED FIELDS
The following FORMAT fields are not required, but are recommended for full package functional-
ity:
* AD: The allelic depths for the reference and alternate allele in the order listed. The sum of AD
is equivalent to the total_depth (read depth at this position excluding N-calls).

* DP: The read depth at this position (including N-calls). Equivalent to depth. Note that in
many VCEF files, the DP field is defined as total_depth. However, in most cases, the DP
field includes N-calls.

* VD: The read depth supporting the alternate allele. If not included, the function will add this
column, assuming a value of 1. Equivalent to alt_depth.

We recommend that files include a record for every sequenced position, regardless of whether a
variant was called, along with the AD for each record. This enables site-specific depth calculations
required for some downstream analyses. AD is used to calculate the total_depth (the read depth
excluding No-calls). If AD is not available, the DP field will be used as the total_depth.

Value

A table where each row is a mutation, and columns indicate the location, type, and other data. If
output_granges is set to TRUE, the mutation data will be returned as a GRanges object, otherwise
mutation data is returned as a dataframe.

Output Column Definitions:

* short_ref: The reference base at the start position.
* normalized_ref: The short_ref in C/T-base notation for this position (e.g. A ->T, G -> C).

* context The trinucleotide context at this position. Consists of the reference base and the two
flanking bases (e.g. TAC).

* normalized_context: The trinucleotide context in C/T base notation for this position (e.g.
TAG -> CTA).

* variation_type The type of variant (snv, mnv, insertion, deletion, complex, sv, no_variant,
ambiguous, uncategorized).

* subtype The substitution type for the snv variant (12-base spectrum; e.g. A>C).

* normalized_subtype The C/T-based substitution type for the snv variant (6-base spectrum;
e.g. A>C ->T>Q).

e context_with_mutation: The substitution type for the snv variant including the two flanking
nucleotides (192-trinucleotide spectrum; e.g. TLA>C]G)
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normalized_context_with_mutation: The C/T-based substitution type for the snv variant
including the two flanking nucleotides (96-base spectrum e.g. TLA>CIG -> C[T>G]A).
nchar_ref: The length (in bp) of the reference allele.
nchar_alt: The length (in bp) of the alternate allele.
varlen: The length (in bp) of the variant.
ref_depth: The depth of the reference allele. Calculated as total_depth - alt_depth, if
applicable.
vaf : The variant allele fraction. Calculated as alt_depth/total_depth.
gc_content: % GC of the trinucleotide context at this position.
is_known: TRUE or FALSE. Flags known variants (ID !=".").
row_has_duplicate: TRUE or FALSE. Flags rows whose position is the same as that of at
least one other row for the same sample.
filter_mut : A logical value, initially set to FALSE that indicates to calculte_mf() if the
variant should be excluded from mutation counts. See the filter_mut function for more detail.

Examples

# Mutation data is just for example purposes. It does not reflect real data
file <- system.file("extdata”, "Example_files”,
"simple_vcf_data.vcf”, package = "MutSeqR")
# Import the data
imported_example_data <- import_vcf_data(
vef_file = file,
BS_genome = find_BS_genome("mouse”, "mm10"))
load_regions_file Imports the regions file
Description
A helper function to import the regions metadata file and return a GRanges object.
Usage
load_regions_file(regions, rg_sep = "\t", is_0_based_rg = TRUE)
Arguments

regions The regions metadata file to import. Can be either a file path, a data frame,

or a GRanges object. File paths will be read using the rg_sep. Users can
also choose from the built-in TwinStrand’s Mutagenesis Panels by inputting
"TSpanel_human", "TSpanel_mouse", or "TSpanel_rat". Required columns for

non

the regions file are "contig", "start", and "end". In a GRanges object, the required

non

columns are "seqnames", "start", and "end".
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rg_sep The delimiter for importing the custom_regions. The default is tab-delimited
"\t".

is_@_based_rg A logical variable. Indicates whether the position coordinates in regions are
0 based (TRUE) or 1 based (FALSE). If TRUE, positions will be converted to
1-based (start + 1). Need not be supplied for TSpanels. Default is TRUE.

Value

a GRanges object of the imported regions metadata file.

Examples
#' # Example 1: Load built-in TwinStrand's Human Mutagenesis
human_rg <- load_regions_file(regions = "TSpanel_human")
human_rg

# Load a custom regions file from an interval list
# We will use the human TSpanel system file for this example,
# but any file can be imported.
file <- system.file("extdata",
"inputs”,
"metadata”,
"human_mutagenesis_panel_hg38.txt",
package = "MutSegR"”

)
custom_rg <- load_regions_file(regions = file, rg_sep = "\t", is_0_based_rg = TRUE)
custom_rg
model_mf Perform linear modelling on mutation frequency for given fixed and
random effects
Description

model_mf will fit a linear model to analyse the effect(s) of given factor(s) on mutation frequency
and perform specified pairwise comparisons. This function will fit either a generalized linear
model (glm) or, if supplied random effects, a generalized linear mixed-effects model (glmer).
Pairwise comparisons are conducted using the doBy library (esticon) and estimates are then back-
transformed. The delta method is employed to approximate the back-transformed standard-errors.
A Sidak correction is applied to adjust p-values for multiple comparisons.

Usage

model_mf(
mf_data,
fixed_effects,
test_interaction = TRUE,
random_effects = NULL,
reference_level,
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model_mf

muts = "sum_min",

total_count

"group_depth”,

contrasts = NULL,
cont_sep = "\t",

Arguments

mf_data

fixed_effects

The data frame containing the mutation frequency data. Mutation counts and
total sequencing depth should be summarized per sample alongside columns for
your fixed effects. This data can be obtained using calculate_mf (summary=TRUE).

The name(s) of the column(s) that will act as the fixed_effects (factor/independent
variable) for modelling mutation frequency.

test_interaction

random_effects

reference_level

muts
total_count

contrasts

cont_sep

Details

a logical value. Whether or not your model should include the interaction be-
tween the fixed_effects.

The name of the column(s) to be analysed as a random effect in the model.
Providing this effect will cause the function to fit a generalized linear mixed-
effects model.

Refers to one of the levels within each of your fixed_effects. The coefficient
for the reference level will represent the baseline effect. The coefficients of the
other levels will be interpreted in relation to the reference_level as deviations
from the baseline effect.

The column containing the mutation count per sample.
The column containing the sequencing depth per sample.

a data frame or a filepath to a file that will provide the information necessary
to make pairwise comparisons between groups. The table must consist of two
columns. The first column will be a group within your fixed_effects and the
second column must be the group that it will be compared to. The values must
correspond to entries in your mf_data column for each fixed effect. Put the group
that you expect to have the higher mutation frequency in the 1st column and the
group that you expect to have a lower mutation frequency in the second column.
For multiple fixed effects, separate the levels of each fixed_effect of a group
with a colon. Ensure that all fixed_effects are represented in each entry for
the table. See details for examples.

The delimiter for importing the contrast table file. Default is tab-delimited.

Extra arguments for glm or glmer. The glmer function is used when a random_effect

is supplied, otherwise, the model uses the glm function.

fixed_effects are variables that have a direct and constant effect on the dependent variable (ie
mutation frequency).They are typically the experimental factors or covariates of interest for their
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impact on the dependent variable. One or more fixed_effect may be provided. If you are pro-
viding more than one fixed effect, avoid using correlated variables; each fixed effect must inde-
pendently predict the dependent variable. Ex. fixed_effects = c("dose"”, "genomic_target”,
"tissue", "age", etc).

Interaction terms enable you to examine whether the relationship between the dependent and inde-
pendent variable changes based on the value of another independent variable. In other words, if an
interaction is significant, then the relationship between the fixed effects is not constant across all
levels of each variable. Ex. Consider investigating the effect of dose group and tissue on mutation
frequency. An interaction between dose and tissue would capture whether the dose response differs
between tissues.

random_effects account for the unmeasured sources of statistical variance that affect certain
groups in the data. They help account for unobserved heterogeneity or correlation within groups.
Ex. If your model uses repeated measures within a sample, random_effects = "sample”.

Setting a reference_level for your fixed effects enhances the interpretability of the model. Ex.
Consider a fixed_effect "dose" with levels 0, 25, 50, and 100 mg/kg. Intuitively, the refer-
ence_level would refer to the negative control dose, "0" since we are interested in testing how the
treatment might change mutation frequency relative to the control.

Examples of contrasts:

If you have a fixed_effect "dose" with dose groups 0, 25, 50, 100, then the first column would
contain the treated groups (25, 50, 100), while the second column would be 0, thus comparing each
treated group to the control group.

250
500
1000

Alternatively, if you would like to compare mutation frequency between treated dose groups, then
the contrast table would look as follows, with the lower dose always in the second column, as we
expect it to have a lower mutation frequency. Keeping this format aids in interpretability of the
estimates for the pairwise comparisons. Should the columns be reversed, with the higher group in
the second column, then the model will compute the fold-decrease instead of the fold-increase.

100 25
100 50
5025

Ex. Consider the scenario where the fixed_effects are "dose" (0, 25, 50, 100) and "genomic_target"
("chrl", "chr2"). To compare the three treated dose groups to the control for each genomic target,
the contrast table would look like:

25:chrl O:chrl
50:chr1 O:chrl
100:chrl O:chrl
25:chr2 0:chr2
50:chr2 0:chr2
100:chr2 0:chr2
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Troubleshooting: If you are having issues with convergence for your generalized linear mixed-
effects model, it may be advisable to increase the tolerance level for convergence checking during
model fitting. This is done through the control argument for the 1me4: : glmer function. The de-
fault tolerance is tol = 0.002. Add this argument as an extra argument in the model_mf function. Ex.
control = 1me4: :glmerControl(check.conv.grad = 1lme4::.makeCC("warning”, tol = 3e-3,
relTol = NULL)) Alternate approach: control = 1Ime4::glmerControl(optimizer = "bobyga”,
optCtrl = list(maxfun = 2e5)) Similar approaches may be taken for glm models.

Value
Model results are output as a list. Included are:

* model_data: the supplied mf_data with added column for the Pearson’s residuals of the model.

e summary: the summary of the model.

* anova: the analysis of variance for models with two or more effects. Anova(model)

* residuals_histogram: the Pearson’s residuals plotted as a histogram. This is used to check
whether the variance is normally distributed. A symmetric bell-shaped histogram, evenly
distributed around zero indicates that the normality assumption is likely to be true.

* residuals_qq_plot: the Pearson’s residuals plotted in a quantile-quantile plot. For a normal
distribution, we expect points to roughly follow the y=x line.

 point_estimates_matrix: the contrast matrix used to generate point-estimates for the fixed
effects.

* point_estimates: the point estimates for the fixed effects.

* pairwise_comparisons_matrix: the contrast matrix used to conduct the pairwise comparisons
specified in the contrasts.

* pairwise_comparisons: the results of pairwise comparisons specified in the contrasts.

Examples

% o H W

Example data consists of 24 mouse bone marrow

samples exposed to three doses of BaP alongside vehicle controls.
Libraries were sequenced with Duplex Sequencing using

the TwinStrand Mouse Mutagenesis Panel which consists of 20 2.4kb
targets = 48kb of sequence. Example data can be retrieved from
MutSegRData, an ExperimentHub data package:

## library(ExperimentHub)

## eh <- ExperimentHub()

## query(eh, "MutSeqRData")

# Mutation frequency data was precalculated using

## mf_data_global <- calculate_mf(mutation_data = eh[["EH9861"]1],

#it
#it

cols_to_group = "sample”,
retain_metadata_cols = c("dose_group”, "dose"))

# We will model the effect of dose on mutation frequency min.
mf_example <- readRDS(system.file("extdata/Example_files/mf_data_global.rds"”,
package = "MutSegR"”

)

# We will compare all BaP dose groups to the control group
# using pairwise comparisons.
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contrasts <- data.frame(
coll = c("12.5", "25", "50@"),
col2 = c("e", "0", "0")

)

# Fit the model

model <- model_mf(
mf_data = mf_example,

fixed_effects = "dose”,
reference_level = "0",
muts = "sum_min",

total_count = "group_depth"”,
contrasts = contrasts

)
op Dictionary of column name synonyms for required mutation data
columns
Description

A list of column specifications

Usage

op

Format

A list with potential variable column names

Examples

# examples of "alt"” synonyms
op$column$alternate

plot_bubbles Generate Bubble Plots

Description

Produces a ggplot object of bubble plots from given mutation data. Optionally, bubble plots can be
facetted and coloured by a specified column.
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Usage

plot_bubbles(
mutation_data,
size_by = "alt_depth”,
facet_col = NULL,

color_by = "normalized_subtype”,
circle_spacing = 1,
circle_outline = "none",

circle_resolution = 50,
custom_palette = NULL

Arguments

mutation_data Data frame containing the mutation data.

size_by The column name by which to size the circles. Recommended values are "alt_depth"
or "vaf".

facet_col The column name by which to facet . If NULL, no facetting will be done.
Default is NULL.

color_by The column name by which to colour the mutations. Default is "normalized_subtype".

circle_spacing Numerical value to adjust the spacing between circles. Default is 1.

circle_outline Colour for the circle outline. Default is "none", resulting in no outline colour.
Other accepted values are colours in the R language.

circle_resolution
Number of points to use for the circle resolution. Default is 50.

custom_palette A named vector of colors to be used for the mutation subtypes. The names
of the vector should correspond to the levels in color_by. Alternatively, you
can specify a color palette from the RColorBrewer package. See brewer.pal
for palette options. You may visualize the palettes at the ColorBrewer website:
https://colorbrewer2.org/. Default is NULL.

Details

The function will plot a circle for each mutation in mutation_data. Mutations flagged by the
filter_mut column will be excluded from the plot. The size of the circle is determined by the
size_by parameter. Sizing by the "alt_depth" or the "vaf" will give users the ability to visualize the
the distribution of recurrent mutations within their data with large multiplets having a large circle.

Value

A ggplot object with the bubble plot, facetted if specified.

Examples

# The example data is a subset of variants from the target chri
# from samples of the high dose group (50mg).
example_data <- readRDS(system.file("extdata”, "Example_files”,
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"variants_subset_d50_chril.rds",
package = "MutSegR")
)
plot <- plot_bubbles(
mutation_data = example_data

)

plot_ci plot_ci

Description

Plot confidence intervals

Usage
plot_ci(
data,
order = "none",
custom_order = NULL,
nudge = 0.3,
log_scale = FALSE,
x_lab = NULL,
y_lab = NULL,
title = NULL
)
Arguments
data A data frame with the results of the BMD analysis. Data must contain columns
"Response"”, "BMD", "BMDL", and "BMDU". BMD values can be NA.
order Indicates how the responses should be ordered. Options are "none" (default),
"asc" for ascending BMD values, "desc" for descending BMD values, or a cus-
tom order.

custom_order A character vector with the custom order of the Responses.

nudge A numeric value to nudge the text labels away from points. Default is 0.3.

log_scale A logical value indicating if the x-axis should be in log10 scale. Default is false.

x_lab A character string with the x-axis label. Default is "BMD" or "logl0(BMD)" if
log_scale is TRUE.

y_lab A character string with the y-axis label. Default is "Response".

title A character string with the plot title. Default is "BMD with 90% Confidence
Intervals".

Value

a ggplot object
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Examples

if (requireNamespace("MutSeqRData”, quietly = TRUE)) {
# Plot results from PROAST
dat <- data.frame(
Response = c("PROAST MF Min", "PROAST MF Max"),
BMD = c(NA, NA),
BMDL = c(7.38, 2.98),
BMDU = c(10.9, 7.68)
)
plot <- plot_ci(dat)
}

plot_lollipop Plot recurrent mutations in a lollipop plot using ggplot2

Description

Plot recurrent mutations in a lollipop plot using ggplot2

Usage

plot_lollipop(
mutation_data,
min_recurrence = 2,
group_col = "contig",
subtype_resolution = "base_6",
custom_palette = NULL

Arguments

mutation_data A data frame containing mutation data.

min_recurrence An integer specifying the minimum number of times a mutation must be ob-
served at the same position to be plotted. Default is 2.

group_col A character vector specifying the column name(s) to group mutation_data by.
Default is "contig".

subtype_resolution
The subtype resolution by which to group and colour the mutations. Options are
"none", "type", "base_6", "base_12", "base_96", and "base_192".

custom_palette A named vector of colors to be used for the mutation subtypes. The names of the
vector should correspond to the mutation subtypes in the data. Alternatively, you
can specify a color palette from the RColorBrewer package. See brewer.pal
for palette options. You may visualize the palettes at the ColorBrewer website:
https://colorbrewer2.org/. Default is NULL.


https://colorbrewer2.org/
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Value

A list of ggplot objects.

Examples
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# For this example, we will use a subset of the example mutation data.
# The subset contains mutations from target chrl in samples from the high

# dose group (50mg).

example_data <- readRDS(system.file("extdata"”, "Example_files"”,
"variants_subset_d50_chr1.rds"”, package = "MutSeqR"))

# We will plot mutations that recoccur in at least two samples, grouped

# by the "label” column, which signifies the target region (chri).

# Mutations will be grouped and coloured by their base 6 subtype (default)

plot <- plot_lollipop(

mutation_data = example_data,

min_recurrence = 2

’

group_col = "label”

plot_mean_mf

Plot the Mean Mutatation Frequency

Description

This function calculates the mean mutation frequency across samples for given groups and plots the

results.

Usage

plot_mean_mf(
mf_data,
group_col = "dose"”,
fill_col = NULL,
mf_type = "both",
plot_type = "line",

plot_error_bars = TRUE,
plot_indiv_vals = TRUE,

group_order = "none",
group_order_input = NULL,
add_labels = "mean_count”,
scale_y_axis = "linear”,
x_lab = NULL,

y_lab = NULL,

plot_title = NULL,

custom_palette = NULL,

plot_legend = TRUE,

rotate_labels = FALSE,

label_size = 3
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Arguments

mf_data A data frame containing the mutation frequency data. This is obtained from the
calculate_mf function with SUMMARY = TRUE.

group_col The column(s) in mf_data by which to calculate the mean. When supplying
more than one column, the values of all group columns will be concatenated
into a single value by which to calculate the mean. Values will be displayed
along the x-axis. Ex. "dose" or c("dose", "tissue").

fill_col An optional column name in the data used to define the fill aesthetic in the

plot. If fill_col has multiple levels within each group_col level, the mean will be
calculated for each level of fill_col (recommend plot_type = "line" for this use
case). Default is NULL.

mf_type The type of mutation frequency to plot. Options are "min", "max", "both", or
"stacked". If "both", the min and max mutation frequencies are plotted side by
side. "stacked" can be chosen for bar plot_type only. If "stacked", the difference
between the min and max MF is stacked on top of the min MF such that the total
height of both bars represent the max MF. Default is "min".

plot_type The type of plot to create. Options are "bar" or "line". Default is "bar".
plot_error_bars
Whether to plot the error bars. Default is TRUE. Error bars are standard error of
the mean.
plot_indiv_vals
Whether to plot the individual values as data points. Default is FALSE.

group_order The order of the groups along the x-axis. > Options include:

* none: No ordering is performed. Default.

* smart: Groups are ordered based on the sample names.

* arranged: Groups are ordered based on one or more factor column(s)
in mf_data. Factor column names are passed to the function using the
group_order_input.

* custom: Groups are ordered based on a custom vector of group names. The
custom vector is passed to the function using the group_order_input.

group_order_input
The order of the groups if group_order is "custom". The column name by which
to arrange groups if group_order is "arranged". If "custom", and using more
than one group_col, values are concatenated in the order listed, separated by a

non

add_labels The data labels to display on the plot. Either "indiv_count”, "indiv_MF", "mean_count",
"mean_MF", or "none". Count labels display the number of mutations, MF la-
bels display the mutation frequency. Mean plots the mean value. Indiv plots
the labels for individual data points (only if plot_indiv_vals = TRUE). Default
is "none".
scale_y_axis The scale of the y axis. Either "linear" or "log". Default is "linear".
x_lab The x-axis label. Default is the value of group_col.
y_lab The y-axis label. Default is "Mutation Frequency (mutations/bp)".

plot_title The title of the plot. Default is "Mean Mutation Frequency".
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custom_palette A custom color palette to use for the plot. Input a character vector of colours.
Input a named character vector to specify olours to specific groups. Fill labels
will be constructed by the following components

1. "Mean/Individual" if plot_indiv_vals = TRUE, fill labels will specify Mean/Individual
values.

2. "min/max" if mf_type = "both" or "stacked", fill labels will specify min/max
values.

3. fill_col value. Name colours to match the fill labels. Default is NULL.
If no custom_palette, a rainbow palette is generated. Min/Max values and
Mean/Individual values will be the same colour, different shades.

plot_legend Logical. Whether to show the fill (and color) legend. Default is TRUE.

rotate_labels A logical value indicating whether data labels should be rotated 90 degrees.

Default is FALSE.
label_size A numeric value that controls the size of the data labels.
Value
a ggplot object
Examples

Example data consists of 24 mouse bone marrow

samples exposed to three doses of BaP alongside vehicle controls.
Libraries were sequenced with Duplex Sequencing using

the TwinStrand Mouse Mutagenesis Panel which consists of 20 2.4kb
targets = 48kb of sequence. Example data can be retrieved from
MutSegRData, an ExperimentHub data package:

## library(ExperimentHub)

## eh <- ExperimentHub()

## query(eh, "MutSeqgRData")

# Mutation frequency data was precalculated using

## mf_data_global <- calculate_mf(mutation_data = eh[["EH9861"]1],
##  cols_to_group = "sample”,

## retain_metadata_cols = c("dose_group”, "dose"))

#
#
#
#
#
#

mf_example <- readRDS(system.file("extdata/Example_files/mf_data_global.rds"”,
package = "MutSeqR”
))
# Specify the order of the dose groups along the x-axis
mf_example$dose_group <- factor(mf_example$dose_group,
levels = c(
"Control”, "Low",
"Medium”, "High"
)
)

# Plot the mean min MF per dose group as a bar plot with error bars
plot <- plot_mean_mf(

mf_data = mf_example,

group_col = "dose_group”,

mf_type = "min",
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plot_type = "1i
fill_col = "dos
plot_error_bars
plot_indiv_vals
add_labels = "n

plot_mf

ne",
e_group”,
= TRUE,
= TRUE,
one”

plot_mf

Plot the Mutation Frequency

Description

This function creates a plot of the mutation frequency.

Usage

plot_mf(
mf_data,
group_col,

plot_type = "bar",
mf_type = "min",
fill_col = NULL,
custom_palette = NULL,

group_order =

nnoneu’

group_order_input = NULL,

labels = "count”,
scale_y_axis = "linear”,
x_lab = NULL,

y_lab = NULL,

title = NULL,

rotate_labels

= FALSE,

label_size = 3

Arguments

mf_data

group_col
plot_type
mf_type

fill_col

A data frame containing the mutation frequency data. This is obtained from the
calculate_mf function with SUMMARY = TRUE.

The name of the column containing the sample/group names for the x-axis.

The type of plot to create. Options are "bar" or "point".

"non

The type of mutation frequency to plot. Options are "min", "max", "both", or
"stacked". If "both", the min and max mutation frequencies are plotted side by
side. "stacked" can be chosen for bar plot_type only. If "stacked", the difference
between the min and max MF is stacked on top of the min MF such that the total
height of both bars represent the max MF.

The name of the column containing the fill variable.
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custom_palette A character vector of colour codes to use for the plot. If NULL, a default palette
is used

group_order The order of the samples/groups along the x-axis. > Options include:

* none: No ordering is performed. Default.

* smart: Samples are ordered based on the sample names.

e arranged: Samples are ordered based on one or more factor column(s)
in mf_data. Factor column names are passed to the function using the
group_order_input.

* custom: Samples are ordered based on a custom vector of sample names.
The custom vector is passed to the function using the group_order_input.

group_order_input
The order of the samples/groups if group_order is "custom". The column name
by which to arrange samples/groups if group_order is "arranged"

labels The data labels to display on the plot. Either "count", "MF", or "none". Count la-
bels display the number of mutations, MF labels display the mutation frequency.

scale_y_axis The scale of the y axis. Either "linear" or "log".

x_lab The label for the x axis.
y_lab The label for the y axis.
title The title of the plot.

rotate_labels A logical value aplied when labels is not "none". Indicates whether the labels
should be rotated 90 degrees. Default is FALSE.

label_size A numeric value that adjusts the size of the labels. Default is 3.

Value

A ggplot object

Examples

Example data consists of 24 mouse bone marrow

samples exposed to three doses of BaP alongside vehicle controls.

Libraries were sequenced with Duplex Sequencing using

the TwinStrand Mouse Mutagenesis Panel which consists of 20 2.4kb

targets = 48kb of sequence. Example data can be retrieved from

MutSegRData, an ExperimentHub data package:

## library(ExperimentHub)

## eh <- ExperimentHub()

## query(eh, "MutSeqRData")

# Mutation frequency data was precalculated using

## mf_data_global <- calculate_mf(mutation_data = eh[["EH9861"]1],

##  cols_to_group = "sample”,

## retain_metadata_cols = c("dose_group”, "dose"))

# Load Example MF data

mf_example <- readRDS(system.file("extdata/Example_files/mf_data_global.rds"”,
package = "MutSeqR”

)

# Specify the order of the dose groups along the x-axis

o o oH H M
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mf_example$dose_group <- factor(mf_example$dose_group,
levels = c(
"Control”, "Low",
"Medium”, "High"
)
)
# Plot the min MF per sample as a bar plot with count labels
plot <- plot_mf(
mf_data = mf_example,
group_col = "sample”,
plot_type = "bar"”,
mf_type = "min",
fill_col = "dose_group”,

plot_model_mf

group_order = "arranged”,
group_order_input = "dose_group”,
labels = "count”,
title = "Mutation Frequency per Sample”
)
plot_model_mf Plot your mf model
Description

Provide a visualization of the point estimates derived using model_mf()

Usage

plot_model_mf(
model,
plot_type = "point”,
x_effect = NULL,
plot_error_bars = TRUE,
plot_signif = TRUE,
ref_effect = NULL,
x_order = NULL,
fill_order = NULL,
x_label = NULL,
y_label = NULL,
plot_title = NULL,
fill_label = NULL,
custom_palette = NULL

Arguments

model A model object created using model_mf()

plot_type The type of plot to create. Options are "bar" or "point".
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x_effect

plot_error_bars

plot_signif

ref_effect

x_order
fill_order

x_label
y_label
plot_title
fill_label

custom_palette

Details
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If there are multiple fixed effects in the model, specify the fixed effect to plot on
the x-axis. The other will be used in the fill aesthetic. Currently, only 2 fixed
effects are supported.

Logical. If TRUE, the estimated standard error will be added to the plot.

Logical. If TRUE, will add significance labels based on the pairwise_comparisons
data frame in the model object. This is only valid if you supplied a contrasts table
to model_mf(). Symbols will be applied to plotted values that are significantly
different from the reference. Your contrasts table is structured as a data frame
with two columns, each containing levels of the fixed effects to be contrasted.
When adding significance labels, symbols will be added to the values defined
in the first column, while the second column will represent the reference. A
different symbol will be used for each unique reference level. If a single plotted
value has been contrasted against multiple references, then it will gain multiple
symbols for each significance difference.

The fixed effect to use as the reference level when adding significance labels.
Only applicable if using two fixed effects.

A character vector indicating the order of the levels for the x_effect.

A character vector indicating the order of the levels for the fill aesthetic, if ap-
plicable.

The label for the x-axis.

The label for the y-axis.

The title of the plot.

The label for the fill aesthetic, if applicable.

A vector of colors to use for the fill and color aesthetics. If not provided, a
default palette will be used. When plotting a model that has a single fixed effect,
you can specify colors for "fill" and "color" using a named vector. Likewise,
when plotting a model with two fixed effects, you can specify colors for the
levels within your fill variable.

See model_mf() for examples.

Value

A ggplot object.

Examples

# Example data consists of 24 mouse bone marrow DNA samples imported

# using import_mut_data() and filtered with filter_mut.

# Data was summarized per sample using calculate_mf() and modeled using

# model_mf() (see example).

file <- system.file("extdata/Example_files/mf_model_global.rds"”,
package = "MutSegR")

model <- readRDS(file)
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# Plot the results using plot_model_mf()
plot <- plot_model_mf(model,
plot_type = "bar”,
x_effect = "dose”,
plot_error_bars = TRUE,
plot_signif = TRUE,
x_order = c("@", "12.5", "25", "50"),
x_label = "Dose (mg/kg-bw/d)",
y_label = "Estimated Mean MF (mutations/bp)",
plot_title = ""

plot_radar Create a radar plot

Description

Create a radar plot

Usage

plot_radar(mf_data, response_col, label_col, facet_col, indiv_y = TRUE)

Arguments

mf_data A data frame with the data to plot

response_col The column with the response values

label_col The column with the labels for the radar plot.

facet_col The column with the group to facet the radar plots.

indiv_y A logical indicating whether to use individual y-axis scales for each plot.
Value

A radar plot
Examples

# Plot the MFmin for each variation type, including the 6 SNV subtypes

# Facet the plots by dose group

mf_ex <- readRDS(system.file("extdata”, "Example_files"”, "mf_data_6.rds",
package = "MutSeqR")

)

plot <- plot_radar(
mf_data = mf_ex,

response_col = "mf_min",
label_col = "normalized_subtype”,
facet_col = "dose_group”,

indiv_y = TRUE
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plot_spectra

Plot spectra

Description

Given mf data, construct a plot displaying the mutation subtypes observed in a cohort.

Usage

plot_spectra(

mf_data,

group_col ="
subtype_resol
response = "p
mf_type = "mi
group_order =
group_order_i
dist = "cosin

cluster_metho
custom_palett
x_lab = NULL,
y_lab = NULL,
rotate_xlabs

)

Arguments
mf_data
group_col

subtype_resolut

response

mf_type

sample”,
ution = "base_6",
roportion”,
n",
"none",
nput = NULL,
e“y
d = "ward.D",
e NULL,

= FALSE

A data frame containing the mutation frequency data at the desired subtype reso-
lution. This is obtained using the ’calculate_mf” function with subtype_resolution
set to the desired resolution. Data must include a column containing the group_col,
a column containing the mutation subtypes, a column containing the desired re-
sponse variable (mf, proportion, sum) for the desired mf_type (min or max),
and if applicable, a column containing the variable by which to order the sam-
ples/groups.

The name of the column(s) in the mf data that contains the sample/group names.
This will generally be the same values used for the cols_to_group argument in
the calculate_mf function. However, you may also use groups that are at a higher
level of the aggregation in mf_data.

ion

The subtype resolution of the mf data. Options are base_6, base_12, base_96,
base_192, or type. Default is base_6

The desired response variable to be plotted. Options are mf, proportion, or sum.
Default is proportion. Your mf_data must contain columns with the name of
your desired response: mf_min, mf_max, proportion_min, proportion_max
sum_min, and sum_max.

The mutation counting method to use. Options are min or max. Default is min.



56 plot_spectra

group_order The method for ordering the samples within the plot. Options include:

* none: No ordering is performed. Default.

* smart: Groups are automatically ordered based on the group names (alpha-
betical, numerical)

* arranged: Groups are ordered based on one or more factor column(s) in
mf_data. Column names are passed to the function using the group_order_input.

* custom: Groups are ordered based on a custom vector of group names. The
custom vector is passed to the function using the group_order_input.

* clustered: Groups are ordered based on hierarchical clustering. The dis-
similarity matrix can be specified using the dist argument. The agglomer-
ation method can be specified using the cluster_method argument.

group_order_input
A character vector specifying details for the group order method. If group_order
is arranged, group_order_input should contain the column name(s) to be
used for ordering the samples. If group_order is custom, group_order_input
should contain the custom vector of group names.

dist The dissimilarity matrix for hierarchical clustering. Options are cosine, euclidean,
maximum, manhattan, canberra, binary or minkowski. The default is cosine.
See dist for details.

cluster_method The agglomeration method for hierarchical clustering. Options are ward.D,
ward.D2, single, complete, average (= UPGMA), mcquitty (= WPGMA),
median (= WPGMC) or centroid (= UPGMC). The default is Ward.D. See
hclust for details.

custom_palette A named vector of colors to be used for the mutation subtypes. The names of the
vector should correspond to the mutation subtypes in the data. Alternatively, you
can specify a color palette from the RColorBrewer package. See brewer.pal
for palette options. You may visualize the palettes at the ColorBrewer website:
https://colorbrewer2.org/. Default is NULL.

x_lab The label for the x-axis. Default is the value of group_col.
y_lab The label for the y-axis. Default is the value of response_col.

rotate_xlabs  Alogical value indicating whether the x-axis labels should be rotated 90 degrees.
Default is FALSE.

Value

A ggplot object representing the mutation spectra plot.

Examples
# Example data consists of 24 mouse bone marrow DNA samples imported
# using import_mut_data() and filtered with filter_mut. Filtered
# mutation data is available in the MutSegRData ExperimentHub package:
# eh <- ExperimentHub: :ExperimentHub()
# Example 1: Visualized the 6-base mutation proportions per dose group.
# Data was summarized per dose_group using:
# calculate_mf(mutation_data = eh[["EH9861"1],
# cols_to_group = "dose_group”,


https://colorbrewer2.org/
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# subtype_resolution = "base_6")

# Load the example data

mf_example <- readRDS(system.file("extdata”, "Example_files”, "mf_data_6.rds",
package = "MutSeqR”

)

# Convert dose_group to a factor with the desired order.

mf_example$dose_group <- factor(mf_example$dose_group,
levels = c("Control”, "Low"”, "Medium”, "High")

)

# Plot the mutation spectra

plot <- plot_spectra(
mf_data = mf_example,

group_col = "dose_group”,
subtype_resolution = "base_6",
response = "proportion”,
group_order = "arranged”,
group_order_input = "dose_group”

# Example 2: plot the proportion of 6-based mutation subtypes
# for each sample, ordered by hierarchical clustering:
# Data was summarized per dose_group using:
# calculate_mf(mutation_data = eh[["EH9861"1],
# cols_to_group = "sample”,
# subtype_resolution = "base_6")
# Load the example data
mf_example2 <- readRDS(system.file("extdata”, "Example_files”, "mf_data_6_sample.rds”,
package = "MutSegR”
))
plot <- plot_spectra(
mf_data = mf_example2,

group_col = "sample”,
subtype_resolution = "base_6",
response = "proportion”,
group_order = "clustered”
)
plot_trinucleotide Plot the trinucleotide spectrum
Description

Creates barplots of the trinucleotide spectrum for all levels of a given group.

Usage
plot_trinucleotide(
mf_96,
response = "proportion”,

mf_type = "min",
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plot_trinucleotide

group_col = "dose"”,
indiv_y = FALSE,

sum_totals
output_path
output_type

Arguments

mf_96

response

mf_type

group_col

indiv_y

sum_totals

output_path

output_type

Details

TRUE,

NULL,

n n

svg

A data frame containing the mutation frequency data at the 96-base resolution.
This should be obtained using the ’calculate_mf’ with subtype_resolution set to
’base_96’. Generally, cols_to_group should be the same as ’group_col’.

A character string specifying the type of response to plot. Must be one of ’fre-
quency’, *proportion’, or 'sum’.

A character string specifying the mutation count method to plot. Must be one of
’min’ or 'max’. Default is *'min’.

A character string specifying the column(s) in 'mf_96’ to group the data by.
Default is sample’. The sum, proportion, or frequency will be plotted for all
unique levels of this group. You can specify more than one column to group by.
Generally the same as the ’cols_to_group’ parameter in ’calculate_mf’ when
generating mf 96.

A logical value specifying whether the the max response value for the y-axis
should be scaled independently for each group (TRUE) or scaled the same for
all groups (FALSE). Default is FALSE.

A logical value specifying whether to display the total sum of mutations in the
mutation labels. Default is TRUE.

An optional file path to an output directory. If provided, the plots will be au-
tomatically exported using the graphics device specified in output_type. The
function will create the output directory if it doesn’t already exist. If NULL,
plots will not be exported. Default is NULL.

A character string specifying the type of output file. Options are ’eps’, 'ps’,
tex’, 'pdf’, or *jpeg’, ’tiff’, *png’, ’bmp’, ’svg’, or 'wmf’ (windows only). De-
fault is ’svg’.

The function plots the trinucleotide spectrum for all levels of a given group from the provided mf_96
data; the output of calculate_mf with subtype_resolution = "base_96".

Value

A named list containing ggplots.

Examples

# Calculate the mutation frequency data at the 96-base resolution
mf_96 <- readRDS(system.file("extdata"”, "Example_files”, "mf_data_96.rds",
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package = "MutSeqR"))
# Plot the trinucleotide proportions for the control and high dose groups
mf_96 <- dplyr::filter(mf_96, dose_group %in% c("Control”, "High"))

# Scale y-axis the same for all groups
plots <- plot_trinucleotide(

mf_96 = mf_96,

response = "proportion”,
mf_type = "min”,
group_col = "dose_group”,
indiv_y = FALSE,
output_path = NULL

plot_trinucleotide_heatmap
Create a heatmap plot of mutation subtype proportions.

Description

This function creates a heatmap plot of subtype proportions for a given grouping variable. The
groups may be facetted by a second variable. Mutation sums for each facet group and normalized
subtype are calculated and displayed.

Usage
plot_trinucleotide_heatmap(

mf_data,
group_col = "sample”,
facet_col = "dose",
mf_type = "min",
mut_proportion_scale = "turbo”,
max = 0.2,

rescale_data = FALSE,
condensed = FALSE

)
Arguments

mf_data A data frame containing the mutation frequency data at the desired base reso-
lution. This is obtained using the ’calculate_mf’ with subtype_resolution set to
the desired resolution. cols_to_group should be the same as ’group_col’.

group_col The variable to group by.

facet_col The variable to facet by.

mf_type The type of mutation frequency to plot. Options are "min" or "max". (Default:

nminu
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mut_proportion_scale
The scale option for the mutation proportion. Options are passed to viridis::scale_fill_viridis_c.
One of # inferno, magma, plasma, viridis, cividis, turbo, mako, or rocket. We
highly reccomend the default for its ability to disciminate hard to see patterns.
(Default: "turbo")

max Maximum value used for plotting the proportions. Proportions that are higher
will have the maximum colour. (Default: 0.2)

rescale_data  Logical value indicating whether to rescale the mutation proportions to increase
the dynamic range of colors shown on the plot. (Default: TRUE)

condensed More condensed plotting format. Default = FALSE.

Value

A ggplot object representing the heatmap plot.

Examples

mf_96 <- readRDS(system.file("extdata/Example_files/mf_data_96_sample.rds",
package = "MutSeqR"))
# define dose_group order
mf_96$dose_group <- factor(mf_96$dose_group,
levels = c("Control”, "Low","Medium”, "High")

)

plot <- plot_trinucleotide_heatmap(mf_96,
group_col = "sample”,
facet_col = "dose_group”

)

populate_sequence_context
Populate Sequence context

Description

This function populates the trinucleotide context for each mutation in the mutation data.

Usage

populate_sequence_context(mutation_granges, BS_genome, n = 1)

Arguments

mutation_granges
A GRanges object containing mutation data.

BS_genome The name of the Bioconductor BSgenome package to use for retrieving the ref-
erence genome sequence.

n An integer value indicating the number of base pairs to include on either side
of the mutation for context. Default is 1 (trinucleotide context including the
mutation).
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Value

A GRanges object with an additional column for the trinucleotide context.

print_ascii_art This function prints ASCII art when the package is loaded

Description

This function prints ASCII art when the package is loaded

Usage

print_ascii_art()

Value
None
rename_columns Map column names of mutation data to default column names. A utility
function that renames columns of mutation data to default columns
names.
Description

Map column names of mutation data to default column names. A utility function that renames
columns of mutation data to default columns names.

Usage

rename_columns(data, column_map = op$column)

Arguments

data mutation data

column_map a list that maps synonymous column names to their default.
Value

the mutation data with column names changed to match default.
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Examples

df <- data.frame(
chromosome = c("chr1”, "chr2", "chr3"),
pos = c(100, 200, 300),
end = c(100, 200, 300),
sample_id = c("S1", "S2", "S3"),
reference = c("G", "C", "T"),
alternate = c("A", "T", "G")

)

renamed_data <- rename_columns(df, column_map = op$column)

render_report Read configuration file and render R Markdown document

Description

This function reads a configuration file in YAML format, extracts the parameters, and renders an R
Markdown document using the specified parameters.

Usage

render_report(
config_filepath,

output_file = "./MutSeqR_Summary_Report.html”,
output_format = "html_document”
)
Arguments

config_filepath
The path to the configuration file.

output_file The name of the output file. Will be saved to the outputdir in config params.

output_format The format of the output file. Options are "html_document" (default), "pdf_document",
or "all".

Value

A rendered R Markdown document.

Examples

# Step 1: Copy the example configuration file to your working directory

## config <- system.file("extdata”, "inputs"”, "summary_config.yaml"”, package = "MutSeqR")
## file.copy(from = config, to = "your/working/directory/summary_config.yaml")

# Step 2: Edit the configuration file with your inputs

# Step 3: Render the report

## render_report(config_filepath = "your/working/directory/summary_config.yaml"”,

## output_file = "MutSeqR_Summary_Report.html”,
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## output_format = "html_document")

reverseComplement Get the reverse complement of a DNA or RNA sequence.

Description

Get the reverse complement of a DNA or RNA sequence.

Usage
reverseComplement (
X,
content = c("dna”, "rna"),
case = c("lower”, "upper"”, "as is")
)
Arguments
X A character vector of DNA or RNA sequences.
content c("dna", "rna") The type of sequence to be reversed.
case c("lower", "upper"”, "as is") The case of the output sequence.
Details

This file is part of the source code for SPGS: an R package for identifying statistical patterns in ge-
nomic sequences. Copyright (C) 2015 Universidad de Chile and INRIA-Chile A copy of Version 2
of the GNU Public License is available in the share/licenses/gpl-2 file in the R installation directory
or from http://www.R-project.org/Licenses/GPL-2. reverseComplement.R

Value

A character vector of the reverse complement sequences.
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setup_mutseqr_python  Ser up Python environment for MutSeqR

Description

This function initializes the Python environment used by MutSeqR. It is not run automatically to
avoid issues during installation and checks.

Usage

setup_mutseqr_python(force = FALSE)

Arguments

force Logical. Whether to force reconfiguration even if an environment already exists.

Value

None

sidak Correct p-values for multiple comparisons

Description

Correct p-values for multiple comparisons

Usage

sidak(vecP)

Arguments

vecP vector of p-values

Details

This function corrects a vector of probabilities for multiple testing using the Bonferroni (1935) and
Sidak (1967) corrections. References: Bonferroni (1935), Sidak (1967), Wright (1992). Bonferroni,
C. E. 1935. 1l calcolo delle assicurazioni su gruppi di teste. Pp. 13-60 in: Studi in onore del
Professore Salvatore Ortu Carboni. Roma. Sidak, Z. 1967. Rectangular confidence regions for the
means of multivariate normal distributions. Journal of the American Statistical Association 62:626-
633. Wright, S. P. 1992. Adjusted P-values for simultaneous inference. Biometrics 48: 1005-1013.
Pierre Legendre, May 2007



signature_fitting

Value

adjusted p-values

Examples
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p_values <- c(0.01, ©.04, 0.03, 0.08, 0.05)
adjusted_p <- sidak(p_values)

adjusted_p$SidakP

signature_fitting Run COSMIC signatures comparison using SigProfilerAssignment

Description

Run COSMIC signatures comparison using SigProfilerAssignment

Usage

signature_fitting(
mutation_data,
project_name = "Default”,
project_genome = "GRCh38",
env_name = "MutSeqR",
group = "sample”,

output_path =

NULL,

python_version

Arguments

mutation_data

project_name

project_genome

env_name

group

output_path

python_version

A data frame containing mutation data.

The name of the project. This is used to format the data into required .txt format
for SigProfiler tools.

The reference genome to use. On first use, the function will install the genome
using SigProfilerMatrixGenerator::install. e.x. GRCh37, GRCH38, mm10, mm9,
mé6

The name of the virtual environment. This will be created on first use.

The column in the mutation data used to aggregate groups. Signature assignment
will be performed on each group separately.

The filepath to the directory in which the output folder will be created to store
results. Default is NULL. This will store results in the current working directory.

The version of python installed on the user’s computer.
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Details

Assign COSMIC SBS signatures to mutation data using SigProfilerAssignment. Data is cleaned
and formatted for input into SigProfiler tools. This function will create a virtual environment using
reticulate to run python, as this is a requirement for the SigProfiler suite of tools. Note that it will
also install several python dependencies using a conda virtual environment on first use. Please be
aware of the implications of this. For advanced use, it is suggested to use the SigProfiler python
tools directly in python as described in their respective documentation. Users must have python
installed on their computer to use this function.

Mutation data will be filtered to only include SNVs. Variants flagged by the filter_mut column will
be excluded.

Value

Creates a subfolder "SigProfiler” in the output directory with SigProfiler tools results. For a com-
plete breakdown of the results, see the Readme file for MutSeqR. Most relevant results are stored
in SigProfiler > ggplot2::group > matrices > output > Assignment_Solution > Activities > Sam-
pleReconstruction > WebPNGs. These plots show a summary of the signature assignment results
for each group. In each plot, the top left panel represents the base_96 mutation count for the group.
The bottom left panel represents the reconstructed profile. Below the reconstruction are the solu-
tion statistics that indicate the goodness of fit of the reconstructed profile to the observed profile.
(Recommended cosine similarity > 0.9). The panels on the right represent the SBS signatures that
contribute to the reconstructed profile. The signature name and its contribution % are shown in
the panel. A high contribution means a high association of the signature with the group’s mutation
spectra.

Examples

if (requireNamespace("MutSeqRData”, quietly = TRUE)) {
# Example data consists of 24 mouse bone marrow DNA samples imported
# using import_mut_data() and filtered with filter_mut as in Example 4.
# Sequenced on TS Mouse Mutagenesis Panel. Example data is
# retrieved from MutSegRData, an ExperimentHub data package.
library(ExperimentHub)
eh <- ExperimentHub()
example_data <- eh[["EH9861"]]
output_path <- tempdir()

signature_fitting(
mutation_data = example_data,

project_name = "Example”,
project_genome = "mm10",
env_name = "MutSeqR”,
group = "dose",
python_version = "3.11",
output_path = output_path
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spectra_comparison Compare the overall mutation spectra between groups

Description

spectra_comparison compares the mutation spectra of groups using a modified contingency table
approach.

Usage

spectra_comparison(
mf_data,
exp_variable,
mf_type = "min",

contrasts,
cont_sep = "\t"
)
Arguments
mf_data A data frame containing the MF data. This is the output from calculate_mf().

MF data should be at the desired subtype resolution. Required columns are the
exp_variable column(s), the subtype column, and sum_min or sum_max.

exp_variable The column names of the experimental variable(s) to be compared.
mf_type The type of mutation frequency to use. Default is "min" (recommended).

contrasts a filepath to a file OR a dataframe that specifies the comparisons to be made
between levels of the exp_variable(s) The table must consist of two columns,
each containing a level of the exp_variable. The level in the first column will
compared to the level in the second column for each row in contrasts. When
using more than one exp_variable, separate the levels of each variable with a
colon. Ensure that all variables listed in exp_variable are represented in each
entry for the table. See details for examples.

cont_sep The delimiter used to import the contrasts table. Default is tab.

Details

This function creates an R * 2 contigency table of the subtype counts, where R is the number of
subtypes for the 2 groups being compared. The G2 likelihood ratio statistic is used to evaluate
whether the proportion (count/group total) of each mutation subtype equals that of the other group.

The G2 statistic refers to a chi-squared distribution to compute the p-value for large sample sizes.
When N/ (R-1) < 20, where N is the total mutation counts across both groups, the function will use
a F-distribution to compute the p-value in order to reduce false positive rates.

The comparison assumes independance among the observations, as such, it is highly recommended
to use mf_type = "min".
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spectra_comparison

Examples of contrasts: For ’exp_variable = "dose"‘ with dose groups 0, 12.5, 25, 50, compare
each treated dose to the control:

1250
250
500

Ex. Consider two ’exp_variables = c("dose", "tissue")‘; with levels dose (0, 12.5, 25, 50) and
tissue("bone_marrow", "liver"). To compare the mutation spectra between tissues for each dose
group, the contrast table would look like:

0:bone_marrow O:liver
12.5:bone_marrow 12.5:liver
25:bone_marrow 25:liver

50:bone_marrow 50:liver

Value

the log-likelihood statistic G2 for the specified comparisons with the p-value adjusted for multiple-
comparisons.

Examples

Example data consists of 24 mouse bone marrow DNA samples imported
using import_mut_data() and filtered with filter_mut. Filtered
mutation data is available in the MutSeqRData ExperimentHub package:
eh <- ExperimentHub: :ExperimentHub()
Data was summarized per sample using:
calculate_mf(mutation_data = eh[["EH9861"]],

cols_to_group = "dose_group”,

subtype_resolution = "base_6")

e E E EEE

# Example: compare 6-base mutation spectra between dose groups
# Load the example data
mf_example <- readRDS(
system.file("extdata"”, "Example_files”, "mf_data_6.rds",
package = "MutSegR”
)
)

# Create the contrasts table
contrasts <- data.frame(
coll = c("Low”, "Medium”, "High"),
col2 = rep(”"Control”, 3)
)
# Run the comparison
spectra_comparison(
mf_data = mf_example,
exp_variable = "dose_group”,
mf_type = "min"”,
contrasts = contrasts
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subtype_dict Subtype Resolution Dictionary

Description

Associates the subtype resolution names with their corresponding column names in the mutation
data.

Usage

subtype_dict

Format

A vector with corresponding values

Examples

subtype_dict["base_96"]
subtype_dict["type"]

subtype_list A comprehensive list of mutation subtypes at different resolutions

Description

A comprehensive list of mutation subtypes at different resolutions

Usage

subtype_list

Format

A list with corresponding values

Examples

subtype_list[["type"]1]
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vcf_sample_fix Retrieve the sample column from VCF files

Description

Checks to find the sample name of the vcf in the INFO field or in the FORMAT header. Can also
handle sample name synonyms.

Usage

vcf_sample_fix(vcf)

Arguments

vef The imported VCF

Value

The vcf with sample column name corrected

write_excel Write results to Excel tables

Description

Writes data to an Excel file.

Usage

write_excel(data, output_path = NULL, workbook_name, model_results = FALSE)

Arguments
data A data frame, a list of data frames, or model_mf output.
output_path Directory to write to. Defaults to current working directory.

workbook_name  Filename (without extension).

model_results Logical. Set to TRUE if data is output from model_mf.

Value

A saved Excel workbook.
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Examples

# Example data consists of 24 mouse bone marrow DNA samples imported

# using import_mut_data(), filtered with filter_mut, and summarized

# using calculate_mf().

outputpath <- tempdir()

mf_example <- readRDS(system.file("extdata/Example_files/mf_data_global.rds",
package = "MutSegR”

)

mf_example2 <- readRDS(system.file("extdata/Example_files/mf_data_6.rds",
package = "MutSeqR”

))

mf_example3 <- readRDS(
system.file("extdata/Example_files/mf_data_6_sample.rds”,

package = "MutSegR"”

)

)

list <- list(mf_example, mf_example2, mf_example3)

names(list) <- c("Global MF", "Base 6 Spectra”, "Base 6 Sample Spectra”)

# save a single data frame to an Excel file
write_excel(

mf_example,

output_path = outputpath,

workbook_name = "test_single”

)

# save a list of data frames to an Excel file
write_excel(list, output_path = outputpath, workbook_name = "test_list")

write_mutational_matrix
Write a Mutational Matrix to input into the sigprofiler web application

Description

Creates a .txt file from mutation data that can be used for mutational signatures analysis using
the SigProfiler web application. Can handle group analyses (ex dose, tissue, etc). Currently only
supports SBS matrices i.e. snvs.

Usage

write_mutational_matrix(
mutation_data,
group = "dose",
subtype_resolution = "base_96",
mf_type = "min",
output_path = NULL



72 write_mutational _matrix

Arguments

mutation_data The object containing the mutation data. The output of import_mut_data() or
import_vcf_data().

group The column in the mutation data used to aggregate groups (e.g., sample, tissue,
dose).

subtype_resolution
The resolution of the mutation subtypes. Options are "base_6" or "base_96".
Default is "base_96".

mf_type The mutation counting method to use. Options are "min" or "max". Default is

no_son

min .

output_path The path to save the output file. If not provided, the file will be saved in the
current working directory. Default is NULL.

Details

Mutations will be be filtered for SNVs. Mutations flagged in filter_mut will be excluded from
the output. Mutations will be summed across the groups specified in the group argument.

Value

a .txt file that can be uploaded to the SigProfiler Assignment web application (https://cancer.sanger.ac.uk/signatures/assignmes
as a "Mutational Matrix".

Examples

Example data consists of 24 mouse bone marrow

samples exposed to three doses of BaP alongside vehicle controls.
Libraries were sequenced with Duplex Sequencing using

the TwinStrand Mouse Mutagenesis Panel which consists of 20 2.4kb
targets = 48kb of sequence. Example data can be retrieved from
MutSegRData, an ExperimentHub data package:

## library(ExperimentHub)

## eh <- ExperimentHub()

## query(eh, "MutSeqRData")

# The data is a subset of variants from the target chri

# from samples of the high dose group (50mg).

example_data <- readRDS(system.file("extdata”, "Example_files”,
"variants_subset_d50_chr1.rds",
package = "MutSeqR")

ETE N T

write_mutational_matrix(
mutation_data = example_data,
group = "sample”,
subtype_resolution = "base_96",
mf_type = "min”,
output_path = tempdir()
)
list.files(tempdir())
# The file is saved in the temporary directory
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# To view the file, use the following code:
## output_file <- file.path(tempdir(), "sample_base_96_mutational_matrix.txt")
## file.show(output_file)

write_mutation_calling_file

Write the mutation calling file to input into the SigProfiler Assignment
web application.

Description

Creates a .txt file from mutation data that can be used for mutational signatures analysis using the
SigProfiler Assignment web application. Currently only supports SBS analysis i.e. snvs.

Usage

write_mutation_calling_file(
mutation_data,
project_name = "Example",
project_genome = "GRCm38",
output_path = NULL

)

Arguments

mutation_data The object containing the mutation data. The output of import_mut_data() or
import_vcf_data().

project_name The name of the project. Default is "Example".
project_genome The reference genome to use. (e.g., Human: GRCh38, Mouse mm10: GRCm38)

output_path The path to save the output file. If NULL, files will be saved in the current
working directory. Default is NULL.
Details
Mutations will be be filtered for SNVs. Mutations flagged in filter_mut will be excluded from
the output.
Value

a.txt file that can be uploaded to the SigProfiler Assignment web application (https://cancer.sanger.ac.uk/signatures/assignme:
as a "Mutational calling file".
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Examples

Example data consists of 24 mouse bone marrow

samples exposed to three doses of BaP alongside vehicle controls.
Libraries were sequenced with Duplex Sequencing using

the TwinStrand Mouse Mutagenesis Panel which consists of 20 2.4kb
targets = 48kb of sequence. Example data can be retrieved from
MutSegRData, an ExperimentHub data package:

## library(ExperimentHub)

## eh <- ExperimentHub()

## query(eh, "MutSeqRData")

# The data is a subset of variants from the target chri

# from samples of the high dose group (50mg).

example_data <- readRDS(system.file("extdata”, "Example_files”,
"variants_subset_d50_chr1.rds",
package = "MutSegR")

% o H W

)
write_mutation_calling_file(
mutation_data = example_data,
project_name = "Example”,
project_genome = "GRCm38",
output_path = tempdir()
)
list.files(tempdir())
# The file is saved in the temporary directory
# To view the file, use the following code:
## output_file <- file.path(tempdir(), "mutation_calling_file.txt")
## file.show(output_file)

write_reference_fasta Write FASTA file of reference sequences.

Description

Write FASTA file of reference sequences.

Usage

write_reference_fasta(regions_gr, output_path = NULL)

Arguments

regions_gr A GRanges object including the sequences of the reference regions included for
the data. This can be generated from the get_seq function.

output_path The directory where the FASTA file should be written. Default is NULL, which
will write the file to the current working directory.

Details

Generate an arbitrary multi-sequence FASTA file from GRanges including the reference sequences.
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Value

Writes a FASTA reference file "reference_output.fasta". If multiple ranges are included in the
GRanges object, the sequences will be written to a single FASTA file. Sequences names will be
the seqnames (contig) of the range.

Examples

# Write FASTA files for the 20 genomic target sequences
# of TwinStrand's Mouse Mutagenesis Panel.

output_path <- tempdir()

rg <- get_seq("TSpanel_mouse")
write_reference_fasta(rg, output_path = output_path)

write_vcf_from_mut Write mutation_data to a VCF file

Description

Export your mutation_data to a VCF file for downstream applications.

Usage

write_vcf_from_mut(mutation_data, output_path = NULL)

Arguments

mutation_data A dataframe of a GRanges object containing your mutation data. This can be the
output of import_mut_data, import_vcf_data, or filter_mut. Coordinates
must be 1-based. Required columns are "contig", "start", "end", "ref", "alt",
"sample", "alt_depth", "total_depth", and "ref_depth". Additional columns are
allowed.

output_path The directory where the VCF file should be written. Default is NULL, which
will write the file to the current working directory.

Value

Writes a VCF file of mutations "mutation_output.vcf".

Examples

Example data consists of 24 mouse bone marrow

samples exposed to three doses of BaP alongside vehicle controls.
Libraries were sequenced with Duplex Sequencing using

the TwinStrand Mouse Mutagenesis Panel which consists of 20 2.4kb
targets = 48kb of sequence. Example data can be retrieved from
MutSegRData, an ExperimentHub data package:

## library(ExperimentHub)

## eh <- ExperimentHub()

#
#
#
#
#
#
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## query(eh, "MutSeqRData")

# The data is a subset of variants from the target chri

# from samples of the high dose group (50mg).

example_data <- readRDS(system.file("extdata”, "Example_files”,
"variants_subset_d50_chr1.rds",
package = "MutSegR")

)

# Export mutation data of the four samples to a multi-sample VCF file.

write_vcf_from_mut(mutation_data = example_data, output_path = tempdir())

%>%

%>% Pipe operator

Description

See magrittr: :%>% for details.

Usage
lhs %>% rhs

Arguments

lhs A value or the magrittr placeholder.

rhs A function call using the magrittr semantics.
Value

The result of calling rhs(1hs).

Examples

df <- data.frame(x = 1:5, y = rnorm(5))
df %>% dplyr::mutate(z = x + y)
df %>% head(3) %>% summary()
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