Package ‘R4RNA’

January 16, 2026

Type Package

Title An R package for RNA visualization and analysis

Version 1.39.0

Date 2015-11-02

Author Daniel Lai, Irmtraud Meyer <irmtraud.meyer@cantab.net>
Maintainer Daniel Lai <jujubix@cs.ubc.ca>

Depends R (>= 3.2.0), Biostrings (>= 2.38.0)

Description A package for RNA basepair analysis, including the visualization of basepairs as arc dia-
grams for easy comparison and annotation of sequence
and structure. Arc diagrams can additionally be projected onto multiple sequence align-
ments to assess basepair conservation and
covariation, with numerical methods for computing statistics for each.

License GPL-3

biocViews Alignment, MultipleSequenceAlignment, Preprocessing,
Visualization, Datalmport, DataRepresentation,
MultipleComparison

URL http://www.e-rna.org/r-chie/

NeedsCompilation no

git_url https://git.bioconductor.org/packages/R4ARNA

git_branch devel

git_last_commit b949aed

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-15

Contents
R4RNA-package e 2
Alignment Statistics L. e e 3
Basepair Frequency 4

http://www.e-rna.org/r-chie/

2 R4RNA-package

Basepair/Helix Conversion i 5
Coerceto Helix o e 6
Colour Helices e e e 7
Convert Helix Formats 9
Covariation Plots 11
Create Blank Plot 14
Example Data 15
Find Unknotted Groups e 16
Helix Type Filters o o e e e 17
LoglO Space Operations o v v vt v ittt e e 18
Plot Helix Structures e e e e 19
Read Structure File e 21
Structure Mismatch Score 23
Write Helix e e e 24

Index 25

R4RNA-package An R package for RNA visualization and analysis
Description

An R package for RNA visualization and analysis

Examples

Read input data
predicted <- readHelix(system.file("extdata”, "helix.txt"”, package = "R4RNA"))
known <- readVienna(system.file("extdata"”, "vienna.txt"”, package = "R4RNA"))
sequence <- as.character(readBStringSet(system.file("extdata”, "fasta.txt", package = "R4RNA")))

plotHelix(predicted)

pval.coloured <- colourByValue(predicted, log = TRUE, get = TRUE)
plotDoubleHelix(pval.coloured, known, scale = FALSE)
plotOverlapHelix(pval.coloured, known)

cov.coloured <- colourByCovariation(known, sequence, get = TRUE)
plotCovariance(sequence, cov.coloured)

plotDoubleCovariance(cov.coloured, pval.coloured, sequence,
conflict.filter = "grey")

plotOverlapCovariance(pval.coloured, known, sequence, grid = TRUE,
conflict.filter = "grey"”, legend = FALSE, any = TRUE)

List of all functions
1s("package:R4RNA")
use example() and help() for more details on each function

Alignment Statistics 3

Alignment Statistics Compute statistics for a multiple sequence alignments

Description

Functions to compute covariation, percent identity conservation, and percent canonical basepairs
given a multiple sequence alignment and optionally a secondary structure. Statistics can be com-
puted for a single base, basepair, helix or entire alignment.

Usage

baseConservation(msa, pos)

basepairConservation(msa, pos.5p, pos.3p)
basepairCovariation(msa, pos.5p, pos.3p)
basepairCanonical (msa, pos.5p, pos.3p)

helixConservation(helix, msa)
helixCovariation(helix, msa)
helixCanonical(helix, msa)

alignmentConservation(msa)
alignmentCovariation(msa, helix)
alignmentCanonical (msa, helix)

alignmentPercentGaps(msa)

Arguments

helix A helix data.frame

msa A multiple sequence alignment. Can be either aBiostrings XStringSet object
or a named array of strings like ones obtained from converting XStringSet with
as.character.

pos, pos.5p, pos. 3p
Positions of bases or basepairs for which statistics shall be calculated for.

Details

Conservation values have a range of [0, 1], where O is the absence of primary sequence conservation
(all bases different), and 1 is full primary sequence conservation (all bases identical).

Canonical values have a range of [0, 1], where O is a complete lack of basepair potential, and 1
indicates that all basepairs are valid

Covariation values have a range of [-2, 2], where -2 is a complete lack of basepair potential and
sequence conservation, 0 is complete sequence conservation regardless of basepairing potential,
and 2 is a complete lack of sequence conservation but maintaining full basepair potential.

4 Basepair Frequency

helix values are average of base/basepair values, and the alignment values are averages of helices
or all columns depending on whether the helix argument is required.

alignmentPercentGaps simply returns the percentage of nucleotides that are gaps in a sequence
for each sequence of the alignment.

Value

baseConservation, basepairConservation, basepairCovariation, basepairCanonical, alignmentConservation,
alignmentCovariation, and alignmentCanonical return a single decimal value.

helixConservation, helixCovariation, helixCanonical return a list of values whose length
equals the number of rows in helix.

alignmentPercentGaps returns a list of values whose length equals the number of sequences in
the multiple sequence alignment.
Author(s)

Jeff Proctor, Daniel Lai

Examples

data(helix)
baseConservation(fasta, 9)

basepairConservation(fasta, 9, 18)
basepairCovariation(fasta, 9, 18)
basepairCanonical (fasta, 9, 18)

helixConservation(helix, fasta)
helixCovariation(helix, fasta)
helixCanonical(helix, fasta)

alignmentConservation(fasta)
alignmentCovariation(fasta, helix)

alignmentCanonical(fasta, helix)

alignmentPercentGaps(fasta)

Basepair Frequency Calculates the frequency of each basepair

Description

Calculates the frequency of each basepair in a given helix structure. Internally, breaks helices into
basepairs, and returns a structure of unique basepairs, where the values is its frequency, regardless
of original value.

Basepair/Helix Conversion 5

Usage
basepairFrequency(helix)
Arguments
helix A helix data.frame
Value

A helix data.frame of unique basepairs of length 1, with the frequency of appearance as its value,
sorted by decreasing value.

Author(s)

Daniel Lai

See Also

colourByBasepairFrequency

Examples

data(helix)
basepairFrequency(helix)

Basepair/Helix Conversion
Expand or collapse helices to and from basepairs

Description

Given a helix data frame, expands a helix of arbitrary length into helices of length 1 (i.e. base-
pairs). Also does the reverse operation of clustering consecutive basepairs (or helices), and merg-
ing/collapsing them into a single helix.

Usage
expandHelix(helix)
collapseHelix(helix, number = FALSE)
Arguments
helix A helix data frame.
number Indicates presence of a column in the helix data frame titled exactly 'number’,

which will be used to unique identify basepairs belonging to the same helix.
Only basepairs from the same helix as identified by the number will be collapsed
together.

6 Coerce to Helix

Details

During the expansion, basepairs expanded from a single helix will all be assigned the value of the
originating helix (the same goes for all other columns besides i, j, and length). During collapsing,
only helices/basepairs of equal value will be grouped together. The ordering of collapsed helices
returned will be sorted by value (increasing order). For any other columns besides i, j, length and
value, values will be obtained from the corresponding columns of the outer most basepair.

Value

Returns a helix data frame.

Author(s)
Daniel Lai

Examples

Create helix data frame

helix <- data.frame(2, 8, 3, 0.5)
helix[2,] <- c(5, 15, 4, -0.5)
helix <- as.helix(helix)
helix$colour <- c("red”, "blue")

Before expansion

print(helix)

After expansion

print(expanded <- expandHelix(helix))
Collapse back (sorted by value)
print(collapseHelix(expanded))

Coerce to Helix Coerce to a Helix Data Frame

Description

Functions to coerce a structure into a helix data frame, and to check whether a structure is a valid
helix data frame. A helix data frame is a data frame, so any structure coercible into a data.frame
can become a helix data frame.

Usage
as.helix(x, length)
is.helix(x)
Arguments
X Structure to coerce. Should be a structure coercible into a standard R data.frame

structure for as.helix. Should be a string for parseBracket. May be anything
for is.helix.

length The length of the RNA sequence containing the helices.

Colour Helices 7

Details

as.helix takes in a data.frame and coerces it into a helix data frame acceptable by other R4ARNA
functions. This mainly involves setting specific column names and casting to specific types.

Value

is.helix returns a boolean.

as.helix returns helix data frame with valid input.

Author(s)

Daniel Lai

Examples

Not a valid helix data frame

helix <- data.frame(c(1, 2, 3), seq(10, 20, length.out = 3), 5, runif(3))
is.helix(helix)

warnings()

Formatted into a helix data frame
helix <- as.helix(helix)
is.helix(helix)

Colour Helices Assign colours to helices

Description

Functions to generate colours for helices by various rules, including integer counts, value ranges,
percent identity covariation, conservation, percentage canonical basepair, basepair frequency, and
non-pseudoknotted groups.

Usage

colourByCount(helix, cols, counts, get = FALSE)
colourByValue(helix, cols, breaks, get = FALSE,

log = FALSE, include.lowest = TRUE, ...)
colourByBasepairFrequency(helix, cols, get = TRUE)
colourByUnknottedGroups(helix, cols, get = TRUE)
colourByCovariation(helix, msa, cols, get = FALSE)
colourByConservation(helix, msa, cols, get = FALSE)
colourByCanonical (helix, msa, cols, get = FALSE)
defaultPalette()

8 Colour Helices

Arguments

helix A helix data frame to be coloured.

cols An array of characters (or numbers) representing a set of colours to colour helix
with. When missing, a default set of colours from defaultPalette() will be used.
Valid input include hex codes, colour names from the colours function, and
integer numbers. The colours will be interpreted as being from best to worst.

counts An array of integers the same length as cols, dictating the number of times each
corresponding colour should be used. When missing, the function will divide the
number of helices evenly over each of the colours available.

breaks An integer number of intervals to break the ‘value’ column of helix into, or
a list of numbers defining the interval breaks. If missing, the range of ‘he-
lix$value’ will automatically be split evenly into intervals for each colour avail-
able.

get If TRUE, returns the input helix with a col column, else simply returns an
array of colours the same length as the number of row in helix. The exceptions
are colourByBasepairFrequency and colourByUnknottedGroups which will
return a different helix if TRUE, and a list of colours that will not match the
input helix if FALSE.

log If TRUE, will breaks values into even log10 space intervals, useful when values
are p-values.

include.lowest Whether the lowest interval should include the lowest value, passed to cut

Additional arguments passed to cut, potentially useful ones include right (whether
intervals should be inclusive on the right or left) and dig.lab (number of digits
in interval labels).

msa A multiple sequence alignment. Can be either aBiostrings XStringSet object
or a named array of strings like ones obtained from converting XStringSet with
as.character.

Details
colourByCount assigns colours indepenent of the helix input’s value column, and instead operates
over the number of helices (i.e. rows).
colourByValue uses cut to assign each of the helices to an interval based on its value.

colourByCovariation, colourByConservation , and colourByCanonical, colour helices ac-
cording to compensatory mutations (or covariation), percentage identity conservation, and percent-
age canonical basepair repsectively, relative to the multiple sequence alignment provided.

colourByBasepairFrequency colours each basepair according to the number of times it appear in
the input, regardless of its value.

colourByUnknottedGroups greedily partitions the basepairs into non- pseudoknotted groups, and
assigns a colour to each.
Value

All “colourBy” functions return a list of colours when get = FALSE, and a helix with a col col-
umn if get = TRUE. In both bases, the returned object has attributes “legend” and “fill”, showing

Convert Helix Formats 9

the mapping between interval (in legend) and colour (in fill), which can as eponymous arguments
legend.

defaultPalette returns the default list of colours.

Author(s)
Daniel Lai

See Also
plotHelix
logseq
basepairFrequency

unknottedGroups

Examples

data(helix)

known$col <- colourByCount (known)
plotHelix(known)

plotHelix(colourByValue(helix, log = TRUE, get = TRUE))

cov <- colourByCovariation(known, fasta, get = TRUE)
plotCovariance(fasta, cov)
legend("topleft”, legend = attr(cov, "legend"),

fill = attr(cov, "fill"), title = "Covariation”)

Convert Helix Formats Convert helix structures to and from other formats

Description

Converts dot bracket vienna format to and from helix format. It should be noted that the allows
structures of vienna is a subset of those allowed in the helix format. Thus, conversion from vienna
to helix will yield the identical structure, while conversion from helix to vienna may result in the
loss of certain basepairs (mainly those that are conflicting). Pseudoknots are supported in both
directions of conversion with limitations.

Usage

viennaToHelix(vienna, value = NA, palette = NA)
helixToVienna(helix)

helixToConnect(helix)

helixToBpseq(helix)

10 Convert Helix Formats

Arguments
vienna A string containing only a vienna dot bracket structure, with balanced brackets.
Allowable brackets are (, <, [, {, A, B, C, and D (where upper-case alphabets are
paired with lower-case alphabets).
value A numerical value to assign to all helices.
palette A list of colour names for up to 8 colours that will be used to colour brackets of
type (, <, [, {, A, B, C, and D, respectively.
helix A helix data.frame.
Details

viennaToHelix will ignore any non dot-bracket characters prior to parsing, so the resultant length
will be shorter than expected if invalid characters are included.

If the colour palette is less than the number of supported brackets, it will simply cycle through the
list. To explicitly prevent the colouring/ display of specific bracket type, colour it “NA”.

For helixToVienna, pseudoknotted basepairs will be assigned different bracket types. As there are
only 8 supported bracket types, any basepair pseudonotted deeper than 8 levels will be excluded
from the output. Additionally, vienna format is unable to respresent conflicting basepairs, so con-
flicting basepairs will also be excluded. For both types of exclusion, those at the bottom of the helix
data.frame will always be excluded in favour of keeping helices higher on the data.frame table.

helixToConnect and helixToBpseq will convert a non-conflicting helix data.frame into connect
or bpseq format repsectively, provided the helix structure has a “sequence” attribute containing a
single nucleotide sequence of the structure.

Value

viennaToHelix returns a helix data.frame. helixToVienna returns a character string of basepairs
in the Vienna helix format. helixToConnect and HelixTpBpseq return data.frames in the connect
and bpseq formats, respectively.

Author(s)
Daniel Lai

Examples

viennaToHelix demonstrating ALL valid bracket symbols
dot_bracket <- "..... <L{..... ABCD..... 3>) ... dcba.. ... "
parsed <- viennaToHelix(dot_bracket, -31.5)

print(parsed)

vienna <- helixToVienna(parsed)
print(vienna)

Colouring the brackets by bracket type

colour <- c("red”, "orange"”, "yellow”, "green”, "lightblue”, "blue”, "purple”, "black")
double.rainbow <- viennaToHelix(dot_bracket, @, colour)

plotHelix(double.rainbow)

Covariation Plots 11

Covariation Plots Plot nucleotide sequence coloured by covariance

Description

Given a multiple sequence alignment and a corresponding secondary structure, nucleotides in the
sequence alignment will be coloured according to the basepairing and conservation status, where
green is the most commonly observed valid basepair in the column, dark blue being valid covariation
(i.e. mutation into another valid basepair), cyan is one-sided mutation that retains the basepair, and
red is a mutation where the basepair has been lost.

Usage
plotCovariance(msa, helix, arcs = TRUE, add = FALSE, grid = FALSE, text =
FALSE, legend = TRUE, species = @, base.colour = FALSE, palette = NA, flip =
FALSE, grid.col = "white”, grid.lwd = @, text.cex = 0.5, text.col = "white”,
text.font = 2, text.family = "sans"”, species.cex = 0.5, species.col = "black”,
species.font = 2, species.family = "mono”, shape = "circle"”, conflict.cutoff =
0.01, conflict.lty = 2, conflict.col = NA, pad = c(@, 0, 0, @), y =0, x =0,
o)
plotDoubleCovariance(top.helix, bot.helix, top.msa, bot.msa = top.msa,
add = FALSE, grid = FALSE, species = 0, legend = TRUE,
pad = c(0, @0, 0, @), ...)
plotOverlapCovariance(predict.helix, known.helix, msa, bot.msa = TRUE,
overlap.cutoff = 1, miss = "black”, add = FALSE, grid = FALSE, species = 0,
legend = TRUE, pad = c(@, 0, @, @), ...)
Arguments

msa, top.msa, bot.msa
A multiple sequence alignment. Can be either aBiostrings XStringSet object
or a named array of strings like ones obtained from converting XStringSet with
as.character.

top.msa and bot.msa are specific to top.helix and bot.helix respectively,
and may be set to NA to have no multiple sequence alignment at all.
helix, top.helix, bot.helix, predict.helix, known.helix
A helix data.frame with a structure corresponding to msa,
See plotDoubleHelix and plotOverlapHelix for detailed explanations of top.helix,
bot.helix, predict.helix, and known.helix.

arcs TRUE if the structure should be plotted as arcs. Arcs may be styled with styling
columns, see example and plotHelix for details.

add TRUE if graphical elements are to be added to an existing device, else a new
plotting device is created with blankPlot.

grid TRUE if the multiple sequence alignment is to be drawn as a grid of bases, else
the multiple sequence alignment is drawn as equidistant horizontal lines.

Covariation Plots

text Only applicable when grid is TRUE. TRUE if the grid is to be filled with nu-
cleotide character.

legend TRUE if legend are to be shown.

species If a number greater than 0 is given, then species names for the multiple sequence

alignment will be printed along the left side. This name is typically the entire
header lines of FASTA entries. The number specifies the start position relative
to the left edge of the multiple sequence alignment).

base.colour TRUE if bases are to be coloured by nucleotide instead of basepair conservation.

palette A list of colour names to override the default colour palette. When base.colour is
TRUE, the first 6 colours will be used for colouring bases A, U, G, C, - (gap), and
? (everything else), respectively. When base.colour is FALSE, the first 7 colours
will be used for colouring conserved basepairs, covarying basepairs, one-sided
conserved basepairs, invalid basepairs, unpaired bases, gaps, and bases/pairs
with ambiguous bases, resepctively. If the palette is shorter than the expected
length, the palette will simply cycle. “NA” is a valid colour, that will effectively
plot nothing.

flip If TRUE, the entire plot will be flipped upside down. Note that this is not a
perfect mirror image about the horizon.

grid.col, grid.lwd
The colour and line width of the borders displayed when grid is TRUE.

text.cex, text.col, text.font, text.family
cex, col, family and font for the text displayed via the text option. Use help(“par”)
for more information the paramters.

species.cex, species.col, species.font, species.family
cex, col, family and font for the species text displayed via the species option.
Use help("par") for more information the paramters.

non

shape One of "circle", "triangle", or "square", specifying the shape of the arcs.

conflict.1lty, conflict.col, conflict.cutoff
Determines the line type (style) and colour to be used for conflicting basepairs.
By default, conflicting helices are drawn as dotted lines (1ty = 2) and what-
ever colour was originally assigned to it (col = NA). Conflicting helices may be
coloured by setting conflict.col to some R-compatible colour name. If both
arguments are set to NA, then no attempt to exclude conflicting helices will be
made when colouring covariance plot columns, which in most cases will render
the plot nonsensical. When the input has helices with multiple basepairs, and
only part of the helix is conflicting, the conflict.cutoff determines above
what percentage of basepairs have to be conflicting before a helix is considered
conflicting, with the default set at 1 conflicting).

miss The colour for unpredicted arcs in overlapping diagrams, see plotOverlapHelix
for more information.

overlap.cutoff Decimal between O and 1 indicating the percentage of basepairs within a helix
that have to be overlapping for the entire helix to count as overlapping. Default
is 1, or 100

pad A four integer array passed to blankPlot, specifies the number of pixels to pad
the bottom, left, top and right sides of the figure with, repsectively.

Covariation Plots 13

X,y Coordinates for the left bottom corner of the plot. Useful for manually position-
ing and overlapping figure elements.

In plotCovariance, these are additional arguments passed to blankPlot, use-
ful arguments include ‘lwd’, ‘col’, ‘cex’ for line width, line colour, and text size,
respectively. help('par') for more.

For plotDoubleCovariance and plotOverlapCovariance, these are additional
arguments passed to plotCovariance (and thus indirectly also to blankPlot).
Value

Not intended to return a value, will plot to GUI or file if specific.

Author(s)

Daniel Lai

See Also

plotHelix
plotDoubleHelix
plotOverlapHelix
colourByCovariation
colourByConservation

colourByCanonical

Examples

data(helix)

Basic covariance plot
plotCovariance(fasta, known, cex = 0.8, 1lwd = 1.5)

Grid mode
plotCovariance(fasta, known, grid = TRUE, text = FALSE, cex = 0.8)

Global style and nucleotide colouring
plotCovariance(fasta, known, grid = TRUE, text

FALSE, base.colour = TRUE)

Styling indivual helices with styling columns
known$col <- c("red”, "blue")
plotCovariance(fasta, known, lwd = 2, cex = 0.8)

Use in combination with colourBy functions
cov <- colourByCovariation(known, fasta, get = TRUE)
plotCovariance(fasta, cov)
legend("topleft”, legend = attr(cov, "legend"),
fill = attr(cov, "fill"), title = "Covariation”)

14 Create Blank Plot

Create Blank Plot Create a blank plotting canvas

Description

Creates a blank plotting canvas with the given dimensions, along with functions to find best values
for the canvas dimensions.

Usage
blankPlot(width, top, bottom, pad = c(@, @, @, @), scale = TRUE,
scale.lwd = 1, scale.col = "#DDDDDD", scale.cex = 1, debug = FALSE,
png = NA, pdf = NA, factor = ifelse(!is.na(png), 8, 1/9),
no.par = FALSE, asp = 1,...)
maxHeight (helix)
Arguments
width A number indicating the horizontal width of the blank plot.
top, bottom The maximum and minimum values vertically to be displayed in the plot.
pad An array of 4 integers, specifying the pixels of whitespace to pad beyond the
dimensions given by top, bottom, and width. Four number corresponding to
padding on the bottom, left, top and right, respectively. Default is c(0, 0, 0, 0).
scale If TRUE, inserts a scale on the plot.

scale.lwd, scale.col, scale.cex
Allows manual modification of the scale’s line width and colour, respectively.

png, pdf If one or the other is set to a filename, a file in png or pdf format will be produced
respectively. If both are set to non-NA values, png will have priority.

factor The scaling factor used to produce plots of png or pdf format. Should be set so
after multiplication of the top, bot, etc arguments, good document dimension
in pixels with png and inches for pdf will be produced.

debug If TRUE, frames the boundaries of the intended plotting space in red, used to
determine if inputs produce expected output area. Also outputs to STDIN di-
mensions of the plot.

no.par Suppresses the internal call to par in the function if set to TRUE, useful for
using par arguments such as mfrow, etc.

asp Controls and aspect ratio of the plot, defaultly set to 1, set to NA to disable
completely.

Additional arguments passed to par when no.par is FALSE, common ones in-
clude ‘lwd’, ‘col’, ‘cex’ for line width, line colour, and text size, respectively.
help('par') for more. When no.par is set to TRUE, this option does nothing,
and manually calling par is required prior to the calling of this function.

helix A helix data.frame

Example Data 15

Details

blankPlot creates a blank plot with the given dimensions, with minimal margins around the plot
and no axis or labels. If more control is required, using plot directly would be more efficient.

maxHeight returns the height that the highest helix would require, and can be used to determine
top and bottom for blankPlot.

Value

maxHeight returns a numeric integer.

Author(s)

Daniel Lai

See Also

plotHelix

Examples

Create helix and obtain height

helix <- as.helix(data.frame(1, 37, 12, 0.5))
height <- maxHeight(helix)

print(height)

Use height to create properly sized plot
width <- attr(helix, "length")
blankPlot(width, height, @)

Add helix to plot
plotHelix(helix, add = TRUE)

Example Data Helices predicted by TRANSAT with p-values

Description

This data set contains two sets of helices and a multiple sequence alignment. The two sets of helices
are helices and known which are helices predicted to occur for RNA sequence RF00458 by the pro-
gram TRANSAT, and experimentally proposed structure of the same sequence, respectively. fasta
is the seed homologues for the multiple sequence alignment obtained from the RFAM database.

Usage
data(helix)

16 Find Unknotted Groups

Format

helix and known are 4 column data frames, where columns i and j denote the left-most and right-
most basepairs, the length is the number of consecutive basepairs the helix contains, and the value
is assigned to each helix on a row.

fasta is an array of named characters of length 7.

Value

fasta is an array of strings, helix and known are data.frames in “helix” format.

References

Wiebe NJ, Meyer IM. (2010) TRANSAT- method for detecting the conserved helices of functional
RNA structures, including transient, pseudo-knotted and alternative structures. PLoS Comput Biol.
6(6):¢1000823.

Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, Griffiths-Jones S, Finn RD, Nawrocki EP, Kolbe
DL, Eddy SR, Bateman A. (2011) Rfam: Wikipedia, clans and the “decimal” release. Nucleic
Acids Res. 39(Database issue):D141-5.

Find Unknotted Groups Partition basepairs into unknotted groups

Description

Breaks down input helices into basepairs, and assigns each basepair to a numbered group such that
basepairs in each group are non-pseudoknotted relative to all other basepairs within the same group.

The algorithm is greedy and thus will not find the best combination of basepairs to minimize the
number of groups.

Usage
unknottedGroups(helix)
Arguments
helix A helix data.frame.
Value

An array of integers dictating the groups of each helix. Will only correspond to the input helix
structure if the input had helices of length 1 (e.g. output of expandHelix).

Author(s)
Daniel Lai

Helix Type Filters 17

See Also

colourByUnknottedGroups

expandHelix

Examples

data(helix)
known$group <- unknottedGroups(known)
print(known)

Helix Type Filters Logical filters of helix by type

Description

Given a helix data frame, checks if helices are conflicting, duplicating, or overlapping, and returns
an array of numeric values, where 0 is FALSE and 1 is TRUE. Values in between 0 and 1 occur
when a single helix has multiple basepairs with different values, the number observed in this case is
the mean of the basepair values within the helix. See details for exact definition of the three types
of events.

Usage

isConflictingHelix(helix)
isDuplicatingHelix(helix)
isOverlappingHelix(helix, query)

Arguments
helix A helix data frame
query For isOverlappingHelix, a helix data structure against which helix will be
checked for overlap against.
Details

Helices of length greater than 1 are internally expanded into basepairs of length 1, after which the
following conditions are evaluated:

A conflicting basepair is one where at least one of its two positions is used by either end of another
basepair.

A duplicating basepair is one where both of its positions are used by both ends of another basepair.

An overlapping basepair is one in helix where both of its positions are used by both ends of
another basepair in the query structure.

In the case of conflicting and duplicating basepairs, for a set of basepairs that satisfies this condition,
the basepair situation highest on the data frame will be exempt from the condition. i.e. Say 5
basepairs are all duplicates of each other, the top 1 will return FALSE, while the bottom 4 will

18 Log10 Space Operations

return TRUE. This assumes some significant meaning to the ordering of rows prior to using this
function. This is to be used with which to filter out basepairs that satisfy these conditions, leaving
a set of basepairs free of these events.

If the original input had helices greater than length 1, then after applying all of the above, TRUE is
treated as 1, FALSE as 0, and the average of values from each basepair is taken as the value for the
helix in question.

Value

Returns an array of numerics corresponding to each row of helix, giving the average conditional
status of the helix, where 0 signifying all basepairs are FALSE, and 1 where all basepairs are TRUE.

Author(s)

Daniel Lai

Examples

data(helix)

conflicting <- isConflictingHelix(helix)
duplicating <- isDuplicatingHelix(helix)

Nonsensical covariation plot
plotCovariance(fasta, helix)

Plot nonconflicting helices
plotCovariance(fasta, helix[(!conflicting & !duplicating), 1)

Similar result
plotCovariance(fasta, helix, conflict.col = "lightgrey"”)

Log1@ Space Operations
Log base 10 sequence, floor and ceiling

Description

Sequence, floor and ceiling operations in log 10 space.
Usage
logseq(from, to, length.out)
logfloor(x)

logceiling(x)

Plot Helix Structures 19

Arguments
from, to Positive non-zero values to start and end sequence, respectively.
length.out The number of elements the resulting sequence should containg. If absent, func-
tion will attempt to generate numbers factors of 10 apart.
X A value to round.
Value

logseq returns an array numbers evenly distanced in log10-space.

logfloor and logceiling return a value that is 10 raised to an integer number.

Author(s)

Daniel Lai

Examples

logseq(le-10, 1e3)

logseq(le-10, 1e3, length.out = 10)
logceiling(2.13e-6)
logfloor(2.13e-6)

Plot Helix Structures Plots helices in arc diagram

Description

Plots a helix data frame as an arc diagram, with styling possible with properly named additional
columns on the data frame.

Usage
plotHelix(helix, x = @, y = @, flip = FALSE, line = FALSE, arrow = FALSE,
add = FALSE, shape = "circle", ...)
plotDoubleHelix(top, bot, line = TRUE, arrow = FALSE, add = FALSE, ...)
plotOverlapHelix(predict, known, miss = "black”, line = TRUE,
arrow = FALSE, add = FALSE, overlap.cutoff =1, ...)
plotArcs(i, j, length, x = 0, y = @, flip = FALSE, shape = "circle”, ...)
plotArc(i, j, x =0, y = @, flip = FALSE, shape = "circle"”, ...)

20

Arguments

Plot Helix Structures

helix, top, bot, predict, known

X’y

flip
line
arrow

add

shape

miss

overlap.cutoff

i’j
length

Details

Helix data.frames, with the four mandatory columns. Any other column will be
considered a styling column, and will be used for styling the helix. See example
for styling usage. See Details for exact usage of each helix.

The coordinate of the left bottom corner of the plot, useful for manually posi-
tioning figure elements.

If TRUE, flips the arcs upside down about the y-axis.
If TRUE, a horizontal line representing the sequence is plotted.
If TRUE, an arrow is played on the right end of the line.

If TRUE, graphical elements are added to the active plot device, else a new plot
device is created for the plot.

non

One of "circle", "triangle", or "square", specifying the shape of the arcs.

The colour for unpredicted arcs in overlapping diagrams, see details for more
information.

Decimal between 0 and 1 indicating the percentage of basepairs within a helix
that have to be overlapping for the entire helix to count as overlapping. Default
is 1, or 100

The starting and ending position of the arc along the x-axis

The total number of arcs to draw by incrementing i and decrementing j. Used to
draw helices.

Any additional parameters passed to par

plotHelix creates a arc diagram with all arcs on top, plotDoubleHelix creates a diagram with
arcs on the top and bottom. plotOverlapHelix is slight trickier, and given two structures predict
and known, plots the predicted helices that are known on top, predicted helices that are not known
on the bottom, and finally plots unpredicted helices on top in the colour defined by miss.

plotArc and plotArcs are the core functions that make everything work, and may be used for
extreme fine-tuning and customization.

Value

Not intended to return a value, will plot to GUI or file if specific.

Author(s)

Daniel Lai

See Also

colourByCount

Read Structure File

Examples

data(helix)

Plot helix plain
plotHelix(known)

Apply global appearance options
plotHelix(known, line = TRUE, arrow = TRUE, col = "blue"”, 1lwd = 1.5)

Add extra column with styling options

known$lty <- 1:4

known$lwd <- 1:2

known$col <- c(rgb(1, @, @), "orange”, "yellow", "#00FF00Q", 4, "purple")
plotHelix(known)

Manually colour helices according to value
helix$col <- "red”

helix$col[which(helix$value < 1e-3)] <- "orange”
helix$col[which(helix$value < 1e-4)] <- "green"
helix$col[which(helix$value < 1e-5)] <- "blue”
plotHelix(helix)

Automatically creating a similar plot with legend
coloured <- colourByValue(helix, log = TRUE, get = TRUE)
plotHelix(coloured, line = TRUE, arrow = TRUE)
legend("topleft”, legend = attr(coloured, "legend"),
fill = attr(coloured, "fill"), title = "P-value”, text.col = "black")

Plot both helices with styles
plotDoubleHelix(helix, known)

Overlap helix
plotOverlapHelix(helix, known)

21

Read Structure File Read secondary structure file

Description

Reads in secondary structure text files into a helix data frame.

Usage

readHelix(file)
readConnect(file)
readVienna(file, palette = NA)
readBpseq(file)

22 Read Structure File

Arguments

file A text file in connect format, see details for format specifications.

palette Used to colour basepairs by bracket type. See viennaToHelix for more details.
Details

Helix: Files start with a header line beginning with # followed by the sequence length, followed
by a four-column tab-delimited table (with column names), where each row corresponds to a helix
in the structure. The four columns are i and j for the left-most and right-most basepair positions
respectively, the length of the helix (converging inwards from i and j, and finally an arbitrary value
assigned to the helix.

Vienna: Dot-bracket notation from Vienna package programs, where each structure consists of
matched brackets for basepairs and periods for unbased pairs. Valid brackets are (, , [, <, A, B, C,
D matched with), ,], >, a, b, c, d, respectively. An energy value can be appended to the end of
any dot-bracket structure. The function will accept slight variations of the format, including those
with FASTA-like headers (in which case line breaks are allows), and those without FASTA-like
headers (in which case line breaks are NOT allowed), with both types allowing for a preceding
(NOT following) nucleotide sequence for the structure. Multiple entries of the same length may be
in a single file, which will be returned as a single helix structure, with respectively energy values (if
specified).

Connect: Output from mfold and other programs, this format is expected to be a text file beginning
with a header line that starts with the sequence length, with an optional Energy/dG value, followed
by a six-column tab-delimited table where columns 1 and 5 denote the position that are basepaired
(unpaired when column 5 is 0). Other columns are ignored, but for completeness, column 2 is the
nucleotide, column 3 and 4 are the positions of the bases left and right of the base specified in
column 1 respectively (with 0 denoting non-existance), and column 6 a copy of column 1. Multiple
entries of the same length may be in a single file, which will be returned as a single helix structure.
All helices will be assigned the energy value extracted from their respective structure header lines.

Bpseq: Format used by the Gutell Lab’s Comparative RNA Website. The file may optionally
begin several header lines (e.g. Filename, Organism, Accession, etc.), followed by a 3-column tab-
delimited table for the structure, where column 1 is the base position, base 2 is the nucleotide base,
and column 3 is the paired position (0 if unpaired). Certain pieces of header information will be
parsed and returned as attributes of the output data frame. Multiple structures can be within a single
file, returned as a single helix data frame, with attributes set to those of the first entry.

Value

Returns a helix format data frame.

Author(s)

Daniel Lai, Jeff Proctor

Examples

file <- system.file("extdata”, "helix.txt"”, package = "R4RNA")
helix <- readHelix(file)
head(helix)

Structure Mismatch Score 23

file <- system.file("extdata”, "connect.txt"”, package = "R4RNA")

connect <- readConnect(file)

head(connect)

message("Note connect data assigns structure energy level to all basepairs”)

file <- system.file("extdata”, "vienna.txt", package = "R4RNA")

vienna <- readVienna(file)

head(vienna)

message("Note vienna data assigns structure energy level to all basepairs”)

file <- system.file("extdata"”, "bpseq.txt"”, package = "R4RNA")
bpseq <- readBpseq(file)

head(bpseq)

message("Note bpseq data has no value assigned to basepairs")

Structure Mismatch Score

Scores how a basepair structure fits a sequence

Description

Calculates a score that indicates how badly a set of basepairs (i.e. a secondary structure) fits with a
sequence. A perfect fit is a structure where all basepairs form valid basepairs (A:U, G:C, G:U, and
equivalents) and has a score of 0. Each basepair that forms a non-canonical pairing or pairs to gaps
increases the score by 1, and each base-pair with a single-sided gap increases the score by 2.

Usage
structureMismatchScore(msa, helix, one.gap.penalty = 2, two.gap.penalty = 2,
invalid.penalty = 1)
Arguments
msa A multiple sequence alignment. Can be either aBiostrings XStringSet object
or a named array of strings like ones obtained from converting XStringSet with
as.character.
helix A helix data.frame
one.gap.penalty
Penalty score for basepairs with one of the bases being a gap
two.gap.penalty

Penalty score for basepairs with both bases being a gaps

invalid.penalty

Value

Penalty score for non-canonical basepairs

Returns an array of mismatch scores.

24 Write Helix

Author(s)

Jeff Proctor, Daniel Lai

Examples
data(helix)

mismatch <- structureMismatchScore(fasta, known)

Sort by increasing mismatch
sorted_fasta <- fastalorder(mismatch)]

Write Helix Write out a helix data frame into a text file

Description

Write out a helix data frame into a text file into the four-column tab-delimited format with proper
header and column names.

Usage
writeHelix(helix, file = stdout())
Arguments
helix A helix data frame.
file A character string pointing to a file path, or a file connection. Defaults to the
console.
Value

No value returned, will write to STDOUT or specific file location.

Author(s)

Daniel Lai

Examples

Create helix data frame

helix <- data.frame(2, 8, 3, 0.5)
helix[2, 1 <- c(5, 15, 4, -0.5)
helix <- as.helix(helix)

writeHelix(helix)

Index

* 1O
Read Structure File, 21
Write Helix, 24
* aplot
Basepair Frequency, 4
Covariation Plots, 11
Create Blank Plot, 14
Find Unknotted Groups, 16
Plot Helix Structures, 19
* color
Colour Helices,7
Logl1@ Space Operations, 18
x datasets
Example Data, 15
x file
Read Structure File, 21
Write Helix, 24
* logic
Helix Type Filters, 17
* manip
Basepair/Helix Conversion, 5
Coerce to Helix, 6
Convert Helix Formats, 9
+x math
Alignment Statistics, 3
Structure Mismatch Score, 23
* package
R4RNA-package, 2

Alignment Statistics, 3
alignmentCanonical (Alignment
Statistics), 3
alignmentConservation (Alignment
Statistics), 3
alignmentCovariation (Alignment
Statistics), 3
alignmentPercentGaps (Alignment
Statistics), 3
as.helix, 6, 7
as.helix (Coerce to Helix), 6

25

baseConservation (Alignment
Statistics), 3

Basepair Frequency, 4

Basepair/Helix Conversion, 5

basepairCanonical (Alignment
Statistics), 3

basepairConservation (Alignment
Statistics), 3

basepairCovariation (Alignment
Statistics), 3

basepairFrequency, 9

basepairFrequency (Basepair Frequency),
4

blankPlot, 71/-13

blankPlot (Create Blank Plot), 14

Coerce to Helix, 6

collapseHelix (Basepair/Helix
Conversion), 5

Colour Helices, 7

colourByBasepairFrequency, 5

colourByBasepairFrequency (Colour
Helices), 7

colourByCanonical, 13

colourByCanonical (Colour Helices),7

colourByConservation, 13

colourByConservation (Colour Helices), 7

colourByCount, 20

colourByCount (Colour Helices), 7

colourByCovariation, 13

colourByCovariation (Colour Helices), 7

colourByUnknottedGroups, 17

colourByUnknottedGroups (Colour
Helices), 7

colourByValue (Colour Helices), 7

Convert Helix Formats, 9

Covariation Plots, 11

Create Blank Plot, 14

cut, 8

26

defaultPalette (Colour Helices), 7

Example Data, 15

expandHelix, 16, 17

expandHelix (Basepair/Helix
Conversion), 5

fasta (Example Data), 15
Find Unknotted Groups, 16

helix (Example Data), 15

Helix Type Filters, 17

helixCanonical (Alignment Statistics), 3

helixConservation (Alignment
Statistics), 3

helixCovariation (Alignment
Statistics), 3

helixToBpseq (Convert Helix Formats), 9

helixToConnect (Convert Helix Formats),
9

helixToVienna (Convert Helix Formats), 9

is.helix, 6, 7

is.helix (Coerce to Helix), 6

isConflictingHelix (Helix Type
Filters), 17

isDuplicatingHelix (Helix Type
Filters), 17

isOverlappingHelix (Helix Type
Filters), 17

known (Example Data), 15

legend, 9

Log10 Space Operations, 18

logceiling (Log10@ Space Operations), 18
logfloor (Log1@ Space Operations), 18
logseq, 9

logseq (Log1@ Space Operations), 18

maxHeight (Create Blank Plot), 14

par, 14

parseBracket, 6

parseBracket (Coerce to Helix), 6
plot, 15

Plot Helix Structures, 19

plotArc (Plot Helix Structures), 19
plotArcs (Plot Helix Structures), 19
plotCovariance (Covariation Plots), 11

INDEX

plotDoubleCovariance (Covariation
Plots), 11

plotDoubleHelix, 11, 13

plotDoubleHelix (Plot Helix
Structures), 19

plotHelix, 9,11,13,15

plotHelix (Plot Helix Structures), 19

plotOverlapCovariance (Covariation
Plots), 11

plotOverlapHelix, 11, 13

plotOverlapHelix (Plot Helix
Structures), 19

R4RNA (R4RNA-package), 2
R4RNA-package, 2

Read Structure File, 21

readBpseq (Read Structure File), 21
readConnect (Read Structure File), 21
readHelix (Read Structure File), 21
readVienna (Read Structure File), 21

Structure Mismatch Score, 23
structureMismatchScore (Structure
Mismatch Score), 23

unknottedGroups, 9
unknottedGroups (Find Unknotted
Groups), 16

viennaToHelix, 22
viennaToHelix (Convert Helix Formats), 9

Write Helix, 24
writeHelix (Write Helix), 24

	R4RNA-package
	Alignment Statistics
	Basepair Frequency
	Basepair/Helix Conversion
	Coerce to Helix
	Colour Helices
	Convert Helix Formats
	Covariation Plots
	Create Blank Plot
	Example Data
	Find Unknotted Groups
	Helix Type Filters
	Log10 Space Operations
	Plot Helix Structures
	Read Structure File
	Structure Mismatch Score
	Write Helix
	Index

