
Package ‘SVP’
January 16, 2026

Title Predicting cell states and their variability in single-cell or
spatial omics data

Version 1.3.1

Description SVP uses the distance between cells and cells, features and features, cells and
features in the space of MCA to build nearest neighbor graph, then uses random walk with
restart algorithm to calculate the activity score of gene sets (such as cell marker genes,
kegg pathway, go ontology, gene modules, transcription factor or miRNA target sets, reactome
pathway, ...), which is then further weighted using the hypergeometric test results from
the original expression matrix. To detect the spatially or single cell variable gene sets or
(other features) and the spatial colocalization between the features accurately, SVP provides
some global and local spatial autocorrelation method to identify the spatial variable features.
SVP is developed based on SingleCellExperiment class, which can be interoperable with the
existing computing ecosystem.

Depends R (>= 4.0)

Imports Rcpp, RcppParallel, methods, cli, dplyr, rlang, S4Vectors,
SummarizedExperiment, SingleCellExperiment, SpatialExperiment,
BiocGenerics, BiocParallel, fastmatch, pracma, stats, withr,
Matrix, DelayedMatrixStats, deldir, utils, BiocNeighbors,
ggplot2, ggstar, ggtree, ggfun

Suggests rmarkdown, prettydoc, broman, RSpectra, BiasedUrn, knitr, ks,
igraph, testthat (>= 3.0.0), scuttle, magrittr, DropletUtils,
tibble, tidyr, harmony, aplot, scales, ggsc, scatterpie, scran,
scater, STexampleData, ape

License GPL-3

BugReports https://github.com/YuLab-SMU/SVP/issues

URL https://github.com/YuLab-SMU/SVP

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

biocViews SingleCell, Software, Spatial, Transcriptomics, GeneTarget,
GeneExpression, GeneSetEnrichment, Transcription, GO, KEGG

SystemRequirements GNU make

1

https://github.com/YuLab-SMU/SVP/issues
https://github.com/YuLab-SMU/SVP

2 Contents

ByteCompile true

VignetteBuilder knitr

LinkingTo Rcpp, RcppArmadillo (>= 14.0), RcppParallel, RcppEigen,
dqrng

Config/testthat/edition 3

LazyData false

git_url https://git.bioconductor.org/packages/SVP

git_branch devel

git_last_commit e864351

git_last_commit_date 2025-11-03

Repository Bioconductor 3.23

Date/Publication 2026-01-15

Author Shuangbin Xu [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3513-5362>),

Guangchuang Yu [aut, ctb] (ORCID:
<https://orcid.org/0000-0002-6485-8781>)

Maintainer Shuangbin Xu <xshuangbin@163.com>

Contents
SVP-package . 3
as_tbl_df . 4
cal_lisa_f1 . 5
CellCycle.Hs . 7
cluster.assign . 7
data_CancerSEA . 9
data_hpda_spe_cell_dec . 10
data_sceSubPbmc . 11
data_SenMayo . 11
extract_weight_adj . 12
fast_cor . 13
fscoreDfs . 14
gsvaExps . 16
LISAResult . 19
LISAsce . 20
mob_marker_genes . 21
mob_sce . 22
plot_heatmap_globalbv . 22
pred.cell.signature . 24
reexports . 25
runCORR . 26
runDetectMarker . 29
runDetectSVG . 30
runENCODE . 34

https://orcid.org/0000-0003-3513-5362
https://orcid.org/0000-0002-6485-8781

SVP-package 3

runGLOBALBV . 35
runKldSVG . 39
runLISA . 43
runLOCALBV . 47
runMCA . 52
runSGSA . 54
runWKDE . 59
svDfs . 61
SVP-accessors . 63
SVPExperiment . 64

Index 66

SVP-package SVP: Predicting cell states and their variability in single-cell or spa-
tial omics data

Description

SVP uses the distance between cells and cells, features and features, cells and features in the space
of MCA to build nearest neighbor graph, then uses random walk with restart algorithm to calcu-
late the activity score of gene sets (such as cell marker genes, kegg pathway, go ontology, gene
modules, transcription factor or miRNA target sets, reactome pathway, ...), which is then further
weighted using the hypergeometric test results from the original expression matrix. To detect the
spatially or single cell variable gene sets or (other features) and the spatial colocalization between
the features accurately, SVP provides some global and local spatial autocorrelation method to iden-
tify the spatial variable features. SVP is developed based on SingleCellExperiment class, which can
be interoperable with the existing computing ecosystem.

Author(s)

Maintainer: Shuangbin Xu <xshuangbin@163.com> (ORCID)

Authors:

• Guangchuang Yu <guangchuangyu@gmail.com> (ORCID) [contributor]

See Also

Useful links:

• https://github.com/YuLab-SMU/SVP

• Report bugs at https://github.com/YuLab-SMU/SVP/issues

https://orcid.org/0000-0003-3513-5362
https://orcid.org/0000-0002-6485-8781
https://github.com/YuLab-SMU/SVP
https://github.com/YuLab-SMU/SVP/issues

4 as_tbl_df

as_tbl_df convert the square matrix to long tidy table

Description

This function is designed to convert the output of runGLOBALBV, fast_cor or the matrix output of
cor to long tidy table.

Usage

as_tbl_df(
x,
listn = NULL,
diag = TRUE,
rmrd = TRUE,
flag.clust = FALSE,
dist.method = "euclidean",
hclust.method = "average"

)

Arguments

x list or matrix object, which is the output of runGLOBALBV, fast_cor or the ma-
trix output of cor.

listn list object, which must have name, and the element must from the row names of
x or x[[1]] (when x is a list) default is NULL.

diag logical whether include the diagonal (only work when the cor matrix is square),
default is TRUE.

rmrd logical whether remove of redundancy when the correlation matrix is a square
matrix, default is TRUE.

flag.clust logical whether perform the hierarchical cluster analysis to obtain the label for
visualization.

dist.method the distance measure to be used, only work when flag.clust = TRUE. It must
be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or
"minkowski".

hclust.method the agglomeration method to be used, only work with flag.clust=TRUE. This
should be (an unambiguous abbreviation of) one of "ward.D", "ward.D2", "single",
"complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (=
WPGMC) or "centroid" (= UPGMC).

Value

a long tidy table

cal_lisa_f1 5

Examples

library(ggplot2)
library(ggtree)
library(aplot)
example(fast_cor, echo=FALSE)
x <- as_tbl_df(res)
head(x)
xx <- as_tbl_df(res, flag.clust = TRUE,

dist.method = 'euclidean', hclust.method = 'average')
p1 <- ggplot(xx, mapping = aes(x=x,y=y,color=r,size=abs(r))) +

geom_point() + xlab(NULL) + ylab(NULL) +
guides(y=guide_axis(position='right'))

p2 <- res$r |> dist() |> hclust(method = 'average') |>
ggtree(layout='den', branch.length='none', ladderize=FALSE)

p3 <- res$r |> t() |> dist() |> hclust(method = 'average') |>
ggtree(branch.length = 'none', ladderize = FALSE)

p4 <- p1 |> insert_left(p3, width=.12) |> insert_top(p2, height=.12)
aplot::plot_list(p1, p4)
x2 <- as_tbl_df(res2)
head(x2)
f1 <- ggplot(x2, aes(x=x, y=y, color=r, size=abs(r))) + geom_point() +

xlab(NULL) + ylab(NULL) +
guides(x=guide_axis(position='top', angle=45),

y=guide_axis(position='right'))
f2 <- res2$r |> t() |> dist() |> hclust(method = 'average') |>

ggtree(branch.length = 'none', ladderize=FALSE)
f3 <- f1 |> aplot::insert_left(f2, width=.12)
xx2 <- as_tbl_df(res2,

flag.clust = TRUE,
dist.method = 'euclidean',
hclust.method = 'average'

)
ff1 <- ggplot(xx2, mapping = aes(x=x,y=y, color=r,size=abs(r))) +

geom_point() + xlab(NULL) + ylab(NULL) +
guides(x=guide_axis(position='top', angle=45),

y=guide_axis(position='right'))
ff3 <- ff1 |> aplot::insert_left(f2, width = .12)
aplot::plot_list(f3, ff3)

cal_lisa_f1 calculate the F1 value based on LISA result in the specified category.

Description

this is to calculate the F1 value based on LISA result in some spatial domain. If a feature has a
larger F1 value in a spatial domain, it means the feature is more concentrated in that spatial domain
(specified category).

6 cal_lisa_f1

Usage

cal_lisa_f1(data, lisa.res, type = "High", group.by, rm.group.nm = NULL, ...)

S4 method for signature 'SingleCellExperiment'
cal_lisa_f1(data, lisa.res, type = "High", group.by, rm.group.nm = NULL, ...)

Arguments

data a SingleCellExperiment object

lisa.res list the result of runLISA or runLOCALBV.

type character the type of cluster.test column of result of runLISA or runLOCALBV,
default is 'High'.

group.by character a specified category column names (for example the cluster column
name) of colData(data). Or a vector of length equal to ncol(data), specify-
ing the group to which each cell is assigned. It is required.

rm.group.nm character which want to remove some group type names from the names of the
specified category group, default is NULL.

... currently meaningless.

Value

a data.frame object containing the F1 value for each category in group.by.

Examples

data(hpda_spe_cell_dec)
lisa.res1 <- hpda_spe_cell_dec |>

runLISA(
features = rownames(hpda_spe_cell_dec),
assay.type = 1

)
res <- cal_lisa_f1(hpda_spe_cell_dec, lisa.res1, type='High', group.by = 'cluster_domain')
head(res)
group.by, a vector of length equal to the ncol(data).
res2 <- cal_lisa_f1(hpda_spe_cell_dec,

lisa.res1,
type='High',
group.by = hpda_spe_cell_dec$cluster_domain

)
identical(res, res2)

CellCycle.Hs 7

CellCycle.Hs the Cell Cycle gene set

Description

the S and G2M gene list are from the Seurat which refer to this article (doi:10.1126/science.aad050),
the G1 gene list is from the G1_PHASE of Human Gene Set in MSigDB, but remove the duplicated
records with S and G2M gene list.

Format

list

Value

a list object

Examples

data(CellCycle.Hs)

cluster.assign clusting and assign the label for each feature(specify the gene sets).

Description

clusting and assign the label for each feature(specify the gene sets).

Usage

cluster.assign(
data,
assay.type = "affi.score",
assign = FALSE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
...

)

S4 method for signature 'SingleCellExperiment'
cluster.assign(
data,
assay.type = "affi.score",
assign = FALSE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,

8 cluster.assign

...
)

S4 method for signature 'SVPExperiment'
cluster.assign(
data,
assay.type = "affi.score",
assign = FALSE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
...

)

Arguments

data A SVPExperiment, which has run runSGSA or detect.svp, or a SingleCellEx-
periment which was extracted from SVPExperiment using gsvaExp function.

assay.type which expressed data to be pulled to run, default is affi.score.

assign whether assign the max affinity of gene set or pathway to the each cell, default
is FALSE.

gsvaexp which gene set variation experiment will be pulled to run, this only work when
data is a SVPExperiment, default is NULL.

gsvaexp.assay.type

which assay data in the specified gsvaexp will be used to run, default is NULL.

... dot parameters

Details

when use runSGSA to calculated the gene set activity of cell, if assign = TRUE we will assign the
max affinity of gene set or pathway to the each cell. If assign = FALSE, the max affinity of gene set
or pathway will be kept.

Value

if input is a SVPExperiment, output will be also a SVPExperiment, and the result assay was stored
in assay of the specified gsvaexp, which is a SingleCellExperiment. If input is a SingleCellEx-
periment (which is extracted from SVPExperiment using gsvaExp() function), output will be a
SingleCellExperiment, the result can be extracted using assay() function.

See Also

to calculate the activity score of gene sets or pathway: runSGSA.

Examples

library(SpatialExperiment)
This example data was extracted from the
result of runSGSA with gsvaExp function.
data(hpda_spe_cell_dec)

data_CancerSEA 9

assays(hpda_spe_cell_dec)
hpda_spe_cell_dec <- hpda_spe_cell_dec |>

cluster.assign()
hpda_spe_cell_dec

data_CancerSEA The Gene List of Cancer Single-cell State Atlas (CancerSEA)

Description

CancerSEA is the first dedicated database that aims to comprehensively decode distinct functional
states of cancer cells at single-cell resolution. CancerSEASymbol is a gene symbol list, and Can-
cerSEAEnsemble is a Ensemble gene list, they are a list contained gene signature names collected
in the database.

Format

list a gene symbol list with gene signature names collected in CancerSEA:

Angiogenesis Angiogenesis ensures that cancer cells receive continuous supplies of oxygen and
other nutrients.

Apoptosis The inactivation of apoptosis in cancer cells lead to the persistence of such grossly
abnormal cells in the tissues.

Cell Cycle Cell cycle,a critical process to ensure correct cell division,lies at the heart of cancer.

Differentiation The degree of cell differentiation can be used to measure the progress of cancer,and
dedifferentiated cells can lead to the formation of cancer.

DNA damage DNA damage is an alteration in the chemical structure of DNA, and un-repaired
DNA damages accumulate in replicating cells possibly contribute to progression to cancer.

DNA repair DNA repair plays a fundamental role in the maintenance of genomic integrity,it’s
deficits may lead to carcinogenesis.

EMT EMT has been indicated to be involved in the initiation of metastasis in cancer progression
and in acquiring drug resistance.

Hypoxia Tumor-hypoxia contributes to cell mobility,metastasis and therapy resistance.

Inflammation Chronic inflammation can cause about 15% to 25% of human cancers.

Invasion Invasion is a critical carcinogenic event in which cancer cells escape from their primary
sites and spread to blood or lymphatic vessels.

Metastasis Metastasis promotes the malignant transformation of cancer and causes most cancer
deaths.

Proliferation Proliferation,as one of the cancer hallmarks,is responsible for tumor progression.

Quiescence Quiescent cancer cells are resistant to chemotherapy.

Stemness Cancer cells with high stemness fuel the growth of cancer.

list

10 data_hpda_spe_cell_dec

Value

a list object

Source

http://biocc.hrbmu.edu.cn/CancerSEA/goDownload

References

Yuan, H., Yan, M., Zhang, G., Liu, W., Deng, C., Liao, G., Xu, L., Luo, T., Yan, H., Long, Z., Shi,
A., Zhao, T., Xiao, Y., & Li, X. (2019). CancerSEA: a cancer single-cell state atlas. Nucleic acids
research, 47(D1), D900–D908. https://doi.org/10.1093/nar/gky939

Examples

data(CancerSEASymbol)
data(CancerSEAEnsemble)

data_hpda_spe_cell_dec

an example of result of runSGSA by extracting with gsvaExp

Description

The result of runSGSA with PDAC A sample from (doi:10.1038/s41587-019-0392-8)

Format

S4 class:SpatialExperiment

Value

a SpatialExperiment object

Examples

data(hpda_spe_cell_dec)

http://biocc.hrbmu.edu.cn/CancerSEA/goDownload

data_sceSubPbmc 11

data_sceSubPbmc a subset data of pbmck3 from SeuratData

Description

a small SingleCellExperiment data set from pbmck3 which contains 1304 genes and 800 cells (ex-
tract randomly)

Format

S4 class:SingleCellExperiment

Value

a SingleCellExperiment object

Examples

data(sceSubPbmc)

data_SenMayo A gene set identifies senescent cells and predicts senescence-
associated pathways across tissues

Description

SenMayoSymbol is a gene symbol list that can be used to identify senescent cells and predicts
senescence-associated pathways across tissues

Format

list

Value

a list object

Source

https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-32552-1/MediaObjects/
41467_2022_32552_MOESM4_ESM.xlsx

References

Saul, D., Kosinsky, R.L., Atkinson, E.J. et al. A new gene set identifies senescent cells and predicts
senescence-associated pathways across tissues. Nat Commun 13, 4827 (2022). https://doi.org/10.1038/s41467-
022-32552-1

https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-32552-1/MediaObjects/41467_2022_32552_MOESM4_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-32552-1/MediaObjects/41467_2022_32552_MOESM4_ESM.xlsx

12 extract_weight_adj

Examples

data(SenMayoSymbol)

extract_weight_adj extract the cell adjacent matrix from spatial space or reduction space

Description

the function provides voronoi or knn method to build the cell adjacent matrix.

Usage

extract_weight_adj(
data,
sample_id = "all",
weight.method = c("voronoi", "knn", "none"),
reduction.used = NULL,
group.by = NULL,
cells = NULL,
...

)

S4 method for signature 'SingleCellExperiment'
extract_weight_adj(
data,
sample_id = "all",
weight.method = c("voronoi", "knn", "none"),
reduction.used = NULL,
group.by = NULL,
cells = NULL,
...

)

Arguments

data a SingleCellExperiment object with contains UMAP or TSNE, or a SpatialExperi-
ment object.

sample_id character the sample(s) in the SpatialExperiment object whose cells/spots to use.
Can be all to compute metric for all samples; the matrix is computed separately
for each sample. default is "all".

weight.method character the method to build the spatial neighbours weights, default is voronoi
(Voronoi tessellation). Other method, which requires coord matrix as input and
returns nb, listw or Graph object, also is available, such as "knearneigh",
'dnearneigh', "gabrielneigh", "relativeneigh", which are from spdep
package. default is knn, if it is "none", meaning the distance weight of each
spot is used to the weight.

fast_cor 13

reduction.used character used as spatial coordinates to calculate the neighbours weights, default
is NULL, the result of reduction can be specified, such as UMAP, TSNE, PCA. If it
is specified, the weight neighbours matrix will be calculated using the result of
specified reduction.

group.by character a specified category column names (for example the cluster column
name) of colData(data), if it was specified, the adjacency weighted matrix
will be built based on the principle that spots or cells in the same category are
adjacent, default is NULL.

cells the cell name or index of data object, default is NULL.

... additional parameters, when weight.method='knn', you can specified k=10.

Value

a dgCMatrix object

Examples

data(hpda_spe_cell_dec)
knn method
wm <- extract_weight_adj(hpda_spe_cell_dec, weight.method='knn', k=7)
voronoi method
wm <- extract_weight_adj(hpda_spe_cell_dec)
specified group.by
wm <- extract_weight_adj(hpda_spe_cell_dec, group.by='cluster_domain')

fast_cor Calculation of correlations and associated p-values

Description

Calculation of correlations and associated p-values

Usage

fast_cor(
x,
y = NULL,
combine = FALSE,
method = c("pearson", "spearman", "bicorr"),
alternative = c("two.sided", "less", "greater"),
add.pvalue = FALSE

)

14 fscoreDfs

Arguments

x sparse Matrix which rows are the features and columns are the samples.

y sparse Matrix which has the same column length of x, default is NULL.

combine logical whether combine the correlation of x and y if y is provided, default is
FALSE.

method a character string indicating which correlation coefficient, One of "pearson"
(default), "spearman" and "bicorr".

alternative indicates the alternative hypothesis and must be one of the initial letter "two.sided",
"less" and "greater". "greater" corresponds to positive association, "less"
to negative association, default is "two.sided".

add.pvalue logical whether calculate the pvalue of correlation using t test, default is FALSE.

Value

a list containing the matrix of correlation and matrix of pvalue (if add.pvalue is FALSE (default),
the matrix of pvalue will be NULL).

Examples

set.seed(123)
x <- matrix(rnorm(500), ncol=10)
rownames(x) <- paste0('row', seq(nrow(x)))
colnames(x) <- paste0('col', seq(ncol(x)))
x <- Matrix::Matrix(x, sparse = TRUE)
x1 <- x[seq(10),]
x2 <- x[seq(11, 50),]
res <- fast_cor(x = x1, y = x2, combine = FALSE)
res$r |> dim()
res2 <- fast_cor(x = x1, y = x2, combine = TRUE)
res2$r |> dim()

fscoreDfs features score matrix extract method

Description

In some experiment, to calculated the contribution value of original features (such as genes) in
the new features (gene sets), if the result is stored with the original object, which will simplify
book-keeping in long workflows and ensure that samples remain synchronised.

Value

see Getter and setter

fscoreDfs 15

Getters

In the following examples, x is a SingleCellExperiment object.

fscoreDf(x, type): Retrieves a DataFrame containing the new features (gene sets) (rows) for the
specified type. type should either be a string specifying the name of the features scores matrix
in x to retrieve, or a numeric scalar specifying the index of the desired matrix, defaulting to
the first matrix is missing.

fscoreDfNames(x): Retures a character vector containing the names of all features scores DataFrame
Lists in x. This is guaranteed to be of the same length as the number of results.

fscoreDfs(x): Returns a named List of matrices containing one or more DataFrame objects. Each
object is guaranteed to have the same number of rows, in a 1:1 correspondence to those in x.

Single-object setter

fscoreDf(x, type) <- value will add or replace an features scores matrix in a SingleCellExperi-
ment object x. The value of type determines how the result is added or replaced:

• If type is missing, value is assigned to the first result. If the result already exists, its name is
preserved; otherwise it is given a default name "unnamed.fscore1".

• If type is a numeric scalar, it must be within the range of existing results, and value will be
assigned to the result at that index.

• If type is a string and a result exists with this name, value is assigned to to that result.
Otherwise a new result with this name is append to the existing list of results.

Other setter

fscoreDfs(x) <- value: Replaces all features score matrices in x with those in value. The latter
should be a list-like object containing any number of DataFrame objects with number of row
equal to nrow(x).
If value is named, those names will be used to name the features score matrices in x. Other-
wise, unnamed results are assigned default names prefixed with "unnamed.fscore".
If value is NULL, all features score matrices in x are removed.

fscoreDfNames(x) <- value: Replaces all names for features score matrices in x with a character
vector value. This should be of length equal to the number of results currently in x.

Examples

Using the class example
example(SVPExperiment, echo = FALSE)
dim(counts(svpe))
rownames(svpe) <- paste0("gene", seq(nrow(svpe)))
colnames(svpe) <- paste0("cell", seq(ncol(svpe)))
Mocking up some GSVA Experiments
sce1 <- SingleCellExperiment(matrix(rpois(1000, 5), ncol=ncol(svpe)))
rownames(sce1) <- paste0("GO:",seq(nrow(sce1)))
colnames(sce1) <- colnames(svpe)
sce2 <- SingleCellExperiment(matrix(rpois(1000, 5), ncol=ncol(svpe)))
rownames(sce2) <- paste0("KEGG:", seq(nrow(sce2)))

16 gsvaExps

colnames(sce2) <- colnames(svpe)

Mocking up some relationship score between new feature and gene
fscore1 <- lapply(seq(nrow(sce1)), function(i) abs(rnorm(5, 0.5)) |>

setNames(sample(rownames(svpe),5))) |>
List() |>
DataFrame() |> setNames("rwr_score")

rownames(fscore1) <- rownames(sce1)
fscore2 <- lapply(seq(nrow(sce2)), function(i) abs(rnorm(5, 0.8)) |>

setNames(sample(rownames(svpe),5))) |>
List() |>
DataFrame() |> setNames("hyper_test")

Setting the score
fscoreDfs(sce1) <- list()
fscoreDfs(sce2) <- list()
fscoreDf(sce1, "rwr_score") <- fscore1
fscoreDf(sce2, "hyper_test") <-fscore2

Setting the GSVA Experiments
gsvaExp(svpe, "GO1") <- sce1
gsvaExp(svpe, "KEGG1") <- sce2

Getting the GSVA Experiment data
fscoreDf(gsvaExp(svpe), "rwr_score")
fscoreDf(gsvaExp(svpe, 'KEGG1'), "hyper_test")
fscoreDf(gsvaExp(svpe, 'KEGG1'), 1)
fscoreDfNames(gsvaExp(svpe))
fscoreDfs(gsvaExp(svpe))

Setting the names of features score DataFrame
fscoreDfNames(gsvaExp(svpe, withColData=FALSE)) <- "rwr.score"
fscoreDfNames(gsvaExp(svpe, withColData=FALSE))[1] <- "Test"

gsvaExps Gene Set Variation Analysis Experiment methods

Description

In some experiments, gene set variation analysis will generated different features (the names of
KEGG pathway or the GO term). These data cannot be stored in the main assays of the SVPExper-
iment itself. However, it is still desirable to store these features somewhere in the SVPExperiment.
This simplifies book-keeping in long workflows and ensure that samples remain synchronised.

To facilitate this, the SVPExperiment class allows for “gene set variation analysis experiments”.
Nested SingleCellExperiment-class objects are stored inside the SVPExperiment object x, in a man-
ner that guarantees that the nested objects have the same columns in the same order as those in x.
Methods are provided to enable convenient access to and manipulation of these gene set variation
analysis Experiments. Each GSVA Experiment should contain experimental data and row metadata
for a distinct set of features. (These methods refer to the altExp of SingleCellExperiment).

gsvaExps 17

Value

see Getter and setter.

Getters

In the following examples, x is a SVPExperiment object.

gsvaExp(x, e, withDimnames=TRUE, withColData=TRUE, withSpatialCoords = TRUE, withImgData=TRUE, withReducedDim=FALSE):
Retrieves a SingleCellExperiment containing gene set name features (rows) for all cells (columns)
in x. e should either be a string specifying the name of the gene set variation Experiment in x
to retrieve, or a numeric scalar specifying the index of the desired Experiment, defaulting to
the first Experiment is missing.
withDimnames=TRUE, the column names of the output object are set to colnames(x). In ad-
dition, if withColData=TRUE, colData(x) is cbinded to the front of the column data of the
output object. withSpatialCoords = TRUE, the spatial coordinates of the output object are set
to spatialCoords(x) if x has spatial coordinates. withImgData=TRUE, the image metadata
of the output object are set to imgData(x) if x has image metadata. If withReducedDim=TRUE,
the dimensionality reduction results of output object are set to reducedDims(x) if x has di-
mensionality reduction results

gsvaExpNames(x): Returns a character vector containing the names of all gene set variation Ex-
periments in x. This is guaranteed to be of the same length as the number of results, though
the names may not be unique.

gsvaExps(x, withDimnames=TRUE, withColData=TRUE, withSpatialCoords = TRUE, withImgData=TRUE, withReducedDim=FALSE):
Returns a named List of matrices containing one or more SingleCellExperiment objects. Each
object is guaranteed to have the same number of columns, in a 1:1 correspondence to those in
x.
If withDimnames=TRUE, the column names of each output object are set to colnames(x).
In addition, if withColData=TRUE, colData(x) is cbinded to the front of the column data
of each output object. withSpatialCoords = TRUE, the spatial coordinates of the output
object are set to spatialCoords(x) if x has spatial coordinates. withImgData=TRUE, the
image metadata of the output object are set to imgData(x) if x has image metadata. If
withReducedDim=TRUE, the dimensionality reduction results of output object are set to reducedDims(x)
if x has dimensionality reduction results

Single-object setter

gsvaExp(x, e, withDimnames=TRUE, withColData=FALSE, withSpatialCoords = FALSE, withImgData
= FALSE, withReducedDim = FALSE) <- value will add or replace an gene set variation Experi-
ment in a SVPExperiment object x. The value of e determines how the result is added or replaced:

• If e is missing, value is assigned to the first result. If the result already exists, its name is
preserved; otherwise it is given a default name "unnamed.gsva1".

• If e is a numeric scalar, it must be within the range of existing results, and value will be
assigned to the result at that index.

• If e is a string and a result exists with this name, value is assigned to to that result. Otherwise
a new result with this name is append to the existing list of results.

18 gsvaExps

value is expected to be a SingleCellExperiment object with number of columns equal to ncol(x).
Alternatively, if value is NULL, the gene set variation Experiment at e is removed from the object.

If withDimnames=TRUE, the column names of value are checked against those of x. A warning is
raised if these are not identical, with the only exception being when value=NULL. This is inspired
by the argument of the same name in assay<-.

If withColData=TRUE, we assume that the left-most columns of colData(value) are identical to
colData(x). If so, these columns are removed, effectively reversing the withColData=TRUE setting
for the gsvaExp getter. Otherwise, a warning is raised.

If withSpatialCoords = TRUE, the spatial coordinates will be kept in the value if it has, and will
add or replace it in a SVPExperiment object x.

If withImgData = TRUE, the image metadata will be kept in the value if it has, and will add or
replace it in a SVPExperiment object x.

If withReducedDim = TRUE, the dimensionality reduction results will be kept in the value if it has,
and will add or replace it in a SVPExperiment object x.

Other setters

In the following examples, x is a SVPExperiment object.

gsvaExps(x, withDimnames=TRUE, withColData=FALSE, withSpatialCoords = FALSE, withImgData = FALSE, withReducedDim = FALSE) <- value:
Replaces all gene set variation Experiments in x with those in value. The latter should be
a list-like object containing any number of SingleCellExperiment objects with number of
columns equal to ncol(x).
If value is named, those names will be used to name the gene set variant Experiments in x.
Otherwise, unnamed results are assigned default names prefixed with "unnamed.gsva".
If value is NULL, all gene set variation Experiments in x are removed.
If value is a Annotated object, any metadata will be retained in gsvaExps(x). If value is a
Vector object, any mcols will also be retained.
If withDimnames=TRUE, the column names of each entry of value are checked against those
of x. A warning is raised if these are not identical.
If withColData=TRUE, we assume that the left-most columns of the colData for each entry
of value are identical to colData(x). If so, these columns are removed, effectively reversing
the withColData=TRUE setting for the gsvaExps getter. Otherwise, a warning is raised. If
withSpatialCoords = TRUE, withImgData = TRUE, and withReducedDim = TRUE refer to the
gsvaExp(...) <- value.

gsvaExpNames(x) <- value: Replaces all names for gene set variant Experiments in x with a char-
acter vector value. This should be of length equal to the number of results currently in x.

Main Gene Set Variation Experiment naming

The Gene Set Variation Experiments are naturally associated with names (e during assignment).
However, we can also name the main Experiment in a SVPExperiment x:

mainGsvaExpName(x) <- value: Set the name of the main Experiment to a non-NA string value.
This can also be used to unset the name if value=NULL.

mainGsvaExpName(x): Returns a string containing the name of the main Experiment. This may
also be NULL if no name is specified.

LISAResult 19

Examples

Using the class example
example(SVPExperiment, echo = FALSE)
dim(counts(svpe))

Mocking up some GSVA Experiments
sce1 <- SingleCellExperiment(matrix(rpois(1000, 5), ncol=ncol(svpe)))
rownames(sce1) <- paste0("GO:",seq(nrow(sce1)))
colnames(sce1) <- colnames(svpe)
sce2 <- SingleCellExperiment(matrix(rpois(1000, 5), ncol=ncol(svpe)))
rownames(sce2) <- paste0("KEGG:", seq(nrow(sce2)))
colnames(sce2) <- colnames(svpe)

Setting the GSVA Experiments
gsvaExp(svpe, "GO") <- sce1
gsvaExp(svpe, "KEGG") <- sce2

Getting the GSVA Experiment data
gsvaExp(svpe, "GO")
gsvaExp(svpe, "KEGG")
gsvaExp(svpe, 2)
gsvaExpNames(svpe)
gsvaExps(svpe)

Setting the names of GSVA Experiments
gsvaExpNames(svpe) <- c("GO1", "KEGG1")
svpe
gsvaExpNames(svpe)[1] <- "Test"

LISAResult LISAResult

Description

Extracting the result of runLISA()

Usage

LISAResult(x, type = NULL, features = NULL, ...)

Arguments

x object SingleCellExperiment.

type character, the name of method parameter of runLISA() combining .SVP,so it
can be one of localG.SVP or localmoran.SVP, default is NULL.

features character or index which have been specified in features of code{runLISA()}
and action='add', default is NULL.

... additional parameter, meaningless now.

20 LISAsce

Value

a data.frame or SimpleList.

Examples

data(hpda_spe_cell_dec)
hpda_spe_cell_dec <- hpda_spe_cell_dec |>

runLISA(features = 'Cancer clone A',
assay.type = 'affi.score',
method = 'localG',
action = 'add'

)
hpda_spe_cell_dec <- hpda_spe_cell_dec |>

runLISA(features = 'Cancer clone A',
assay.type = 'affi.score',
method = 'localmoran',
action = 'add'

)
local.G <- LISAResult(hpda_spe_cell_dec,

type='localG.SVP', features='Cancer clone A'
)

localmoran <- LISAResult(hpda_spe_cell_dec,
type = 'logcalmoran.SVP',
features = 'Cancer clone A'

)
hpda_spe_cell_dec |> LISAResult() |> head()

LISAsce convert LISA result to SVPExperiment.

Description

convert the Gi for runLISA result or LocalLee for runLOCALBV result to a SVPExperiment.

Usage

LISAsce(data, lisa.res, gsvaexp.name = "LISA", ...)

S4 method for signature 'SingleCellExperiment'
LISAsce(data, lisa.res, gsvaexp.name = "LISA", ...)

Arguments

data a SingleCellExperiment object with contains UMAP or TSNE, or a SpatialExperi-
ment object, or a SVPExperiment object.

lisa.res list the result of runLISA or runLOCALBV.

gsvaexp.name character the name of gsveExp for the LISA result, default is "LISA".

... currently meaningless.

mob_marker_genes 21

Value

a SVPExperiment object

See Also

runLISA and runLOCALBV

Examples

data(hpda_spe_cell_dec)
lisa.res12 <- hpda_spe_cell_dec |>

runLISA(
features = c(1, 2, 3),
assay.type = 'affi.score',
weight.method = "knn",
k = 10,
action = 'get',

)
hpda_spe_cell_dec <- LISAsce(hpda_spe_cell_dec, lisa.res12)
hpda_spe_cell_dec
gsvaExp(hpda_spe_cell_dec, 'LISA')
localbv.res1 <- hpda_spe_cell_dec |> runLOCALBV(

features1 = 'Cancer clone A',
features2 = 'Cancer clone B',
assay.type='affi.score'

)
hpda_spe_cell_dec <- LISAsce(hpda_spe_cell_dec, localbv.res1, 'LOCALBV')
gsvaExp(hpda_spe_cell_dec, 'LOCALBV')

mob_marker_genes the marker genes of mouse olfactory bulb

Description

this is extracted from the single cell transcriptome of a mouse olfactory bulb from (doi:10.1016/j.celrep.2018.11.034)

Format

list

Value

a list object with name

Examples

data(mob_marker_genes)

22 plot_heatmap_globalbv

mob_sce the single cell gene profiler of a mouse olfactory bulb

Description

The single cell transcriptome of WT sample of mouse olfactory bulb from (doi:10.1016/j.celrep.2018.11.034)

Format

S4 class:SingleCellExperiment

Value

a SingleCellExperiment object

Examples

data(mob_sce)

plot_heatmap_globalbv plot_heatmap_globalbv

Description

visualize the result of global bivariate spatial analysis with heatmap

Usage

plot_heatmap_globalbv(
globalbv,
moran.t = NULL,
moran.l = NULL,
lisa.t = NULL,
lisa.l = NULL,
max.point.size = 4.5,
font.size = 2.5,
limits.size = NULL,
limits.colour = NULL,
dist.method = "euclidean",
hclust.method = "average",
threshold = 0.05

)

plot_heatmap_globalbv 23

Arguments

globalbv the result of runGLOBALBV with action = 'get'.

moran.t the result of global spatial variable features for one type features default is
NULL. or runDetectSVG and then using svDf to extract the result.

moran.l the result of global spatial variable features for another type features default is
NULL.

lisa.t the result of cal_lisa_f1 for another type features.

lisa.l the result of cal_lisa_f1 for one type features

max.point.size the max point size for main dotplot, default is 4.5.

font.size the size of font when the triangle heatmap is displayed, default is 2.5.

limits.size adjust the limit of point size for main dotplot via limits of scale_size_continuous,
default is NULL.

limits.colour adjust the limit of point colour for main dotplot via limits of scale_fill_gradient2,
default is NULL.

dist.method the distance measure to be used for the result of global bivariate spatial. which
is to measure the dissimilarity between the features, default is 'euclidean'.

hclust.method the agglomeration method to be used for the result of global bivariate spa-
tial. which is also to measure the similarity between the features, default is
'averate'.

threshold numeric the threshold to display the point with the significance level, default is
0.05.

Value

a ggplot2 or aplot object

Examples

data(hpda_spe_cell_dec)
gbv.res <- runGLOBALBV(

hpda_spe_cell_dec, features1=rownames(hpda_spe_cell_dec),
assay.type=1, add.pvalue=TRUE, permutation=NULL, alternative='greater'

)

moran.res <- runDetectSVG(hpda_spe_cell_dec, assay.type=1) |> svDf()

lisa.res <- runLISA(hpda_spe_cell_dec, features=rownames(hpda_spe_cell_dec), assay.type=1)

lisa.f1 <- cal_lisa_f1(hpda_spe_cell_dec, lisa.res, group.by='cluster_domain')

plot_heatmap_globalbv(gbv.res, moran.t=moran.res, lisa.t=lisa.f1)

24 pred.cell.signature

pred.cell.signature predict the cell signature according the gene sets or pathway activity
score.

Description

predict the cell signature according the gene sets or pathway activity score.

Usage

pred.cell.signature(
data,
assay.type = "affi.score",
threshold = NULL,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
pred.col.name = "pred.cell.sign",
...

)

S4 method for signature 'SingleCellExperiment'
pred.cell.signature(
data,
assay.type = "affi.score",
threshold = NULL,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
pred.col.name = "pred.cell.sign",
...

)

S4 method for signature 'SVPExperiment'
pred.cell.signature(
data,
assay.type = "affi.score",
threshold = NULL,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
pred.col.name = "pred.cell.sign",
...

)

Arguments

data A SVPExperiment, which has run runSGSA or detect.svp, or a SingleCellEx-
periment which was extracted from SVPExperiment using gsvaExp function.

assay.type which expressed data to be pulled to run, default is affi.score.

reexports 25

threshold numeric when the gene set activity score of cell less than the threshold, the
cell signature will be consider as ’unassigned’, default is NULL, meaning will
be calculated internally.

gsvaexp which gene set variation experiment will be pulled to run, this only work when
data is a SVPExperiment, default is NULL.

gsvaexp.assay.type

which assay data in the specified gsvaexp will be used to run, default is NULL.
pred.col.name character the column name in colData of the result, default is pred.cell.sign.
... dot parameters

Value

if input is a SVPExperiment, output will be also a SVPExperiment, and the result was stored at the
pred.col.name column of colData in the specified gsvaexp, which is a SingleCellExperiment. If
input is a SingleCellExperiment (which is extracted from SVPExperiment using gsvaExp() func-
tion), output will be a SingleCellExperiment, the result can be extracted using colData() function
with specified column in default is pred.cell.sign.

See Also

to calculate the activity score of gene sets or pathway: runSGSA, to keep the max gene set or pathway
activity score of cell: cluster.assign.

Examples

data(hpda_spe_cell_dec)
hpda_spe_cell_dec <- hpda_spe_cell_dec |>

pred.cell.signature(assay.type = 1)
hpda_spe_cell_dec$pred.cell.sign |> table()
#\donttest{

library(ggsc)
library(ggplot2)
hpda_spe_cell_dec |>
sc_spatial(

mapping = aes(x, y, colour = pred.cell.sign),
geom = geom_bgpoint,
pointsize = 2

)
#}

reexports Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

SpatialExperiment imgData, imgData<-, spatialCoords, spatialCoords<-, spatialCoordsNames,
spatialCoordsNames<-

26 runCORR

Value

function

runCORR runCORR

Description

This function to perform the correlation of the features in main experiment or features of gsva
experiment.

Usage

runCORR(
data,
features1 = NULL,
features2 = NULL,
assay.type = "logcounts",
method = c("spearman", "pearson", "bicorr"),
alternative = c("greater", "two.sided", "less"),
add.pvalue = FALSE,
action = c("get", "only"),
verbose = TRUE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
gsvaexp.features = NULL,
across.gsvaexp = TRUE,
...

)

S4 method for signature 'SingleCellExperiment'
runCORR(
data,
features1 = NULL,
features2 = NULL,
assay.type = "logcounts",
method = c("spearman", "pearson", "bicorr"),
alternative = c("greater", "two.sided", "less"),
add.pvalue = FALSE,
action = c("get", "only"),
verbose = TRUE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
gsvaexp.features = NULL,
across.gsvaexp = TRUE,
...

)

runCORR 27

S4 method for signature 'SVPExperiment'
runCORR(
data,
features1 = NULL,
features2 = NULL,
assay.type = "logcounts",
method = c("spearman", "pearson", "bicorr"),
alternative = c("greater", "two.sided", "less"),
add.pvalue = FALSE,
action = c("get", "only"),
verbose = TRUE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
gsvaexp.features = NULL,
across.gsvaexp = TRUE,
...

)

Arguments

data a SingleCellExperiment object with contains UMAP or TSNE, or a SpatialExperi-
ment object, or a SVPExperiment object with specified gsvaexp argument.

features1 the features name data object (only supporting character), default is NULL, see
also features2 parameter.

features2 character, if features1 is not NULL, and features2 is NULL, only the features1
are analyzed, if features1 is NULL, and features2 is is not NULL, the features2
are analyzed, if features2 is also NULL, all of features in the data object
will be analyzed. If features2 and features1 are not NULL, the bivariate
spatial autocorrelation analysis will be performed between the features1 and
features2. default is NULL.

assay.type which expressed data to be pulled to run, default is logcounts.

method character should be one of the spearman, pearson and bicorr, default is 'spearman'.

alternative indicates the alternative hypothesis and must be one of "two.sided", "greater"
or "less". You can specify just the initial letter. "greater" corresponds to pos-
itive association, "less" to negative association, default is "two.sided".

add.pvalue logical whether calculate the pvalue, which is calculated with permutation test.
So it might be slow, default is FALSE, which the pvalue of result will be NULL.

action character, which should be one of 'only' and 'get', default is "get". If
action='only', it will return a long tidy table contains the correlation for each
feature pairs. If action='get', it will return a list containing the correlation
matrix and pvalue matrix (if add.pvalue=TRUE).

verbose logical whether print the help information, default is TRUE.

gsvaexp character the one character from the name of gsvaExpNames(data), default
is NULL. If data is SVPExperiment, and the parameter is specified simultane-
ously. the features (Usually genes) from the displayed class, and gsvaexp.features

28 runCORR

from name in rownames(gsvaExp(data, gsvaexp)) will be performed the anal-
ysis.

gsvaexp.assay.type

character the assay name in the assays(gsvaExp(data, gsvaexp)), default is
NULL, which works with gsvaexp parameter.

gsvaexp.features

character the name from the rownames(gsvaExp(data, gsvaexp)). If gsvaexp
is specified and data is SVPExperiment, it should be provided. Default is
NULL.

across.gsvaexp logical whether only calculate the relationship of features between the multi-
ple gsvaExps not the internal features of gsvaExp. For example, 'a' and 'b'
features are from the 'AB' gsvaExp, 'c' and 'd' features are from the 'CD'
gsvaExp. When across.gsvaexp=TRUE and gsvaexp.features = c('a', 'b',
'c', 'd') and gsvaexp = c('AB', 'CD'), Only the relationship of a and c, a
and d, b and c, and b and d will be calculated. default is TRUE.

... additional parameters the parameters which are from the weight.method func-
tion.

Value

long tidy table or list see also the help information of action argument.

Author(s)

Shuangbin Xu

See Also

runCORR to explore the global bivariate relationship in the spatial space.

Examples

data(hpda_spe_cell_dec)
rownames(hpda_spe_cell_dec) |> head()
res1 <- runCORR(hpda_spe_cell_dec,

features1 = "Ductal APOL1 high-hypoxic",
features2 = c('Cancer clone A', "Cancer clone B"),
assay.type = 'affi.score',
action='only'

)
res1
res2 <- runCORR(hpda_spe_cell_dec,

features1 = c("Acinar cells",
"Ductal APOL1 high-hypoxic",
"Cancer clone A",
"Cancer clone B"),

assay.type = 1,
action = 'get'

)
res2

runDetectMarker 29

runDetectMarker Detecting the specific cell features with nearest distance of cells in
MCA space

Description

Detecting the specific cell features with nearest distance of cells in MCA space

Usage

runDetectMarker(
data,
group.by,
aggregate.group = TRUE,
reduction = "MCA",
dims = 30,
ntop = 200,
present.prop.in.group = 0.1,
present.prop.in.sample = 0.2,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'SingleCellExperiment'
runDetectMarker(
data,
group.by,
aggregate.group = TRUE,
reduction = "MCA",
dims = 30,
ntop = 200,
present.prop.in.group = 0.1,
present.prop.in.sample = 0.2,
BPPARAM = SerialParam(),
...

)

Arguments

data SingleCellExperiment object

group.by the column name of cell annotation. Or a vector of length equal to ncol(data),
specifying the group to which each cell is assigned. It is required.

aggregate.group

logical whether calculate the center cluster of each group of cell according to
the group.by, then find the nearest features of the center cluster, default TRUE.
If FALSE, meaning the nearest features to each cell are detected firstly.

30 runDetectSVG

reduction character which reduction space, default is 'MCA'.

dims integer the number of components to defined the nearest distance.

ntop integer the top number of nearest or furthest (type = 'negative') features, de-
fault is 200.

present.prop.in.group

numeric the appearance proportion of groups which have the marker default
is .1, smaller value represent the marker will have higher specificity, but the
number of marker for each group might also decrease, the minimum value is
1/length(unique(data[[group.by]])).

present.prop.in.sample

numeric the appearance proportion of samples which have the marker in the
corresponding group by specific group.by, default is 0.2.

BPPARAM A BiocParallelParam object specifying whether perform the analysis in paral-
lel using BiocParallel default is SerialParam(), meaning no parallel. You
can use BiocParallel::MulticoreParam(workers=4, progressbar=TRUE)
to parallel it, the workers of MulticoreParam is the number of cores used,
see also MulticoreParam. default is SerialParam().

... additional parameters.

Value

a list, which contains features and named with clusters of group.by.

Examples

The example data (small.sce) is generated through simulation and has no actual meaning.
set.seed(123)
example(runMCA, echo = FALSE)
small.sce |> runDetectMarker(group.by = 'Cell_Cycle', ntop = 20,

present.prop.in.sample = .2)
group.by, a vector of length equal to ncol(small.sce)
small.sce |> runDetectMarker(

group.by = small.sce$Cell_Cycle,
ntop = 20,
present.prop.in.sample = .2

)

runDetectSVG Detecting the spatially or single cell variable features with Moran’s I
or Geary’s C

Description

This function use Moran’s I, Geary’s C or global G test to detect the signal genes in a low-
dimensional space (UMAP or TSNE for single cell omics data) or a physical space (for spatial omics
data).

runDetectSVG 31

Usage

runDetectSVG(
data,
assay.type = "logcounts",
method = c("moransi", "gearysc", "getisord"),
weight = NULL,
weight.method = c("voronoi", "knn", "none"),
sample_id = "all",
reduction.used = NULL,
group.by = NULL,
permutation = NULL,
p.adjust.method = "BH",
random.seed = 1024,
verbose = TRUE,
action = c("add", "only", "get"),
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
...

)

S4 method for signature 'SingleCellExperiment'
runDetectSVG(
data,
assay.type = "logcounts",
method = c("moransi", "gearysc", "getisord"),
weight = NULL,
weight.method = c("voronoi", "knn", "none"),
sample_id = "all",
reduction.used = NULL,
group.by = NULL,
permutation = NULL,
p.adjust.method = "BH",
random.seed = 1024,
verbose = TRUE,
action = c("add", "only", "get"),
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
...

)

S4 method for signature 'SVPExperiment'
runDetectSVG(
data,
assay.type = "logcounts",
method = c("moransi", "gearysc", "getisord"),
weight = NULL,
weight.method = c("voronoi", "knn", "none"),
sample_id = "all",

32 runDetectSVG

reduction.used = NULL,
group.by = NULL,
permutation = NULL,
p.adjust.method = "BH",
random.seed = 1024,
verbose = TRUE,
action = c("add", "only", "get"),
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
...

)

Arguments

data a SingleCellExperiment object with contains UMAP or TSNE, or a SpatialExperi-
ment object, or a SVPExperiment object with specified gsvaexp argument.

assay.type which expressed data to be pulled to run, default is logcounts.

method character the method of spatial autocorrelation using a spatial weights to detect
spatial variable features, one of 'moransi', "gearysc" or "getisord", default
is 'moransi'.

weight object, which can be nb, listw or Graph object, default is NULL, meaning the
spatial neighbours weights will be calculated using the weight.method. if the
data contains multiple samples, and the sample_id is specified, it should be
provided as a list object with names (using sample_id).

weight.method character the method to build the spatial neighbours weights, default is voronoi
(Voronoi tessellation). Other method, which requires coord matrix as input and
returns nb, listw or Graph object, also is available, such as "knearneigh",
'dnearneigh', "gabrielneigh", "relativeneigh", which are from spdep
package. default is knn, if it is "none", meaning the distance weight of each
spot is used to the weight.

sample_id character the sample(s) in the SpatialExperiment object whose cells/spots to use.
Can be all to compute metric for all samples; the metric is computed separately
for each sample. default is "all".

reduction.used character used as spatial coordinates to detect SVG, default is UMAP, if data has
spatialCoords, which will be used as spatial coordinates.

group.by character a specified category column names (for example the cluster column
name) of colData(data). Or a vector of length equal to ncol(data), specify-
ing the group to which each cell is assigned. If it was specified, the adjacency
weighted matrix will be built based on the principle that spots or cells in the
same category are adjacent, default is NULL.

permutation integer the number to permutation test for the calculation of Moran’s I, default
is NULL. We do not recommend using this parameter, as the permutation test is
too slow.

p.adjust.method

character the method to adjust the pvalue of the result, default is BH.

random.seed numeric random seed number to repeatability, default is 1024.

runDetectSVG 33

verbose logical whether print the intermediate message when running the program, de-
fault is TRUE.

action character control the type of output, if action='add', the result of identifi-
cation will add the original object, if action = 'get', the result will return a
SimpleList, if action = 'only', the result will return a DataFrame by merging
the result of all sample, default is add.

gsvaexp which gene set variation experiment will be pulled to run, this only work when
data is a SVPExperiment, default is NULL.

gsvaexp.assay.type

which assay data in the specified gsvaexp will be used to run, default is NULL.

... additional parameters

Value

a SVPExperiment or a SingleCellExperiment, see action parameter details.

Author(s)

Shuangbin Xu

References

1. P. A. P. Moran, The Interpretation of Statistical Maps, Journal of the Royal Statistical Society:
Series B (Methodological), Volume 10, Issue 2, July 1948, Pages 243–251, https://doi.org/10.1111/j.2517-
6161.1948.tb00012.x

2. R. C. Geary, The Contiguity Ratio and Statistical Mapping, Journal of the Royal Statisti-
cal Society Series D: The Statistician, Volume 5, Issue 3, November 1954, Pages 115–141,
https://doi.org/10.2307/2986645

3. Cli AD, Ord JK (1981) Spatial processes: models & applications. Pion Limited, London

4. Bivand, R.S., Wong, D.W.S. Comparing implementations of global and local indicators of
spatial association. TEST 27, 716–748 (2018). https://doi.org/10.1007/s11749-018-0599-x

See Also

runLISA to explore the hotspot for specified features in the spatial space.

Examples

This example dataset is extracted from the
result of runSGSA with gsvaExp(svpe).
data(hpda_spe_cell_dec)

using Moran's I test
######################
hpda_spe_cell_dec <-

hpda_spe_cell_dec |>
runDetectSVG(

assay.type = 'affi.score',

34 runENCODE

method = 'moransi'
)

The result also is saved in the svDfs in the SVPExample object
which can be extrated with svDf
svDfs(hpda_spe_cell_dec)

hpda_spe_cell_dec |> svDf("sv.moransi") |> data.frame() |> dplyr::arrange(rank)

using Geary's C test
#######################
hpda_spe_cell_dec <-

hpda_spe_cell_dec |>
runDetectSVG(assay.type ='affi.score', method = 'gearysc')

svDfs(hpda_spe_cell_dec)

hpda_spe_cell_dec |> svDf("sv.gearysc") |> data.frame() |> dplyr::arrange(rank)

using Global G test (Getis-Ord)
#################################
hpda_spe_cell_dec <- hpda_spe_cell_dec |>

runDetectSVG(assay.type = 1, method = 'getisord')

svDfs(hpda_spe_cell_dec)

hpda_spe_cell_dec |> svDf(3) |> data.frame() |> dplyr::arrange(rank)

runENCODE One hot encode for the specified cell category.

Description

This function convert the specified cell category to one hot encode

Usage

runENCODE(data, group.by, rm.group.nm = NULL, ...)

S4 method for signature 'SingleCellExperiment'
runENCODE(data, group.by, rm.group.nm = NULL, ...)

Arguments

data a SingleCellExperiment object with contains UMAP or TSNE, or a SpatialExperi-
ment object, or a SVPExperiment object with specified gsvaexp argument.

group.by character a specified category column names (for example the cluster column
name) of colData(data). Or a vector of length equal to ‘ncol(data)’, specifying
the group to which each cell is assigned. It is required.

runGLOBALBV 35

rm.group.nm character which want to remove some group type names from the names of the
specified category group, default is NULL.

... currently meaningless.

Value

SVPExperiment object

Examples

data(sceSubPbmc)
sceSubPbmc
sceSubPbmc <- runENCODE(sceSubPbmc, group.by = 'seurat_annotations')
sceSubPbmc
gsvaExp(sceSubPbmc, 'seurat_annotations')
sceSubPbmc <- runENCODE(sceSubPbmc, group.by = 'seurat_annotations', rm.group.nm = c('Platelet'))
sceSubPbmc
gsvaExp(sceSubPbmc, 'seurat_annotations')
The group.by also can be a vector of length equal to ncol(data).
sceSubPbmc <- runENCODE(

sceSubPbmc,
group.by = sceSubPbmc$seurat_annotations,
rm.group.nm = c('Platelet')

)
sceSubPbmc
identical(gsvaExp(sceSubPbmc, 'seurat_annotations'), gsvaExp(sceSubPbmc, "ENCODE"))

runGLOBALBV Global Bivariate analysis for spatial autocorrelation

Description

This function is to explore the global bivariate relationship in the spatial space. It efficiently reflects
the extent to which bivariate associations are spatially grouped. Put differently, it can be utilized to
quantify the bivariate spatial dependency. See also the references.

Usage

runGLOBALBV(
data,
features1 = NULL,
features2 = NULL,
assay.type = "logcounts",
sample_id = "all",
method = c("lee"),
weight = NULL,
weight.method = c("voronoi", "knn", "none"),
reduction.used = NULL,

36 runGLOBALBV

group.by = NULL,
permutation = 100,
alternative = c("two.sided", "greater", "less"),
add.pvalue = FALSE,
random.seed = 1024,
action = c("get", "only"),
verbose = TRUE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
gsvaexp.features = NULL,
across.gsvaexp = TRUE,
...

)

S4 method for signature 'SingleCellExperiment'
runGLOBALBV(
data,
features1 = NULL,
features2 = NULL,
assay.type = "logcounts",
sample_id = "all",
method = c("lee"),
weight = NULL,
weight.method = c("voronoi", "knn", "none"),
reduction.used = NULL,
group.by = NULL,
permutation = 100,
alternative = c("two.sided", "greater", "less"),
add.pvalue = FALSE,
random.seed = 1024,
action = c("get", "only"),
verbose = TRUE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
gsvaexp.features = NULL,
across.gsvaexp = TRUE,
...

)

S4 method for signature 'SVPExperiment'
runGLOBALBV(
data,
features1 = NULL,
features2 = NULL,
assay.type = "logcounts",
sample_id = "all",
method = c("lee"),
weight = NULL,

runGLOBALBV 37

weight.method = c("voronoi", "knn", "none"),
reduction.used = NULL,
group.by = NULL,
permutation = 100,
alternative = c("two.sided", "greater", "less"),
add.pvalue = FALSE,
random.seed = 1024,
action = c("get", "only"),
verbose = TRUE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
gsvaexp.features = NULL,
across.gsvaexp = TRUE,
...

)

Arguments

data a SingleCellExperiment object with contains UMAP or TSNE, or a SpatialExperi-
ment object, or a SVPExperiment object with specified gsvaexp argument.

features1 the features name data object (only supporting character), default is NULL, see
also features2 parameter.

features2 character, if features1 is not NULL, and features2 is NULL, only the features1
are analyzed, if features1 is NULL, and features2 is is not NULL, the features2
are analyzed, if features2 is also NULL, all of features in the data object
will be analyzed. If features2 and features1 are not NULL, the bivariate
spatial autocorrelation analysis will be performed between the features1 and
features2. default is NULL.

assay.type which expressed data to be pulled to run, default is logcounts.

sample_id character the sample(s) in the SpatialExperiment object whose cells/spots to use.
Can be all to compute metric for all samples; the metric is computed separately
for each sample. default is "all".

method character now only the 'lee', default is 'lee'.

weight object, which can be nb, listw or Graph object, default is NULL, meaning the
spatial neighbours weights will be calculated using the weight.method. if the
data contains multiple samples, and the sample_id is specified, it should be
provided as a list object with names (using sample_id).

weight.method character the method to build the spatial neighbours weights, default is voronoi
(Voronoi tessellation). Other method, which requires coord matrix as input and
returns nb, listw or Graph object, also is available, such as "knearneigh",
'dnearneigh', "gabrielneigh", "relativeneigh", which are from spdep
package. default is knn, if it is "none", meaning the distance weight of each
spot is used to the weight.

reduction.used character used as spatial coordinates to calculate the neighbours weights, default
is NULL, the result of reduction can be specified, such as UMAP, TSNE, PCA. If it
is specified, the weight neighbours matrix will be calculated using the result of
specified reduction.

38 runGLOBALBV

group.by character a specified category column names (for example the cluster column
name) of colData(data). Or a vector of length equal to ncol(x), specifying
the group to which each cell is assigned. If it was specified, the adjacency
weighted matrix will be built based on the principle that spots or cells in the
same category are adjacent, default is NULL.

permutation integer the permutation number to test, default is 100L, if permutation is smaller
than 10 or NULL, which will use mantel test to calculate the pvalue.

alternative a character string specifying the alternative hypothesis, which only work with
add.pvalue = TRUE, default is two.sided.

add.pvalue logical whether calculate the pvalue, which is calculated with permutation test.
So it might be slow, default is FALSE, which the pvalue of result will be NULL.

random.seed numeric random seed number to repeatability, default is 1024.

action character, which should be one of 'only' and 'get', default is "only". This
will return a long tidy table (when the sample number of data is one) or a
SimpleList which contains long tidy table for each sample. When action="get",
it will return a list contained global bivariate spatial autocorrelation and pvalue
(when add.pvalue=TRUE), or a SimpleList which contains a list global bivari-
ate spatial result for each sample (when the sample number of data is larger
than one).

verbose logical whether print the help information, default is TRUE.

gsvaexp character the one character from the name of gsvaExpNames(data), default
is NULL. If data is SVPExperiment, and the parameter is specified simultane-
ously. the features (Usually genes) from the displayed class, and gsvaexp.features
from name in rownames(gsvaExp(data, gsvaexp)) will be performed the anal-
ysis.

gsvaexp.assay.type

character the assay name in the assays(gsvaExp(data, gsvaexp)), default is
NULL, which works with gsvaexp parameter.

gsvaexp.features

character the name from the rownames(gsvaExp(data, gsvaexp)). If gsvaexp
is specified and data is SVPExperiment, it should be provided. Default is
NULL.

across.gsvaexp logical whether only calculate the relationship of features between the multi-
ple gsvaExps not the internal features of gsvaExp. For example, 'a' and 'b'
features are from the 'AB' gsvaExp, 'c' and 'd' features are from the 'CD'
gsvaExp. When across.gsvaexp=TRUE and gsvaexp.features = c('a', 'b',
'c', 'd') and gsvaexp = c('AB', 'CD'), Only the relationship of a and c, a
and d, b and c, and b and d will be calculated. default is TRUE.

... additional parameters the parameters which are from the weight.method func-
tion.

Value

SimpleList or long tidy table see also the help information of action argument.

runKldSVG 39

Author(s)

Shuangbin Xu

References

1. Lee, SI. Developing a bivariate spatial association measure: An integration of Pearson’s r and
Moran’s I . J Geograph Syst 3, 369–385 (2001). https://doi.org/10.1007/s101090100064

2. Lee, SI. A Generalized Significance Testing Method for Global Measures of Spatial Associ-
ation: An Extension of the Mantel Test. Environment and Planning A: Economy and Space,
36(9), 1687-1703. https://doi.org/10.1068/a34143.

See Also

runDetectSVG and runKldSVG to identify the spatial variable features. runLISA to explore the
spatial hotspots.

Examples

data(hpda_spe_cell_dec)
rownames(hpda_spe_cell_dec) |> head()
res1 <- runGLOBALBV(hpda_spe_cell_dec,

features1 = "Ductal APOL1 high-hypoxic",
features2 = c('Cancer clone A', "Cancer clone B"),
assay.type = 'affi.score',
action='only'

)
res1
res2 <- runGLOBALBV(hpda_spe_cell_dec,

features1 = c("Acinar cells",
"Ductal APOL1 high-hypoxic",
"Cancer clone A",
"Cancer clone B"),

assay.type = 1,
action = 'get'

)
res2
when add.pvalue = TRUE and permutation <= 10 or NULL, the pvalue will be
calculated using mantel test.
res3 <- runGLOBALBV(hpda_spe_cell_dec, features1 = rownames(hpda_spe_cell_dec),

assay.type = 1, action='get', add.pvalue=TRUE, permutation=NULL)
res3 |> as_tbl_df(diag=FALSE)

runKldSVG Detecting the spatially or single cell variable features with Kull-
back–Leibler divergence of 2D weighted kernel density estimation

40 runKldSVG

Description

To resolve the sparsity of single cell or spatial omics data, we use kernel function smoothing cell
density weighted by the gene expression in a low-dimensional space or physical space. This method
had reported that it can better represent the gene expression, it can also recover the signal from cells
that are more likely to express a gene based on their neighbouring cells (first reference). Next, we
use kullback-leibler divergence to detect the signal genes in a low-dimensional space (UMAP or TSNE
for single cell omics data) or a physical space (for spatial omics data). See details to learn more.

Usage

runKldSVG(
data,
assay.type = "logcounts",
reduction.used = NULL,
sample_id = "all",
grid.n = 100,
permutation = 100,
p.adjust.method = "BY",
verbose = TRUE,
action = c("add", "only", "get"),
random.seed = 1024,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
...

)

S4 method for signature 'SingleCellExperiment'
runKldSVG(
data,
assay.type = "logcounts",
reduction.used = NULL,
sample_id = "all",
grid.n = 100,
permutation = 100,
p.adjust.method = "BY",
verbose = TRUE,
action = c("add", "only", "get"),
random.seed = 1024,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
...

)

S4 method for signature 'SVPExperiment'
runKldSVG(
data,
assay.type = "logcounts",
reduction.used = NULL,

runKldSVG 41

sample_id = "all",
grid.n = 100,
permutation = 100,
p.adjust.method = "BY",
verbose = TRUE,
action = c("add", "only", "get"),
random.seed = 1024,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
...

)

Arguments

data a SingleCellExperiment object with contains UMAP or TSNE, or a SpatialExperi-
ment object, or a SVPExperiment object with specified gsvaexp argument.

assay.type which expressed data to be pulled to run, default is logcounts.

reduction.used character used as spatial coordinates to calculate the neighbours weights, default
is NULL, the result of reduction can be specified, such as UMAP, TSNE, PCA. If it
is specified, the weight neighbours matrix will be calculated using the result of
specified reduction.

sample_id character the sample(s) in the SpatialExperiment object whose cells/spots to use.
Can be all to compute metric for all samples; the metric is computed separately
for each sample. default is "all".

grid.n numeric number of grid points in the two directions to estimate 2D weighted
kernel density, default is 100.

permutation numeric the number of permutation for each single feature to detect the signifi-
cantly spatially or single cell variable features, default is 100.

p.adjust.method

character the method to adjust the pvalue of the result, default is BY.

verbose logical whether print the intermediate message when running the program, de-
fault is TRUE.

action character control the type of output, if action='add', the result of identifi-
cation will add the original object, if action = 'get', the result will return a
SimpleList, if action = 'only', the result will return a DataFrame by merging
the result of all sample, default is add.

random.seed numeric random seed number to repeatability, default is 1024.

gsvaexp which gene set variation experiment will be pulled to run, this only work when
data is a SVPExperiment, default is NULL.

gsvaexp.assay.type

which assay data in the specified gsvaexp will be used to run, default is NULL.

... additional parameters

42 runKldSVG

Details

if input is a SVPExperiment, output will be also a SVPExperiment, the spatially variable gene sets
result is stored in svDfs of the specified gsvaexp, which is a SingleCellExperiment. If input is a
SingleCellExperiment (which is extracted from SVPExperiment using gsvaExp() function), output
will be also a SingleCellExperiment, the spatial variable gene sets result can be extracted using
svDf function. The result of svDf will return a matrix which has sp.kld, boot.sp.kld.mean,
boot.sp.kld.sd, pvalue, padj and rank.

• sp.kld which is logarithms of Kullback–Leibler divergence, larger value meaning the greater
the difference from the background distribution without spatial variability.

• boot.sp.kld.mean which is mean of logarithms of Kullback–Leibler divergence based on
the permutation of each features.

• boot.sp.kld.sd which is standard deviation of logarithms of Kullback–Leibler divergence
based on the permutation of each features.

• pvalue the pvalue is calculated using the real sp.kld and the permutation boot.sp.kld.mean
and boot.sp.kld.sd based on the normal distribution.

• padj the adjusted pvalue based on the specified p.adjust.method, default is BY.

• rank the order of significant spatial variable features based on padj and sp.kld.

The kernel density estimation for each features in each cells is done in the following way (first
reference article):

fh(x) = 1/n
∑n

i=1 Wi ∗Kh(x−Xi)

Where Wi is the value of feature (such as gene expression or gene set score). Xi is the embeddings
(two dimension coordinates of UMAP or TSNE or the physical space for spatial omics data) of the cell
i. h is a smoothing parameter corresponding to the bandwidth matrix, default is the implementation
of ks package. K(x) is a gaussian kernel function. x is the a reference point in the embedding
space defined by the grid size used for the computation to weight the distances of nearby cells.
Kh(x¯Xi)works as a weight for Wi to smooth the feature value based on neighbouring cells at a
UMAP or TSNE or physical space.

The Kullback-Leibler divergence for each features is calculated in the following way:

DKL(G) =
∑

x∈X P (x) ∗ log(P (x)/Q(x))

Where P (x) is the kernel density value of a feature at the space X . and Q(x) is the kernel density
value of no spatially variability reference feature at the space X . The smaller kullback-leibler di-
vergence (DKL(G)) show that the distribution of features is more like the no spatially variability
reference feature at th space X . So we randomly shuffle the position of each feature and calcu-
late Kullback-Leibler divergence, next we use the normal distribution to calculate the pvalue with
the actual Kullback-Leibler divergence, and the average value and standard deviation value of ran-
dom Kullback-Leibler divergence, since the random Kullback-Leibler divergence for each feature
is normally distributed in the following:

X ∼ N (µ, σ2)

where µ is the average value of random Kullback-Leibler divergence, and σ is standard deviation.

Value

a SVPExperiment or a SingleCellExperiment, see details.

runLISA 43

Author(s)

Shuangbin Xu

References

1. Jose Alquicira-Hernandez, Joseph E Powell, Nebulosa recovers single-cell gene expression
signals by kernel density estimation. Bioinformatics, 37, 2485–2487(2021), https://doi.org/10.1093/bioinformatics/btab003.

2. Vandenbon, A., Diez, D. A clustering-independent method for finding differentially expressed
genes in single-cell transcriptome data. Nat Commun, 11, 4318 (2020). https://doi.org/10.1038/s41467-
020-17900-3

3. https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

See Also

runSGSA to calculate the activity score of gene sets, runLISA to explore the hotspot for specified
features in the spatial space.

Examples

This example dataset is extracted from the
result of runSGSA with gsvaExp(svpe).
data(hpda_spe_cell_dec)

hpda_spe_cell_dec <-
hpda_spe_cell_dec |>
runKldSVG(

assay.type = 'affi.score'
)

The result can be extracted svDf()
hpda_spe_cell_dec |> svDf() |> data.frame() |> dplyr::arrange(rank)
the Acinar cells, Cancer clone A, Cancer clone B etc have
significant spatial variable.
Then we can use pred.feature.mode to predict the activity
mode in spatial domain.

runLISA Local indicators of spatial association analysis

Description

This function use the local indicators of spatial association (LISA) to identify the hotspot in the
spatial space. In other word, it allow users to explore local variations in spatial dependence by
measuring each area’s relative contribution to the corresponding global measure.

44 runLISA

Usage

runLISA(
data,
features,
assay.type = "logcounts",
sample_id = "all",
method = c("localG", "localmoran"),
weight = NULL,
weight.method = c("voronoi", "knn", "none"),
reduction.used = NULL,
group.by = NULL,
cells = NULL,
action = c("get", "add", "only"),
alternative = "two.sided",
flag.method = c("mean", "median"),
BPPARAM = SerialParam(),
verbose = TRUE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
gsvaexp.features = NULL,
...

)

S4 method for signature 'SingleCellExperiment'
runLISA(
data,
features,
assay.type = "logcounts",
sample_id = "all",
method = c("localG", "localmoran"),
weight = NULL,
weight.method = c("voronoi", "knn", "none"),
reduction.used = NULL,
group.by = NULL,
cells = NULL,
action = c("get", "add", "only"),
alternative = "two.sided",
flag.method = c("mean", "median"),
BPPARAM = SerialParam(),
verbose = TRUE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
gsvaexp.features = NULL,
...

)

S4 method for signature 'SVPExperiment'
runLISA(

runLISA 45

data,
features,
assay.type = "logcounts",
sample_id = "all",
method = c("localG", "localmoran"),
weight = NULL,
weight.method = c("voronoi", "knn", "none"),
reduction.used = NULL,
group.by = NULL,
cells = NULL,
action = c("get", "add", "only"),
alternative = "two.sided",
flag.method = c("mean", "median"),
BPPARAM = SerialParam(),
verbose = TRUE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
gsvaexp.features = NULL,
...

)

Arguments

data a SingleCellExperiment object with contains UMAP or TSNE, or a SpatialExperi-
ment object, or a SVPExperiment object with specified gsvaexp argument.

features the feature name or index of data object, which are required. If gsvaexp is pro-
vided and data is SingleCellExperiment, it should be the features from rownames(gsvaExp(data,
gsvaexp)).

assay.type which expressed data to be pulled to run, default is logcounts.

sample_id character the sample(s) in the SpatialExperiment object whose cells/spots to use.
Can be all to compute metric for all samples; the metric is computed separately
for each sample. default is "all".

method character the method for the local spatial statistic, one of 'localG', "localmoran",
default is 'localG'.

weight object, which can be nb, listw or Graph object, default is NULL, meaning the
spatial neighbours weights will be calculated using the weight.method. if the
data contains multiple samples, and the sample_id is specified, it should be
provided as a list object with names (using sample_id).

weight.method character the method to build the spatial neighbours weights, default is voronoi
(Voronoi tessellation). Other method, which requires coord matrix as input and
returns nb, listw or Graph object, also is available, such as "knearneigh",
'dnearneigh', "gabrielneigh", "relativeneigh", which are from spdep
package. default is knn, if it is "none", meaning the distance weight of each
spot is used to the weight.

reduction.used character used as spatial coordinates to calculate the neighbours weights, default
is NULL, the result of reduction can be specified, such as UMAP, TSNE, PCA. If it

46 runLISA

is specified, the weight neighbours matrix will be calculated using the result of
specified reduction.

group.by character a specified category column names (for example the cluster column
name) of colData(data). Or a vector of length equal to ncol(x), specifying
the group to which each cell is assigned. If it was specified, the adjacency
weighted matrix will be built based on the principle that spots or cells in the
same category are adjacent, default is NULL.

cells the cell name or index of data object, default is NULL.
action character, which control the type of return result, default is get, which will

return a SimpleList.
alternative a character string specifying the alternative hypothesis, default is two.sided.
flag.method a character string specifying the method to calculate the threshold for the cluster

type, default is "mean". Other option is "median".
BPPARAM A BiocParallelParam object specifying whether perform the analysis in paral-

lel using BiocParallel default is SerialParam(), meaning no parallel. You
can use BiocParallel::MulticoreParam(workers=4, progressbar=TRUE)
to parallel it, the workers of MulticoreParam is the number of cores used,
see also MulticoreParam. default is SerialParam().

verbose logical whether print the help information, default is TRUE.
gsvaexp which gene set variation experiment will be pulled to run, this only work when

data is a SVPExperiment, default is NULL.
gsvaexp.assay.type

which assay data in the specified gsvaexp will be used to run, default is NULL.
gsvaexp.features

character which is from the rownames(gsvaExp(data, gsvaexp)). If gsvaexp
is specified and data is SVPExperiment, it should be provided. Default is
NULL.

... additional parameters the parameters which are from the weight.method func-
tion.

Value

if action = 'get' (in default), the SimpleList object (like list object) will be return, if action
= 'only', the data.frame will be return. if action = 'add', the result of LISA is stored in the
localResults column of int_colData (internal column metadata), which can be extracted using
LISAResult

Author(s)

Shuangbin Xu

References

1. Anselin, L. (1995), Local Indicators of Spatial Association—LISA. Geographical Analysis,
27: 93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x

2. Bivand, R.S., Wong, D.W.S. (2018), Comparing implementations of global and local indica-
tors of spatial association. TEST 27, 716–748. https://doi.org/10.1007/s11749-018-0599-x

runLOCALBV 47

See Also

runDetectSVG and runKldSVG to identify the spatial variable features.

Examples

library(SpatialExperiment)
This example data was extracted from the
result of runSGSA with gsvaExp() function.
data(hpda_spe_cell_dec)
using global spatial autocorrelation test to identify the spatial
variable features.
svres <- runDetectSVG(hpda_spe_cell_dec, assay.type = 'affi.score',

method = 'moransi', action = 'only')
svres |> dplyr::arrange(rank) |> head()
In this example, we found the `Cancer clone A` and `Cancer clone B`
have significant spatial autocorrelation. Next, we use the `runLISA()`
to explore the spatial hotspots for the features.
lisa.res12 <- hpda_spe_cell_dec |>

runLISA(
features = c(1, 2, 3),
assay.type = 'affi.score',
weight.method = "knn",
k = 10,
action = 'get',

)
lisa.res12
lisa.res12[['Acinar cells']] |> head()
lisa.res12[["Cancer clone A"]] |> head()
add the Gi of LISA result to input object.
hpda_spe_cell_dec <- LISAsce(hpda_spe_cell_dec, lisa.res12)
hpda_spe_cell_dec
gsvaExp(hpda_spe_cell_dec, 'LISA')
Then using ggsc to visualize the result
#\donttest{

library(ggplot2)
library(ggsc)
p1 <- plot_lisa_feature(hpda_spe_cell_dec, lisa.res12, assay.type=1)
p2 <- gsvaExp(hpda_spe_cell_dec, 'LISA') |>
plot_lisa_feature(lisa.res12, assay.type='Gi')
p1 / p2

#}

runLOCALBV Local Bivariate analysis with spatial autocorrelation

Description

This function is to explore the local bivariate relationship in the spatial space. Like runGLOBALBV,
It efficiently reflects the extent to which bivariate associations are spatially grouped in local. Put
differently, it can be utilized to quantify the bivariate spatial dependency in local. See also the
references.

48 runLOCALBV

Usage

runLOCALBV(
data,
features1 = NULL,
features2 = NULL,
assay.type = "logcounts",
sample_id = "all",
bv.method = c("locallee", "localmoran_bv"),
bv.alternative = "two.sided",
weight = NULL,
weight.method = c("voronoi", "knn", "none"),
lisa.method = c("localG", "localmoran"),
lisa.alternative = "greater",
lisa.flag.method = c("mean", "median"),
reduction.used = NULL,
group.by = NULL,
permutation = 100,
random.seed = 1024,
BPPARAM = SerialParam(),
action = c("get", "only", "add"),
verbose = TRUE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
gsvaexp.features = NULL,
across.gsvaexp = TRUE,
...

)

S4 method for signature 'SingleCellExperiment'
runLOCALBV(
data,
features1 = NULL,
features2 = NULL,
assay.type = "logcounts",
sample_id = "all",
bv.method = c("locallee", "localmoran"),
bv.alternative = "two.sided",
weight = NULL,
weight.method = c("voronoi", "knn", "none"),
lisa.method = c("localG", "localmoran"),
lisa.alternative = "greater",
lisa.flag.method = c("mean", "median"),
reduction.used = NULL,
group.by = NULL,
permutation = 100,
random.seed = 1024,
BPPARAM = SerialParam(),
action = c("get", "only", "add"),

runLOCALBV 49

verbose = TRUE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
gsvaexp.features = NULL,
across.gsvaexp = TRUE,
...

)

S4 method for signature 'SVPExperiment'
runLOCALBV(
data,
features1 = NULL,
features2 = NULL,
assay.type = "logcounts",
sample_id = "all",
bv.method = c("locallee", "localmoran_bv"),
bv.alternative = "two.sided",
weight = NULL,
weight.method = c("voronoi", "knn", "none"),
lisa.method = c("localG", "localmoran"),
lisa.alternative = "greater",
lisa.flag.method = c("mean", "median"),
reduction.used = NULL,
group.by = NULL,
permutation = 100,
random.seed = 1024,
BPPARAM = SerialParam(),
action = c("get", "only", "add"),
verbose = TRUE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
gsvaexp.features = NULL,
across.gsvaexp = TRUE,
...

)

Arguments

data a SingleCellExperiment object with contains UMAP or TSNE, or a SpatialExperi-
ment object, or a SVPExperiment object with specified gsvaexp argument.

features1 the features name data object (only supporting character), see also features2
parameter.

features2 character, if features1 is not NULL, and features2 is NULL, only the features1
are analyzed, if features1 is NULL, and features2 is is not NULL, the features2
are analyzed, if features2 is also NULL, all of features in the data object
will be analyzed. If features2 and features1 are not NULL, the bivariate
spatial autocorrelation analysis will be performed between the features1 and
features2. default is NULL.

50 runLOCALBV

assay.type which expressed data to be pulled to run, default is logcounts.

sample_id character the sample(s) in the SpatialExperiment object whose cells/spots to use.
Can be all to compute metric for all samples; the metric is computed separately
for each sample. default is "all".

bv.method character one of the 'locallee' and 'localmoran_bv', default is 'locallee'.

bv.alternative a character string specifying the alternative hypothesis, default is tow.sided.
This only work when bv.method = 'localmoran_bv'.

weight object, which can be nb, listw or Graph object, default is NULL, meaning the
spatial neighbours weights will be calculated using the weight.method. if the
data contains multiple samples, and the sample_id is specified, it should be
provided as a list object with names (using sample_id).

weight.method character the method to build the spatial neighbours weights, default is voronoi
(Voronoi tessellation). Other method, which requires coord matrix as input and
returns nb, listw or Graph object, also is available, such as "knearneigh",
'dnearneigh', "gabrielneigh", "relativeneigh", which are from spdep
package. default is knn, if it is "none", meaning the distance weight of each
spot is used to the weight.

lisa.method character one of the 'localG' and 'localmoran', this is to perform the LISA
analysis using the result of bv.method, which can identify the spatial domain of
the bivariate spatial analysis result, default is 'localG'.

lisa.alternative

a character string specifying the alternative hypothesis, which works with lisa.method,
default is greater.

lisa.flag.method

a character string specifying the method to calculate the threshold for the cluster
type, default is "mean". Other option is "median".

reduction.used character used as spatial coordinates to calculate the neighbours weights, default
is NULL, the result of reduction can be specified, such as UMAP, TSNE, PCA. If it
is specified, the weight neighbours matrix will be calculated using the result of
specified reduction.

group.by character a specified category column names (for example the cluster column
name) of colData(data). Or a vector of length equal to ‘ncol(x)’, specifying
the group to which each cell is assigned. If it was specified, the adjacency
weighted matrix will be built based on the principle that spots or cells in the
same category are adjacent, default is NULL.

permutation integer the permutation number to test, which only work with bv.method='localmoran_bv',
default is 100L.

random.seed numeric random seed number to repeatability, default is 1024.

BPPARAM A BiocParallelParam object specifying whether perform the analysis in paral-
lel using BiocParallel default is SerialParam(), meaning no parallel. You
can use BiocParallel::MulticoreParam(workers=4, progressbar=TRUE)
to parallel it, the workers of MulticoreParam is the number of cores used,
see also MulticoreParam. default is SerialParam().

action character, which control the type of return result, default is get, which will
return a SimpleList.

runLOCALBV 51

verbose logical whether print the help information, default is TRUE.

gsvaexp character the one character from the name of gsvaExpNames(data), default
is NULL. If data is SVPExperiment, and the parameter is specified simultane-
ously. the features (Usually genes) from the displayed class, and gsvaexp.features
from name in rownames(gsvaExp(data, gsvaexp)) will be performed the anal-
ysis.

gsvaexp.assay.type

character the assay name in the assays(gsvaExp(data, gsvaexp)), default is
NULL, which works with gsvaexp parameter.

gsvaexp.features

character the name from the rownames(gsvaExp(data, gsvaexp)). If gsvaexp
is specified and data is SVPExperiment, it should be provided. Default is
NULL.

across.gsvaexp logical whether only calculate the relationship of features between the multi-
ple gsvaExps not the internal features of gsvaExp. For example, 'a' and 'b'
features are from the 'AB' gsvaExp, 'c' and 'd' features are from the 'CD'
gsvaExp. When across.gsvaexp=TRUE and gsvaexp.features = c('a', 'b',
'c', 'd') and gsvaexp = c('AB', 'CD'), Only the relationship of a and c, a
and d, b and c, and b and d will be calculated. default is TRUE.

... additional parameters the parameters which are from the weight.method func-
tion.

Value

if action = 'get' (in default), the SimpleList object (like list object) will be return, if action
= 'only', the data.frame will be return. if action = 'add', the result of LISA is stored in the
localResults column of int_colData (internal column metadata). You can use localResults()
function of SpatialFeatureExperiment package to extract it.

Author(s)

Shuangbin Xu

References

Lee, SI. Developing a bivariate spatial association measure: An integration of Pearson’s r and
Moran’s I . J Geograph Syst 3, 369–385 (2001). https://doi.org/10.1007/s101090100064

See Also

runDetectSVG and runKldSVG to identify the spatial variable features, runGLOBALBV to analysis
the global bivariate spatial analysis, runLISA to identify the spatial domain of specified features.

Examples

data(hpda_spe_cell_dec)
res1 <- hpda_spe_cell_dec |> runLOCALBV(

features1 = 'Cancer clone A',
features2 = 'Cancer clone B',

52 runMCA

assay.type='affi.score'
)

res1
res1[['Cancer clone A_VS_Cancer clone B']] |> head()
add the LocalLee and Gi of LOCALBV result to input object.
hpda_spe_cell_dec <- LISAsce(hpda_spe_cell_dec, res1, 'LOCALBV')
hpda_spe_cell_dec
gsvaExp(hpda_spe_cell_dec, 'LOCALBV')
Then using ggsc to visualize the result
#\donttest{

library(ggplot2)
library(ggsc)
gsvaExp(hpda_spe_cell_dec, 'LOCALBV') |>
plot_lisa_feature(res1, assay.type='LocalLee') + ggtitle(NULL)

#}

runMCA Run Multiple Correspondence Analysis

Description

Perform a Multiple Correspondence Analysis (MCA) on cells, based on the expression data in a
SingleCellExperiment object. It is modified based on the RunMCA of CelliD with the source codes
of C++.

Usage

runMCA(
data,
assay.type = "logcounts",
reduction.name = "MCA",
ncomponents = 30,
subset.row = NULL,
subset.col = NULL,
group.by.vars = NULL,
consider.spcoord = FALSE,
...

)

S4 method for signature 'SingleCellExperiment'
runMCA(
data,
assay.type = "logcounts",
reduction.name = "MCA",
ncomponents = 50,
subset.row = NULL,
subset.col = NULL,
group.by.vars = NULL,

runMCA 53

consider.spcoord = FALSE,
...

)

Arguments

data a SingleCellExperiment object

assay.type which expressed data to be pulled to run, default is logcounts.

reduction.name name of the reduction result, default is MCA.

ncomponents number of components to compute and store, default is 30.

subset.row Vector specifying the subset of features to be used for dimensionality reduction.
This can be a character vector of row names, an integer vector of row indices
or a logical vector, default is NULL, meaning all features to be used for dimen-
sionality reduction.

subset.col Vector specifying the subset of cells to be used for dimensionality reduction.
This can be a character vector of column names, an integer vector of column
indices or a logical vector, default is NULL, meaning all cells to be used for
dimensionality reduction.

group.by.vars character the name(s) of covariates that harmony will remove its effect on the
data, default is NULL.

consider.spcoord

whether consider the spatial coords as the features of data to run MCA, default
is FALSE (TRUE is experimental).

... additional parameters, see also RunHarmony.

Value

a SingleCellExperiment and the reduction result of MCA can be extracted using reducedDim() func-
tion.

Examples

library(scuttle)
library(SingleCellExperiment)
small.sce <- mockSCE()
small.sce <- logNormCounts(small.sce)
To improve computational efficiency, you can use RhpcBLASctl to control the number
of threads on BLAS. From example
RhpcBLASctl::blas_set_num_threads(threads = 48)
small.sce <- runMCA(small.sce, assay.type = 'logcounts',

reduction.name = 'MCA', ncomponents = 20)
The MCA result can be extracted using reducedDim of SingleCellExperiment
mca.res <- reducedDim(small.sce, 'MCA')
mca.res |> str()

54 runSGSA

runSGSA Calculate the activity of gene sets in spatial or single-cell data with
restart walk with restart and hyper test weighted.

Description

First, we calculated the distance between cells and between genes, between cells and genes in space
of MCA. Because the closer gene is to a cell, the more specific to such the cell it can be considered
in MCA space (first reference). We extract the top nearest genes for each cells, to obtain the cells
and cells association, genes and gens association, we also extract the top nearest cells or genes
respectively, then combine all the association into the same network to obtain the adjacency matrix
of all cells and genes. Another method is that we build the network using the combined MCA space
of cells and genes directly. Next, we build a starting seed matrix (which each column measures the
initial probability distribution of each gene set in graph nodes) for random walk with restart using
the gene set and all nodes of the graph. Finally, we employ the restart walk with restart algorithm
to compute the affinity score for each gene set or pathway, which is then further weighted using the
hypergeometric test result from the original expression matrix controlled by hyper.test.weighted
parameter.

Usage

runSGSA(
data,
gset.idx.list,
gsvaExp.name = "gset1.rwr",
symbol.from.gson = FALSE,
min.sz = 5,
max.sz = Inf,
gene.occurrence.rate = 0.2,
assay.type = "logcounts",
knn.used.reduction.dims = 30,
knn.combined.cell.feature = FALSE,
knn.graph.weighted = TRUE,
knn.k.use = round(0.06 * nrow(data)),
rwr.restart = 0.75,
rwr.normalize.adj.method = c("laplacian", "row", "column", "none"),
rwr.normalize.affinity = FALSE,
rwr.prop.normalize = FALSE,
rwr.threads = NULL,
hyper.test.weighted = c("Hypergeometric", "Wallenius", "none"),
hyper.test.by.expr = TRUE,
prop.score = FALSE,
add.weighted.metric = FALSE,
add.cor.features = FALSE,
cells = NULL,
features = NULL,
verbose = TRUE,

runSGSA 55

...
)

S4 method for signature 'SingleCellExperiment'
runSGSA(
data,
gset.idx.list,
gsvaExp.name = "gset1.rwr",
symbol.from.gson = FALSE,
min.sz = 5,
max.sz = Inf,
gene.occurrence.rate = 0.2,
assay.type = "logcounts",
knn.used.reduction.dims = 30,
knn.combined.cell.feature = FALSE,
knn.graph.weighted = TRUE,
knn.k.use = round(0.06 * nrow(data)),
rwr.restart = 0.75,
rwr.normalize.adj.method = c("laplacian", "row", "column", "none"),
rwr.normalize.affinity = FALSE,
rwr.prop.normalize = FALSE,
rwr.threads = NULL,
hyper.test.weighted = c("Hypergeometric", "Wallenius", "none"),
hyper.test.by.expr = TRUE,
prop.score = FALSE,
add.weighted.metric = FALSE,
add.cor.features = FALSE,
cells = NULL,
features = NULL,
verbose = TRUE,
...

)

Arguments

data a SingleCellExperiment object normalized and have the result of UMAP or TSNE.
Or a SVPExperiment object.

gset.idx.list gene set list contains the names, or GSON object or a gmt file, and the online
gmt file is also supported.

gsvaExp.name a character the name of gsvaExp of result SVP object.
symbol.from.gson

logical whether extract the SYMBOL ID as gset.idx.list, only work when
gset.idx.list is a GSON object.

min.sz integer the minimum gene set number, default is 5, the number of gene sets
smaller than min.sz will be ignored.

max.sz integer the maximum gene set number, default is Inf, the number of gene sets
larger than max.sz will be ignored.

56 runSGSA

gene.occurrence.rate

the occurrence proportion of the gene set in the input object, default is 0.2.

assay.type which expressed data to be pulled to build KNN Graph, default is logcounts.
knn.used.reduction.dims

the top components of the reduction with MCA to be used to build KNN Graph,
default is 30.

knn.combined.cell.feature

whether combined the embeddings of cells and features to find the nearest neigh-
bor and build graph, default is FALSE, meaning the nearest neighbor will be
found in cells to cells, features to features, cells to features respectively to build
graph.

knn.graph.weighted

logical whether consider the distance of nodes in the Nearest Neighbors, default
is TRUE.

knn.k.use numeric the number of the Nearest Neighbors nodes, default is 0.06 * number
of gene in data.

rwr.restart the restart probability used for restart walk with restart, should be between 0 and
1, default is 0.75.

rwr.normalize.adj.method

character the method to normalize the adjacency matrix of the input graph, de-
fault is laplacian.

rwr.normalize.affinity

logical whether normalize the activity (affinity) result score using quantile nor-
malization, default is FALSE.

rwr.prop.normalize

logical whether divide the specific activity score by total activity score for a sam-
ple, default is FALSE. if gset.idx.list is celltype gene set, we recommend
using TRUE.

rwr.threads the threads to run Random Walk With Restart (RWR), default is NULL, which
will initialize with the default number of threads, you can also set this using
RcppParallel::setThreadOptions(numThreads=10).

hyper.test.weighted

character which method to weight the activity score of cell, should is one of
"Hypergeometric", "Wallenius", "none", default is "Hypergeometric".

hyper.test.by.expr

logical whether using the expression matrix to find the nearest genes of cells,
default is TRUE, if it is FALSE, meaning using the result of reduction to find
the nearest genes of cells to perform the hyper.test.weighted.

prop.score logical whether to normalize each feature for each sample, default is FALSE.
add.weighted.metric

logical whether return the weight activity score of cell using the corresponding
hyper.test.weighted, default is FALSE.

add.cor.features

logical whether calculate the correlation between the new features and original
features (genes), default is FALSE. If it is TRUE the correlation result will be
kept in fscoreDf which can be extracted using fscoreDf() function.

runSGSA 57

cells Vector specifying the subset of cells to be used for the calculation of the ac-
tive score or identification of SV features. This can be a character vector of
cell names, an integer vector of column indices or a logical vector, default is
NULL, meaning all cells to be used for the calculation of the activity score or
identification of SV features.

features Vector specifying the subset of features to be used for the calculation of the
activity score or identification of SV features. This can be a character vector of
features names, an integer vector of row indices or a logical vector, default is
NULL, meaning all features to be used for the calculation of the activity score
or identification of SV features.

verbose logical whether print the intermediate message when running the program, de-
fault is TRUE.

... additional parameters

Details

if input is a SVPExperiment, output will be also a SVPExperiment, the activity score of gene sets
was stored in assay slot of the specified gsvaexp, and the spatially variable gene sets result is stored
in svDfs of the specified gsvaexp, which is a SingleCellExperiment. If input is a SingleCellExper-
iment (which is extracted from SVPExperiment using gsvaExp() function), output will be also a
SingleCellExperiment, the activity score of gene sets result can be extracted using assay() func-
tion. The spatially variable gene sets result can be extracted using svDf() function. The affinity
score is calculated in the following way (refer to the second article):

Pt+1 = (1− r) ∗M ∗ Pt + r ∗ P0

where P0 is the initial probability distribution for each gene set, M is the transition matrix that is
the column normalization of adjacency matrix of graph, r is the global restart probability, Pt+1 and
Pt represent the probability distribution in each iteration. After several iterations, the difference
between Pt+1 and Pt becomes negligible, the stationary probability distribution is reached, indicat-
ing proximity measures from every graph node. Iterations are stopped when the difference between
Pt+1 and Pt falls below 1e-10.

Value

a SVPExperiment or a SingleCellExperiment, see details.

Author(s)

Shuangbin Xu

References

1. Cortal, A., Martignetti, L., Six, E. et al. Gene signature extraction and cell identity recognition
at the single-cell level with Cell-ID. Nat Biotechnol 39, 1095–1102 (2021). https://doi.org/10.1038/s41587-
021-00896-6

2. Alberto Valdeolivas, Laurent Tichit, Claire Navarro, Sophie Perrin, et al. Random walk with
restart on multiplex and heterogeneous biological networks, Bioinformatics, 35, 3, 497–505(2019),
https://doi.org/10.1093/bioinformatics/bty637

58 runSGSA

See Also

runDetectSVG and runKldSVG to identify the spatial variable features. runGLOBALBV to explore the
spatial co-distribution between the spatial variable features

Examples

data(sceSubPbmc)
library(SingleCellExperiment) |> suppressPackageStartupMessages()
library(scuttle) |> suppressPackageStartupMessages()
sceSubPbmc <- scuttle::logNormCounts(sceSubPbmc)
the using runMCA to perform MCA (Multiple Correspondence Analysis)
this is refer to the CelliD, but we using the Eigen to speed up.
You can view the help information of runMCA using ?runMCA.
sceSubPbmc <- runMCA(sceSubPbmc, assay.type = 'logcounts')

Next, we can calculate the activity score of gene sets provided.
Here, we use the Cell Cycle gene set from the Seurat
You can use other gene set, such as KEGG pathway, GO, Hallmark of MSigDB
or TFs gene sets etc.
#
supporting the list with names or gson object or the gmt file
online gmt file is also be supported
such as
https://data.broadinstitute.org/gsea-msigdb/msigdb/release/2023.2.Hs/h.all.v2023.2.Hs.symbols.gmt

data(CellCycle.Hs)
sceSubPbmc <- runSGSA(sceSubPbmc, gset.idx.list = CellCycle.Hs, gsvaExp.name = 'CellCycle')
Then a SVPE class which inherits SingleCellExperiment, is return.
sceSubPbmc

You can obtaion the score matrix by following the commond
sceSubPbmc |> gsvaExp('CellCycle')
sceSubPbmc |> gsvaExp("CellCycle") |> assay() |> t() |> head()

Then you can use the ggsc or other package to visulize
and you can try to use the findMarkers of scran or other packages to identify
the different gene sets.
#\donttest{

library(ggplot2)
library(ggsc)
sceSubPbmc <- sceSubPbmc |>

scater::runPCA(assay.type = 'logcounts', ntop = 600) |>
scater::runUMAP(dimred = 'PCA')

withReducedDim = TRUE, the original reducetion results from original gene features
will be add the colData in the sce.cellcycle.
sce.cellcycle <- sceSubPbmc |> gsvaExp('CellCycle', withReducedDim=TRUE)
sce.cellcycle
sce.cellcycle |> sc_violin(

features = rownames(sce.cellcycle),
mapping = aes(x=seurat_annotations, fill = seurat_annotations)

) +
scale_x_discrete(guide=guide_axis(angle=-45))

runWKDE 59

sce.cellcycle |> sc_feature(features= "S", reduction='UMAP')
library(scran)
cellcycle.test.res <- sce.cellcycle |> findMarkers(

group = sce.cellcycle$seurat_annotations,
test.type = 'wilcox',
assay.type = 'affi.score',
add.summary = TRUE

)
cellcycle.test.res$B

#}

runWKDE Calculating the 2D Weighted Kernel Density Estimation

Description

Calculating the 2D Weighted Kernel Density Estimation

Usage

runWKDE(
data,
assay.type = "logcounts",
reduction.used = NULL,
grid.n = 100,
adjust = 1,
bandwidths = NULL,
verbose = TRUE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
...

)

S4 method for signature 'SingleCellExperiment'
runWKDE(
data,
assay.type = "logcounts",
reduction.used = NULL,
grid.n = 100,
adjust = 1,
bandwidths = NULL,
verbose = TRUE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
...

)

S4 method for signature 'SVPExperiment'

60 runWKDE

runWKDE(
data,
assay.type = "logcounts",
reduction.used = NULL,
grid.n = 100,
adjust = 1,
bandwidths = NULL,
verbose = TRUE,
gsvaexp = NULL,
gsvaexp.assay.type = NULL,
...

)

Arguments

data a SingleCellExperiment object with contains UMAP or TSNE, or a SpatialExperi-
ment object, or a SVPExperiment object with specified gsvaexp argument.

assay.type which expressed data to be pulled to run, default is logcounts.

reduction.used character used as spatial coordinates to detect SVG, default is NULL, if data
has spatialCoords, which will be used as spatial coordinates, if this is provided
the coordinate of specified reduced result will be used.

grid.n integer number of grid points in the two directions to estimate 2D weighted
kernel density, default is 100.

adjust numeric to adjust the bandwidths, default is 1.0.

bandwidths vector a two length numeric vector represents the bandwidths for x and y direc-
tions, default is normal reference bandwidth hpi, see also bandwidth.nrd.

verbose logical whether print the intermediate message when running the program, de-
fault is TRUE.

gsvaexp which gene set variation experiment will be pulled to run, this only work when
data is a SVPExperiment, default is NULL.

gsvaexp.assay.type

which assay data in the specified gsvaexp will be used to run, default is NULL.

... additional parameters

Value

a SVPExperiment or SingleCellExperiment

Author(s)

Shuangbin Xu

Examples

library(SpatialExperiment)
data(hpda_spe_cell_dec)
hpda_spe_cell_dec <- hpda_spe_cell_dec |> runWKDE(assay.type = 'affi.score')

svDfs 61

The result is saved in the assays (affi.score.density name) of SVPExperiment
which can be extracted using assay and visualized using ggsc or
other packages
assays(hpda_spe_cell_dec)
#\donttest{

library(ggsc)

f1 <- sc_spatial(hpda_spe_cell_dec, features="Cancer clone A",
mapping=aes(x=x,y=y),
slot = 'affi.score.density',
pointsize=10

) +
scale_bg_color_manual(values=c('black'))
f1

f2 <- sc_spatial(hpda_spe_cell_dec, features="Cancer clone B",
mapping=aes(x=x,y=y),
pointsize=10,
slot = 'affi.score.density'

) +
scale_bg_color_manual(values=c('black'))
f2

#}

svDfs spatial or single cell variable features matrix extract method

Description

the identification result of the spatial variable or single cell variable (SV) features is important to
the downstream analysis.

Value

see Getters and setter.

Getters

In the following examples, x is a SingleCellExperiment object.

svDf(x, type): Retrieves a DataFrame containing the new features (gene sets) (rows) for the spec-
ified type. type should either be a string specifying the name of the features scores matrix in
x to retrieve, or a numeric scalar specifying the index of the desired matrix, defaulting to the
first matrix is missing.

svDfNames(x): Retures a character vector containing the names of all features SV DataFrame Lists
in x. This is guaranteed to be of the same length as the number of results.

svDfs(x): Returns a named List of matrices containing one or more DataFrame objects. Each
object is guaranteed to have the same number of rows, in a 1:1 correspondence to those in x.

62 svDfs

Single-object setter

svDf(x, type) <- value will add or replace an SV matrix in a SingleCellExperiment object x. The
value of type determines how the result is added or replaced:

• If type is missing, value is assigned to the first result. If the result already exists, its name is
preserved; otherwise it is given a default name "unnamed.sv1".

• If type is a numeric scalar, it must be within the range of existing results, and value will be
assigned to the result at that index.

• If type is a string and a result exists with this name, value is assigned to to that result.
Otherwise a new result with this name is append to the existing list of results.

Other setter

svDfs(x) <- value: Replaces all features sv result matrices in x with those in value. The latter
should be a list-like object containing any number of DataFrame objects with number of row
equal to nrow(x).
If value is named, those names will be used to name the SV matrices in x. Otherwise, un-
named results are assigned default names prefixed with "unnamed.sv".
If value is NULL, all SV matrices in x are removed.

svDfNames(x) <- value: Replaces all names for SV matrices in x with a character vector value.
This should be of length equal to the number of results currently in x.

Examples

Using the SingleCellExperiment class example
library(SingleCellExperiment) |> suppressPackageStartupMessages()
example(SingleCellExperiment, echo = FALSE)
dim(counts(sce))
rownames(sce) <- paste0("gene", seq(nrow(sce)))
colnames(sce) <- paste0("cell", seq(ncol(sce)))
Mocking up some result of spatially variable gene or high variable gene
da1 <- data.frame(kld = abs(rnorm(nrow(sce), .4)),

pvalue = abs(rnorm(nrow(sce), .001))) |>
as.matrix()

rownames(da1) <- rownames(sce)
da2 <- data.frame(moransi = abs(rnorm(nrow(sce), .4)),

pvalue = abs(rnorm(nrow(sce), .001))) |>
as.matrix()

rownames(da2) <- rownames(sce)
svDfs(sce) <- list()
svDf(sce, "kld") <- da1
svDf(sce, "moransi") <- da2
svDfs(sce)
svDfNames(sce)
svDf(sce, "kld") |> head()
svDf(sce, "moransi") |> head()
svDf(sce, 2) |> head()

SVP-accessors 63

SVP-accessors Some accessor functions to get the internal slots of SVPExperiment

Description

Some accessor functions to get the internal slots of SVPExperiment

Usage

S4 method for signature 'SVPExperiment'
spatialCoords(x)

S4 method for signature 'SVPExperiment'
spatialCoordsNames(x)

S4 method for signature 'SVPExperiment'
imgData(x)

S4 replacement method for signature 'SVPExperiment,DataFrame'
imgData(x) <- value

S4 replacement method for signature 'SVPExperiment,NULL'
imgData(x) <- value

S4 replacement method for signature 'SVPExperiment,matrix_Or_NULL'
spatialCoords(x) <- value

S4 replacement method for signature 'SVPExperiment,character'
spatialCoordsNames(x) <- value

S4 method for signature 'SVPExperiment'
show(object)

Arguments

x a SVPExperiment class.

value matrix for spatialCoords(object) <- value character for spatialCoordsNames(object)
<- value.

object a SVPExperiment class.

Value

matrix or character or print the information of object or a SVPExperiment object.

64 SVPExperiment

Examples

library(SpatialExperiment) |> suppressPackageStartupMessages()
library(DropletUtils) |> suppressPackageStartupMessages()
example(read10xVisium, echo = FALSE)
svpe <- as(spe, 'SVPExperiment')
svpe
spatialCoords(svpe) |> head()

SVPExperiment The SVPExperiment class

Description

The SVPExperiment class

Usage

SVPExperiment(..., gsvaExps = list())

Arguments

... passed to the SingleCellExperiment constructor to fill the slots of the base
class.

gsvaExps list containing SingleCellExperiment object, each of which should have the
same number of columns as the output SVPExperiment object.

Value

a SVPExperiment object

Author(s)

Shuangbin Xu

Examples

library(SingleCellExperiment) |> suppressPackageStartupMessages()
ncells <- 100
u <- matrix(rpois(20000, 5), ncol=ncells)
v <- log2(u + 1)
pca <- matrix(runif(ncells*5), ncells)
tsne <- matrix(rnorm(ncells*2), ncells)

svpe <- SVPExperiment(assays=list(counts=u, logcounts=v),
reducedDims=SimpleList(PCA=pca, tSNE=tsne))

svpe

coercion from SingleCellExperiment

SVPExperiment 65

sce <- SingleCellExperiment(assays=list(counts=u, logcounts=v),
reducedDims=SimpleList(PCA=pca, tSNE=tsne))
svpe <- as(sce, 'SVPExperiment')
svpe

Index

∗ data
CellCycle.Hs, 7
data_CancerSEA, 9
data_hpda_spe_cell_dec, 10
data_sceSubPbmc, 11
data_SenMayo, 11
mob_marker_genes, 21
mob_sce, 22

∗ internal
reexports, 25
SVP-package, 3

[,SCEByColumn,ANY,ANY,ANY-method
(gsvaExps), 16

[<-,SCEByColumn,ANY,ANY,ANY-method
(gsvaExps), 16

Annotated, 18
as_tbl_df, 4

bandwidth.nrd, 60

c,SCEByColumn-method (gsvaExps), 16
cal_lisa_f1, 5
cal_lisa_f1,SingleCellExperiment

(cal_lisa_f1), 5
cal_lisa_f1,SingleCellExperiment-method

(cal_lisa_f1), 5
CancerSEAEnsemble (data_CancerSEA), 9
CancerSEASymbol (data_CancerSEA), 9
CellCycle.Hs, 7
cluster.assign, 7, 25
cluster.assign,SingleCellExperiment

(cluster.assign), 7
cluster.assign,SingleCellExperiment-method

(cluster.assign), 7
cluster.assign,SVPExperiment

(cluster.assign), 7
cluster.assign,SVPExperiment-method

(cluster.assign), 7

coerce,SingleCellExperiment,SVPExperiment-method
(SVPExperiment), 64

colData, 17

data_CacerSEA (data_CancerSEA), 9
data_CancerSEA, 9
data_CellCycle.Hs (CellCycle.Hs), 7
data_hpda_spe_cell_dec, 10
data_sceSubPbmc, 11
data_SenMayo, 11
DataFrame, 15, 33, 41, 61, 62

extract_weight_adj, 12
extract_weight_adj,SingleCellExperiment

(extract_weight_adj), 12
extract_weight_adj,SingleCellExperiment-method

(extract_weight_adj), 12

fast_cor, 13
fscoreDf (fscoreDfs), 14
fscoreDf,SingleCellExperiment,character-method

(fscoreDfs), 14
fscoreDf,SingleCellExperiment,missing-method

(fscoreDfs), 14
fscoreDf,SingleCellExperiment,numeric-method

(fscoreDfs), 14
fscoreDf<- (fscoreDfs), 14
fscoreDf<-,SingleCellExperiment,character-method

(fscoreDfs), 14
fscoreDf<-,SingleCellExperiment,missing-method

(fscoreDfs), 14
fscoreDf<-,SingleCellExperiment,numeric-method

(fscoreDfs), 14
fscoreDfNames (fscoreDfs), 14
fscoreDfNames,SingleCellExperiment-method

(fscoreDfs), 14
fscoreDfNames<- (fscoreDfs), 14
fscoreDfNames<-,SingleCellExperiment,character-method

(fscoreDfs), 14
fscoreDfs, 14

66

INDEX 67

fscoreDfs,SingleCellExperiment-method
(fscoreDfs), 14

fscoreDfs<- (fscoreDfs), 14
fscoreDfs<-,SingleCellExperiment-method

(fscoreDfs), 14

gsvaExp (gsvaExps), 16
gsvaExp,SVPExperiment,character-method

(gsvaExps), 16
gsvaExp,SVPExperiment,missing-method

(gsvaExps), 16
gsvaExp,SVPExperiment,numeric-method

(gsvaExps), 16
gsvaExp<- (gsvaExps), 16
gsvaExp<-,SVPExperiment,character-method

(gsvaExps), 16
gsvaExp<-,SVPExperiment,missing-method

(gsvaExps), 16
gsvaExp<-,SVPExperiment,numeric-method

(gsvaExps), 16
gsvaExpNames (gsvaExps), 16
gsvaExpNames,SVPExperiment-method

(gsvaExps), 16
gsvaExpNames<- (gsvaExps), 16
gsvaExpNames<-,SVPExperiment,character-method

(gsvaExps), 16
gsvaExps, 16
gsvaExps,SVPExperiment-method

(gsvaExps), 16
gsvaExps<- (gsvaExps), 16
gsvaExps<-,SVPExperiment-method

(gsvaExps), 16

hpda_spe_cell_dec
(data_hpda_spe_cell_dec), 10

hpi, 60

imgData, 25
imgData (reexports), 25
imgData,SVPExperiment-method

(SVP-accessors), 63
imgData<- (reexports), 25
imgData<-,SVPExperiment,DataFrame-method

(SVP-accessors), 63
imgData<-,SVPExperiment,NULL-method

(SVP-accessors), 63

length,SCEByColumn-method (gsvaExps), 16
LISAResult, 19, 46

LISAsce, 20
LISAsce,SingleCellExperiment (LISAsce),

20
LISAsce,SingleCellExperiment-method

(LISAsce), 20
List, 15, 17, 61

mainGsvaExpName (gsvaExps), 16
mainGsvaExpName,SVPExperiment-method

(gsvaExps), 16
mainGsvaExpName<- (gsvaExps), 16
mainGsvaExpName<-,SVPExperiment,character_OR_NULL-method

(gsvaExps), 16
mcols, 18
metadata, 18
mob_marker_genes, 21
mob_sce, 22
MulticoreParam, 30, 46, 50

names,SCEByColumn-method (gsvaExps), 16
names<-,SCEByColumn-method (gsvaExps),

16

plot_heatmap_globalbv, 22
pred.cell.signature, 24
pred.cell.signature,SingleCellExperiment

(pred.cell.signature), 24
pred.cell.signature,SingleCellExperiment-method

(pred.cell.signature), 24
pred.cell.signature,SVPExperiment

(pred.cell.signature), 24
pred.cell.signature,SVPExperiment-method

(pred.cell.signature), 24

reexports, 25
runCORR, 26, 28
runCORR,SingleCellExperiment (runCORR),

26
runCORR,SingleCellExperiment-method

(runCORR), 26
runCORR,SVPExperiment (runCORR), 26
runCORR,SVPExperiment-method (runCORR),

26
runDetectMarker, 29
runDetectMarker,SingleCellExperiment

(runDetectMarker), 29
runDetectMarker,SingleCellExperiment-method

(runDetectMarker), 29
runDetectSVG, 30, 39, 47, 51, 58

68 INDEX

runDetectSVG,SingleCellExperiment
(runDetectSVG), 30

runDetectSVG,SingleCellExperiment-method
(runDetectSVG), 30

runDetectSVG,SVPExperiment
(runDetectSVG), 30

runDetectSVG,SVPExperiment-method
(runDetectSVG), 30

runENCODE, 34
runENCODE,SingleCellExperiment

(runENCODE), 34
runENCODE,SingleCellExperiment-method

(runENCODE), 34
runGLOBALBV, 35, 51, 58
runGLOBALBV,SingleCellExperiment

(runGLOBALBV), 35
runGLOBALBV,SingleCellExperiment-method

(runGLOBALBV), 35
runGLOBALBV,SVPExperiment

(runGLOBALBV), 35
runGLOBALBV,SVPExperiment-method

(runGLOBALBV), 35
runKldSVG, 39, 39, 47, 51, 58
runKldSVG,SingleCellExperiment

(runKldSVG), 39
runKldSVG,SingleCellExperiment-method

(runKldSVG), 39
runKldSVG,SVPExperiment (runKldSVG), 39
runKldSVG,SVPExperiment-method

(runKldSVG), 39
runLISA, 21, 33, 39, 43, 43, 51
runLISA,SingleCellExperiment (runLISA),

43
runLISA,SingleCellExperiment-method

(runLISA), 43
runLISA,SVPExperiment (runLISA), 43
runLISA,SVPExperiment-method (runLISA),

43
runLOCALBV, 21, 47
runLOCALBV,SingleCellExperiment

(runLOCALBV), 47
runLOCALBV,SingleCellExperiment-method

(runLOCALBV), 47
runLOCALBV,SVPExperiment (runLOCALBV),

47
runLOCALBV,SVPExperiment-method

(runLOCALBV), 47
runMCA, 52

runMCA,SingleCellExperiment (runMCA), 52
runMCA,SingleCellExperiment-method

(runMCA), 52
runSGSA, 8, 25, 43, 54
runSGSA,SingleCellExperiment (runSGSA),

54
runSGSA,SingleCellExperiment-method

(runSGSA), 54
runWKDE, 59
runWKDE,SingleCellExperiment (runWKDE),

59
runWKDE,SingleCellExperiment-method

(runWKDE), 59
runWKDE,SVPExperiment (runWKDE), 59
runWKDE,SVPExperiment-method (runWKDE),

59

sceSubPbmc (data_sceSubPbmc), 11
SenMayoSymbol (data_SenMayo), 11
show,SVPExperiment-method

(SVP-accessors), 63
SimpleList, 33, 41, 46, 50
SingleCellExperiment, 6, 8, 11, 12, 15–17,

19, 20, 22, 24, 25, 27, 32–34, 37, 41,
42, 45, 49, 53, 55, 57, 60–62, 64

spatialCoords, 25
spatialCoords (reexports), 25
spatialCoords,SVPExperiment-method

(SVP-accessors), 63
spatialCoords<- (reexports), 25
spatialCoords<-,SVPExperiment

(SVP-accessors), 63
spatialCoords<-,SVPExperiment,matrix_Or_NULL-method

(SVP-accessors), 63
spatialCoordsNames, 25
spatialCoordsNames (reexports), 25
spatialCoordsNames,SVPExperiment-method

(SVP-accessors), 63
spatialCoordsNames<- (reexports), 25
spatialCoordsNames<-,SVPExperiment,character-method

(SVP-accessors), 63
SpatialExperiment, 10, 12, 20, 27, 32, 34,

37, 41, 45, 49, 50, 60
svDf (svDfs), 61
svDf,SingleCellExperiment,character-method

(svDfs), 61
svDf,SingleCellExperiment,missing-method

(svDfs), 61

INDEX 69

svDf,SingleCellExperiment,numeric-method
(svDfs), 61

svDf<- (svDfs), 61
svDf<-,SingleCellExperiment,character-method

(svDfs), 61
svDf<-,SingleCellExperiment,missing-method

(svDfs), 61
svDf<-,SingleCellExperiment,numeric-method

(svDfs), 61
svDfNames (svDfs), 61
svDfNames,SingleCellExperiment-method

(svDfs), 61
svDfNames<- (svDfs), 61
svDfNames<-,SingleCellExperiment,character-method

(svDfs), 61
svDfs, 61
svDfs,SingleCellExperiment-method

(svDfs), 61
svDfs<- (svDfs), 61
svDfs<-,SingleCellExperiment-method

(svDfs), 61
SVP (SVP-package), 3
SVP-accessors, 63
SVP-package, 3
SVPExperiment, 8, 16–18, 20, 24, 25, 27, 28,

32–34, 37, 38, 41, 42, 45, 46, 49, 51,
55, 57, 60, 63, 64, 64

SVPExperiment-class (SVPExperiment), 64

Vector, 18

	SVP-package
	as_tbl_df
	cal_lisa_f1
	CellCycle.Hs
	cluster.assign
	data_CancerSEA
	data_hpda_spe_cell_dec
	data_sceSubPbmc
	data_SenMayo
	extract_weight_adj
	fast_cor
	fscoreDfs
	gsvaExps
	LISAResult
	LISAsce
	mob_marker_genes
	mob_sce
	plot_heatmap_globalbv
	pred.cell.signature
	reexports
	runCORR
	runDetectMarker
	runDetectSVG
	runENCODE
	runGLOBALBV
	runKldSVG
	runLISA
	runLOCALBV
	runMCA
	runSGSA
	runWKDE
	svDfs
	SVP-accessors
	SVPExperiment
	Index

