Package ‘annmap’

January 15, 2026
Type Package

Title Genome annotation and visualisation package pertaining to
Affymetrix arrays and NGS analysis.

Description annmap provides annotation mappings for Affymetrix exon
arrays and coordinate based queries to support deep sequencing
data analysis. Database access is hidden behind the API which
provides a set of functions such as genesInRange(),
geneToExon(), exonDetails(), etc. Functions to plot gene
architecture and BAM file data are also provided. Underlying
data are from Ensembl.

The annmap database can be downloaded from:
https://figshare.manchester.ac.uk/account/articles/16685071

Version 1.53.0

Date 2011-09-14

Author Tim Yates <Tim.Yates@cruk.manchester.ac.uk>

Maintainer Chris Wirth <Christopher.Wirth@cruk.manchester.ac.uk>
Depends R (>=2.15.0), methods, GenomicRanges

Imports DBI, RMySQL (>= 0.6-0), digest, Biobase, grid, lattice,
Rsamtools, genefilter, IRanges, BiocGenerics

Suggests RUnit, rjson, Gviz
License GPL-2

URL https://github.com/cruk-mi/annmap

Collate zzz.R db.R utils.R cache.R statements.R filtering.R utr.R
coords.R ws.R plot.genomic.R plot.ngs.R si.R

biocViews Annotation, Microarray, OneChannel, ReportWriting,
Transcription, Visualization

git_url https://git.bioconductor.org/packages/annmap
git_branch devel

git_last_commit d64521e

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-15

https://github.com/cruk-mi/annmap

2

annmap-package

Contents
annmap-package L. e e e e 2
annmapAll 3
annmapCoords e 4
annmapDetails oL e 6
annmapEnv oL 7
annmapkFilters 8
annmapRange 10
anNMapSEqNAIME vt b e e e e e e e e e e e e e e e e e e 15
annmapTo e e e e e 16
annmapUtilso 18
annmapULr oL e e e 21
genomicPlotting L. L 23
ngsPloto 24
splicelndex 27

Index 29

annmap-package Provide access to the Annmap annotation database
Description

Annmap http://annmap.cruk.manchester.ac.uk Is a genome annotation database and genome
browser, based on the Google Maps API. The underlying annotation is derived from ENSEMBL
(http://www.ensembl.org). Annmap also provides probe to genome mappings for Affymetrix
Exon, Gene and Plus2 arrays.

The annmap package makes the data in annmap available for use within R and BioConductor.

Details
Package: annmap

Type: Package
Version: 1.0.0
Date: 2011-09-14
License: GPL-2

Author(s)

Tim Yates

Maintainer: Tim Yates <tyates @picr.man.ac.uk>

http://annmap.cruk.manchester.ac.uk
http://www.ensembl.org

annmapAll 3

References

Yates T, Okoniewski MJ, Miller CJ. X:Map: annotation and visualization of genome structure for
Affymetrix exon array analysis. Nucleic Acids Res. 2008 Jan;36(Database issue):D780-6. Epub
2007 Oct 11.

http://nar.oxfordjournals.org/cgi/content/full/gkm779v1

See Also

GenomicRanges

annmapAll annmap ’all’ functions

Description

Get all annotations for a given feature. For example, allGenes will return data for all the genes in
the genome.

Usage

allArrays(as.vector=FALSE)
allChromosomes(as.vector=FALSE)
allDomains(as.vector=FALSE)
allEstExons(as.vector=FALSE)
allEstGenes(as.vector=FALSE)
allEstTranscripts(as.vector=FALSE)
allExons(as.vector=FALSE)
allGenes(as.vector=FALSE)
allPredictionTranscripts(as.vector=FALSE)
allProbes(as.vector=FALSE)
allProbesets(as.vector=FALSE)
allProteins(as.vector=FALSE)
allSymbols(as.vector=FALSE)
allSynonyms(as.vector=FALSE)
allTranscripts(as.vector=FALSE)

Arguments
as.vector If TRUE returns a vector of database identifiers. If FALSE returns a GRanges
object containing detailed annotation.
Value

Returns a vector or GRanges object, as defined by as.vector.

Author(s)

Tim Yates

http://nar.oxfordjournals.org/cgi/content/full/gkm779v1

4 annmapCoords

See Also

annmapTo
annmapDetails
annmapRange
annmapUtils
annmapFilters
GRanges

Examples

if(interactive()) {
annmapConnect ()
allChromosomes()
allChromosomes(as.vector=TRUE)

}

annmapCoords annmap co-ordinate mapping functions

Description

Functions to go between Genomic, Proteomic and Transcriptual co-ordinate systems.

Usage

transcriptCoordsToGenome(transcript.ids, position=1, as.vector=FALSE, check.bounds=TRUE, truncate=
genomeToTranscriptCoords(position, transcript.ids, as.vector=FALSE, check.bounds=TRUE, end=c('none
proteinCoordsToGenome(protein.ids, position=1, as.vector=FALSE, check.bounds=TRUE, truncate=TRUE)
genomeToProteinCoords(position, protein.ids, as.vector=FALSE, check.bounds=TRUE)

Arguments

transcript.ids A vector of transcript.ids (or a RangedData object of transcripts returned from
another annmap function)

position The position of interest (either a genomic position for both of the genomeToXXXX
methods, or a protein or transcript sequence position for the other two methods
)

as.vector Should the returned data be in the form of a vector (if TRUE) or a RangedData
object (if FALSE)

check.bounds If TRUE, any postion outside the range of the protein/transcript will cause a warn-
ing to be issued and NA returned.

end Should the UTR be taken in to account when calculating the location, one of
("none”, "both"”, "3" or "5"). Defaults to none.

truncate If truncate=TRUE, any lengths beyond the end of the transcript or protein will
be set to the last residue

annmapCoords 5

cds If cds=TRUE then only the coding exons (or sub-regions of exons that are coding)
are taken in to account.

protein.ids A vector of protein.ids (or a RangedData object of proteins returned from an-
other annmap function)

Details

The mapping functions need to deal with mappings that fall outside a transcript or protein (or within
an intron). When as.vector=FALSE these are identified as NA in the results. Since RangedData
objects cannot represent NA or missing values, when as.vector=FALSE, all locations which cannot
be mapped are dropped from the result.

Author(s)

Tim Yates

See Also

annmapTo
annmapDetails
annmapAll
annmapRange
annmapFilters

Examples

if(interactive()) {
Get the gene for 'tp53'
gene = symbolToGene('tp53')
And the transcripts for this gene
transcripts = geneToTranscript(symbolToGene('tp53'))
And the proteins for this transcript
proteins = transcriptToProtein(transcripts)

get the transcript coords for the transcripts of this gene, at the start of this gene
genomeToTranscriptCoords(start(gene), transcripts, as.vector=TRUE)

#Returns a vector:

ENST00000413465 ENSTQ0000359597 ENSTQ0000504290 ENST00000510385 ENSTQ0000504937

1018 NA NA NA NA
ENST00000269305 ENSTQ0000455263 ENST00000420246 ENSTQ0000445888 ENST00000396473
NA NA NA NA NA
ENST00000545858 ENSTQ0000419024 ENST0O0000509690 ENST00000514944 ENSTQ0000505014
NA NA NA NA NA
ENST00000414315 ENST0Q0000508793 ENST00000503591

NA NA NA

With as.vector=FALSE

genomeToTranscriptCoords(start(gene), transcripts)

RangedData with 1 row and 1 value column across 1 space
space ranges | coord.space

6 annmapDetails

<character> <IRanges> | <character>
1 ENSTQ0000413465 [1018, 1018] | transcript

genomeToProteinCoords(start(gene), proteins, as.vector=TRUE)

ENSP00000410739 ENSP0Q0000352610 ENSP00000269305 ENSP00000398846 ENSP00000391127
340 NA NA NA NA
ENSP00000391478 ENSPQ0000379735 ENSP0Q0000437792 ENSP00000402130 ENSPQ0000425104
NA NA NA NA NA
ENSP00000423862 ENSP00000394195 ENSP00000424104 ENSP0Q0000426252
NA NA NA NA

With as.vector=FALSE
genomeToProteinCoords(start(gene), proteins)
RangedData with 1 row and 2 value columns across 1 space

space ranges | frame coord.space
<character> <IRanges> | <numeric> <character>
1 ENSP00000410739 [340, 340] | 0 protein
}
annmapDetails annmap ’details’ functions
Description

Get detailed annotations for the specified features.

Usage

arrayDetails(ids, as.data.frame=FALSE)
chromosomeDetails(ids, as.data.frame=FALSE)
domainDetails(ids, as.data.frame=FALSE)
estExonDetails(ids, as.data.frame=FALSE)
estGeneDetails(ids, as.data.frame=FALSE)
estTranscriptDetails(ids, as.data.frame=FALSE)
exonDetails(ids, as.data.frame=FALSE)
geneDetails(ids, as.data.frame=FALSE)
predictionTranscriptDetails(ids, as.data.frame=FALSE)
probeDetails(ids, as.data.frame=FALSE)
probesetDetails(ids, as.data.frame=FALSE)
proteinDetails(ids, as.data.frame=FALSE)
synonymDetails(ids, as.data.frame=FALSE)
transcriptDetails(ids, as.data.frame=FALSE)

Arguments

ids Database identifiers for the features of interest

as.data.frame If FALSE, data will be converted to a GRanges object if possible, otherwise a
data.frame

annmapEnv 7

Value

Results in an GRanges object (or a data. frame if TRUE is passed for the second parameter), one
\row\’ per feature, containing detailed annotations.

Author(s)

Tim Yates

See Also

annmapTo
annmapAll
annmapRange
annmapUtils
annmapFilters
GRanges

Examples

if(interactive()) {

annmapConnect ()
geneDetails(symbolToGene("TP53"))
}
annmapEnv annmap ’env’ functions
Description

Functions to access internal parameters

Usage
annmapEnv ()
annmapGetParam(key)
annmapSetParam(...)
Arguments

A list of key-value parameters you wish to set.

key The key for the value you want to return.

8 annmapkFilters

Details

These functions allow some access to annmap\’s configuration data. They are included to help debug
database connection issues, and are not normally needed.

On connection, a default arraytype (Affymetrix Exon arrays, where available) is specfied for the
probe mappings. arrayType allows a different type of array to be specfied. This included for future
compatibility.

Author(s)
Tim Yates Crispin J. Miller

See Also

annmapTo
annmapDetails
annmapAll
annmapRange
annmapFilters

Examples

if(interactive()) {
annmapEnv ()
annmapGetParam("debug”)
annmapConnect ()
annmapSetParam(debug=TRUE)
annmapConnect ()
annmapSetParam(debug=FALSE)
annmapDisconnect ()

annmapFilters annmap filter’ functions

Description

Functions to filter exon array probeset names by the genome features they correspond to.

Usage

exonic(probesets, exclude=FALSE)

hasProbes(probesets, num.probes=4, exclude=FALSE)

hasProbesAtleast(probesets, num.probes=4, exclude=FALSE)

hasProbesIn(probesets, num.probes=c(1, 2, 3, 4), exclude=FALSE)

hasProbesBetween(probesets, min.probes=1, max.probes=4, exclude=FALSE, inclusive=TRUE)
intergenic(probesets, exclude=FALSE)

annmapFilters 9

intronic(probesets, exclude=FALSE)
isExonic(probesets)

isIntergenic(probesets)

isIntronic(probesets)

isUnreliable(probesets)

unreliable(probesets, exclude=FALSE)

Arguments
probesets A vector of probesets to filter
num.probes The required number of probes to have in the probeset
exclude If FALSE, then return a list containing only those probesets matching the filter. If
TRUE then return only those that don\’t match the filter
min.probes Minimum number of probes within a probeset
max.probes Maximum number of probes within a probeset
inclusive Whether to include the extremes of the range in the search or not
Details

Probesets are classified according to whether they map to known genes. The function exonic filters
for probesets for which all probes match once (and only once) to the genome, and every probe
hits an exon. Note that this means that a probeset that hits more than one exon, will be flagged as
exonic. All probes in intronic probesets hit the genome once (and once only), and all probes hit a
gene - however one or more probes hit an intron. intergenic probesets hit the genome once (and
once only) but one or more probes miss a gene compeletely. unreliable probesets comprise those
that have at least one probe that does not align to the genome, or one or more probes that align at
multiple loci (multiply targeted).

The functions is.exonic, is.intronic and is.intergenic, return a logical vector classifying
the supplied probesets.

The functions has.probes, has.probes.in and has.probes.between can be used to filter a set
of probesets according to the numbers of probes they contain.

Author(s)

Tim Yates Crispin J. Miller

See Also

annmapTo
annmapDetails
annmapAll
annmapRange
annmapFilters

10 annmapRange

Examples

if(interactive()){
annmapConnect ()
ps <- geneToProbeset(symbolToGene("TP53"))
exonic(ps)
intronic(ps)
intergenic(ps)
unreliable(ps)
isExonic(ps)
isIntronic(ps)
isIntergenic(ps)
isUnreliable(ps)
hasProbes(ps)
hasProbesIn(ps,1:3)
hasProbesBetween(ps, 2, 3)
hasProbesAtleast(ps,4)

annmapRange annmap ‘range’ functions

Description

Get the features within the specified genome coordinates.

Usage

domainInRange(x, ..., as.vector = FALSE)
S4 method for signature 'GRanges'
domainInRange(x, as.vector=FALSE)
S4 method for signature 'RangedData’
domainInRange(x, as.vector=FALSE)
S4 method for signature 'character'
domainInRange(x, start, end, strand, ..., as.vector=FALSE)
S4 method for signature 'data.frame'
domainInRange(x, as.vector=FALSE)
S4 method for signature 'NULL'
domainInRange(x, as.vector=FALSE)
S4 method for signature 'factor'
domainInRange(x, start, end, strand, ..., as.vector=FALSE)

estExonInRange(x, ..., as.vector = FALSE)
S4 method for signature 'GRanges'
estExonInRange(x, as.vector=FALSE)
S4 method for signature 'RangedData'’
estExonInRange(x, as.vector=FALSE)
S4 method for signature 'character'
estExonInRange(x, start, end, strand, ..., as.vector=FALSE)

annmapRange

S4 method for
estExonInRange(x,
S4 method for
estExonInRange(x,
S4 method for
estExonInRange(x,

estGeneInRange(x,

S4 method for
estGenelInRange(x,
S4 method for
estGeneInRange(x,
S4 method for
estGenelInRange(x,
S4 method for
estGenelInRange(X,
S4 method for
estGeneInRange(x,
S4 method for
estGenelInRange(X,

signature 'data.frame'

as.vector=FALSE)
signature 'NULL'
as.vector=FALSE)
signature 'factor'
start, end, strand,

signature 'GRanges'
as.vector=FALSE)

signature 'RangedData’

as.vector=FALSE)

signature 'character'

start, end, strand,

signature 'data.frame'

as.vector=FALSE)
signature 'NULL'
as.vector=FALSE)
signature 'factor'
start, end, strand,

., as.vector=FALSE)

., as.vector = FALSE)

., as.vector=FALSE)

., as.vector=FALSE)

11

estTranscriptInRange(x, ..., as.vector = FALSE)
S4 method for signature 'GRanges'
estTranscriptInRange(x, as.vector=FALSE)
S4 method for signature 'RangedData’
estTranscriptInRange(x, as.vector=FALSE)
S4 method for signature 'character'
estTranscriptInRange(x, start, end, strand,
S4 method for signature 'data.frame'
estTranscriptInRange(x, as.vector=FALSE)
S4 method for signature 'NULL'
estTranscriptInRange(x, as.vector=FALSE)
S4 method for signature 'factor'
estTranscriptInRange(x, start, end, strand,

., as.vector=FALSE)

., as.vector=FALSE)

exonInRange(x, ..., as.vector = FALSE)

S4 method for signature 'GRanges'
exonInRange(x, as.vector=FALSE)

S4 method for signature 'RangedData'’
exonInRange(x, as.vector=FALSE)

S4 method for signature 'character'
exonInRange(x, start, end, strand, ., as.vector=FALSE)

S4 method for signature 'data.frame'
exonInRange(x, as.vector=FALSE)

S4 method for signature 'NULL'
exonInRange(x, as.vector=FALSE)

S4 method for signature 'factor'

exonInRange(x, start, end, strand, ., as.vector=FALSE)

12

annmapRange
genelnRange(x, ..., as.vector = FALSE)
S4 method for signature 'GRanges'
genelnRange(x, as.vector=FALSE)
S4 method for signature 'RangedData’
genelnRange(x, as.vector=FALSE)
S4 method for signature 'character'
geneInRange(x, start, end, strand, ..., as.vector=FALSE)
S4 method for signature 'data.frame'
genelnRange(x, as.vector=FALSE)
S4 method for signature 'NULL'
geneInRange(x, as.vector=FALSE)
S4 method for signature 'factor'
genelnRange(x, start, end, strand, ..., as.vector=FALSE)
predictionTranscriptInRange(x, ..., as.vector = FALSE)
S4 method for signature 'GRanges'
predictionTranscriptInRange(x, as.vector=FALSE)
S4 method for signature 'RangedData’
predictionTranscriptInRange(x, as.vector=FALSE)
S4 method for signature 'character'
predictionTranscriptInRange(x, start, end, strand, ..., as.vector=FALSE)
S4 method for signature 'data.frame'
predictionTranscriptInRange(x, as.vector=FALSE)
S4 method for signature 'NULL'
predictionTranscriptInRange(x, as.vector=FALSE)
S4 method for signature 'factor'
predictionTranscriptInRange(x, start, end, strand, ..., as.vector=FALSE)

probesetInRange(x, ..., as.vector = FALSE)

S4 method for signature 'GRanges'
probesetInRange(x, as.vector=FALSE)

S4 method for signature 'RangedData’
probesetInRange(x, as.vector=FALSE)

S4 method for signature 'character'

probesetInRange(x, start, end, strand, ..., as.vector=FALSE)

S4 method for signature 'data.frame'
probesetInRange(x, as.vector=FALSE)

S4 method for signature 'NULL'
probesetInRange(x, as.vector=FALSE)

S4 method for signature 'factor'

probesetInRange(x, start, end, strand, ..., as.vector=FALSE)

probeInRange(x, ..., as.vector = FALSE)

S4 method for signature 'GRanges'
probeInRange(x, as.vector=FALSE)

S4 method for signature 'RangedData'’
probeInRange(x, as.vector=FALSE)

annmapRange 13

S4 method for signature 'character'
probeInRange(x, start, end, strand, ., as.vector=FALSE)
S4 method for signature 'data.frame'
probeInRange(x, as.vector=FALSE)
S4 method for signature 'NULL'
probeInRange(x, as.vector=FALSE)
S4 method for signature 'factor'

probeInRange(x, start, end, strand,

proteinInRange(x, ...,

S4 method for
proteinInRange(x,
S4 method for
proteinInRange(x,
S4 method for
proteinInRange(x,
S4 method for
proteinInRange(x,
S4 method for
proteinInRange(x,
S4 method for
proteinInRange(x,

transcriptInRange(x,

S4 method for
transcriptInRange(
S4 method for
transcriptInRange(
S4 method for
transcriptInRange(
S4 method for
transcriptInRange(
S4 method for
transcriptInRange(
S4 method for
transcriptInRange(

as.vector =
signature 'GRanges'
as.vector=FALSE)
signature 'RangedData’
as.vector=FALSE)
signature 'character'
start, end, strand,
signature 'data.frame'
as.vector=FALSE)
signature 'NULL'
as.vector=FALSE)
signature 'factor'
start, end, strand,

signature 'GRanges'

X, as.vector=FALSE)
signature 'RangedData’
X, as.vector=FALSE)
signature 'character'
X, start, end, strand,
signature 'data.frame'
X, as.vector=FALSE)
signature 'NULL'

X, as.vector=FALSE)
signature 'factor'

X, start, end, strand,

., as.vector=FALSE)

FALSE)

., as.vector=FALSE)

., as.vector=FALSE)

., as.vector = FALSE)

., as.vector=FALSE)

., as.vector=FALSE)

Arguments
as.vector If TRUE returns a vector of database identifiers. If FALSE returns a GRanges
object containing detailed annotation.
X The name of the chromosome of interest — in the case of the factor or character

variants), or a GRanges object or data.frame containing location information.
In the case of a data. frame, columns must be named chr or chromosome_name,
followed by start, end and strand. RangedData objects must contain a strand
in their meta-data. And strand must be 1 or -1 in all cases arart from GRanges
where it obviously has to be + or -. All of the NULL variants simply return NULL,
in-keeping with the fluent style of the rest of the package.

14 annmapRange

start Start of the region
end End of the region
strand 1 == top stand, -1 == bottom strand

The ellipsis is to allow this multi-method style of programming.

Details

Find all the specified features within a given region of the genome. For all functions except
probelInRange, features that fall on the boundaries of the region (i.e. are partially overlapping)
are returned too. For probeInRange probes that span the start of the range are NOT returned (but
those spanning the end of the range are).

The function annmapRangeApply makes it possible to map any of these functions down the rows of
a RangedData or GRanges object. The defaults are set up so that it will handle the output of one of
the InRange methods here. This makes it easy to nest functions, for example, to find all genes in
a given region of the the genome, and then find the exon array probes that map to those genes (see
below).

Value

Returns a GRanges object, one \'row\’ per feature, containing detailed annotations, or a vector of
identifiers, depending on the value of as.vector.

Author(s)

Tim Yates

See Also

annmapTo
annmapDetails
annmapAll
annmapUtils
annmapFilters
RangedData GRanges

Examples

if(interactive()) {
annmapConnect ()

r = genelnRange('17', 7510000, 7550000, 1)

Can take equal length vectors as parameters
geneInRange(c('17', 'X"), c(7510000, 1000000), c(7550000, 1500000), c(-1, -1))

Or a data.frame
df = data.frame(chr=c('17', 'X'), start=c(7510000, 1000000), end=c(7550000, 1500000), strand=c(-1, -1))
genelnRange(df)

annmapSeqname 15

Or RangedData objects
transcriptInRange(geneDetails(symbolToGene(c('tp53', 'ssh'))))
}

annmapSeqgname Seqnames manipulation functions

Description

These functions allow easier manipulation of the seqnames column of a GRanges object

Usage
generalisedNameToNCBI(name, ...)
generalisedNameToEnsembl(name, ...)
seqnameMapping(x, mappingFunction, ...)

seqnamesToNCBI(x)
segnamesToEnsembl (x)

Arguments
name The name to convert.
X A GRanges object to convert the seqnames of.
mappingFunction
The function to do the mapping of names.
Other arguments you may wish to send to a custom mapping function.
Details

These functions allow simple mapping between seqnames of a GRanges object.

The two standard derivations are seqnamesToNCBI and segnamesToEnsembl. The rules for map-

ping are:
Ensembl NCBI
1 <=> chri
22 <=> chr22
X <=> chrX
Y <=> chrY
MT <=> chrM

You can define your own mapping function and pass it as the mappingFunction parameter to
seqnameMapping function to do your own custom mapping.

The function segnamesToNCBI calls seqnameMapping with generalisedNameToNCBI as the mappingFunction.
The function seqnamesToEnsembl uses generalisedNameToEnsembl.

16 annmapTo

Author(s)

Tim Yates

Examples

if(interactive()) {

annmapConnect ()
segnamesToNCBI(symbolToGene(c('tp53', 'shh')))
3
annmapTo annmap ’to’ functions
Description

Map between the different levels of annotation in Annmap. For example, given a vector of gene
identifiers, geneToExon will return the exons in those genes.

Usage

arrayToProbeset(ids, as.vector=FALSE)
domainToGene(ids, as.vector=FALSE)
domainToProbeset(ids, as.vector=FALSE)
domainToProtein(ids, as.vector=FALSE)
domainToTranscript(ids, as.vector=FALSE)
estExonToEstGene(ids, as.vector=FALSE)
estExonToEstTranscript(ids, as.vector=FALSE)
estExonToProbeset(ids, as.vector=FALSE)
estGeneToEstExon(ids, as.vector=FALSE)
estGeneToEstTranscript(ids, as.vector=FALSE)
estGeneToProbeset(ids, as.vector=FALSE)
estTranscriptToEstExon(ids, as.vector=FALSE)
estTranscriptToEstGene(ids, as.vector=FALSE)
estTranscriptToProbeset(ids, as.vector=FALSE)
exonToGene(ids, as.vector=FALSE)
exonToProbeset(ids, as.vector=FALSE)
exonToTranscript(ids, as.vector=FALSE)
geneToDomain(ids, as.vector=FALSE)
geneToExon(ids, as.vector=FALSE)
geneToExonProbeset(ids, as.vector=FALSE, probes.min=4)
geneToExonProbesetExpr(x, ids, probes.min=4)
geneToProbeset(ids, as.vector=FALSE)
geneToProtein(ids, as.vector=FALSE)
geneToSymbol (ids)

geneToSynonym(ids, as.vector=FALSE)
geneToTranscript(ids, as.vector=FALSE)
predictionTranscriptToPredictionExon(ids)

annmapTo 17

predictionTranscriptToProbeset(ids, as.vector=FALSE)
probeToHit(ids, as.data.frame=FALSE)

probeToProbeset(ids, as.vector=FALSE)
probesetToCdnatranscript(ids, as.vector=FALSE, rm.unreliable=TRUE)
probesetToDomain(ids, as.vector=FALSE, rm.unreliable=TRUE)
probesetToEstExon(ids, as.vector=FALSE, rm.unreliable=TRUE)
probesetToEstGene(ids, as.vector=FALSE, rm.unreliable=TRUE)
probesetToEstTranscript(ids, as.vector=FALSE, rm.unreliable=TRUE)
probesetToExon(ids, as.vector=FALSE, rm.unreliable=TRUE)
probesetToGene(ids, as.vector=FALSE, rm.unreliable=TRUE)
probesetToHit(ids, as.data.frame=FALSE, rm.unreliable=TRUE)
probesetToPredictionTranscript(ids, as.vector=FALSE, rm.unreliable=TRUE)
probesetToProbe(ids, as.vector=FALSE)

probesetToProtein(ids, as.vector=FALSE, rm.unreliable=TRUE)
probesetToTranscript(ids, as.vector=FALSE, rm.unreliable=TRUE)
proteinToDomain(ids, as.vector=FALSE)

proteinToGene(ids, as.vector=FALSE)

proteinToProbeset(ids, as.vector=FALSE)

proteinToTranscript(ids, as.vector=FALSE)

symbolToEstGene(ids, as.vector=FALSE)

symbolToEstTranscript(ids, as.vector=FALSE)

symbolToGene(ids, as.vector=FALSE)

symbolToTranscript(ids, as.vector=FALSE)

synonymToEstGene(ids, as.vector=FALSE)

synonymToEstTranscript(ids, as.vector=FALSE)

synonymToGene(ids, as.vector=FALSE)

synonymToTranscript(ids, as.vector=FALSE)
transcriptToCdnaprobeset(ids, as.vector=FALSE)
transcriptToDomain(ids, as.vector=FALSE)

transcriptToExon(ids, as.vector=FALSE)
transcriptToExonProbeset(ids, as.vector=FALSE, probes.min=4)
transcriptToGene(ids, as.vector=FALSE)

transcriptToProbeset(ids, as.vector=FALSE)
transcriptToProtein(ids, as.vector=FALSE)

transcriptToSynonym(ids, as.vector=FALSE)
transcriptToTranslatedprobes(ids)

Arguments
as.vector If TRUE returns a vector of database identifiers. If FALSE returns a 1ink{RangedData?}
object containing detailed annotation.

as.data.frame Where a vector is inappropriate for the data type, the option to return the data as
a plain data. frame in place of a GRanges object is given.

ids Database identifiers to map from. Can be either a vector of database identifiers,
or a GRanges object.

probes.min How many probes need to match before the probeset is returned.

rm.unreliable If TRUE, the input probeset list is filtered, and all unreliable probesets are re-
moved.

18 annmapUltils

X An ExpressionSet object or a matrix containing expression data. If the latter,
then the rownames must specify the exon array probeset names.

Details

In most cases, these functions should be self-explantory. However, by default, the mappings involv-
ing probes and probesets do some filtering of the data. This means that probesets which have one
or more probes that don’t match to the genome, or which match to multiple loci, are removed (see
unreliable for more details).

The function transcriptToTranslatedprobes returns a list of GRanges objects (one for each
transcript) containing each probe that hits that translated transcripts and the relative start and end
locations.

Value

Results in an GRanges object, one row per feature, containing detailed annotations, or a vector, as
defined by as.vector.

Author(s)

Tim Yates

See Also

annmapDetails
annmapAll
annmapRange
annmapUtils
annmapFilters
link{GRanges}

Examples

if(interactive()) {

annmapConnect ()
geneToExon(symbolToGene ("TP53"))
}
annmapUtils annmap utils’ functions
Description

Functions to connect to the database and manage the database connections.

annmapUtils 19

Usage

annmapConnect(name, use.webservice=FALSE, quiet.webservice=FALSE)
annmapDisconnect ()
annmapAddConnection(dsname, species, version,
host="'localhost',
username=as.character(Sys.info()['user' 1),
password="",
port="'",
overwrite=FALSE,
testConnect=TRUE)
arrayType(name=NULL, pick.default=FALSE, silent=FALSE)
annmapToggleCaching()
annmapClearCache()
annmapRangeApply(x, f, filter=c(chr="space"”, start="start”, end="end"”, strand="strand”), coerce=c(
strandAsInteger(granges)

geneToGeneRegionTrack(genes, genome, coalesce.name=NULL, ...)
Arguments
name The name of the database to connect to, or the array to select.

use.webservice If TRUE, we will use the annmap webservices rather than a local MySQL instal-
lation.

quiet.webservice
If FALSE, there will be output as the webservice calls are processed. Set TRUE to
silence these.

dsname The name of the datasource to add or modify.

species The species of interest.

version The version of the database to connect to.

host The location of the MySQL installation.

username The username to connect to MySQL.

password The password required to connect to MySQL.

port The port MySQL is running on. (Use NA for default)

overwrite If another connection with this dsname already exists, should it be overwritten?

testConnect If TRUE, the connection will be attempted before adding it to the databases.txt
file.

pick.default If TRUE, arrayType will choose the first available arraytype for this species.

silent If TRUE, it will skip telling you which array you have selected.

X A RangedData object

f A function to apply to each \'row\’ of the RangedData object

filter Which \’columns\’” of the RangedData object does the function need, and what

parameters in the function do they map on to?. For example, by default, the field
V’space\” gets mapped to the parameter \’chr\’.

coerce What is the type of each parameter in \’f\’?

20 annmapUltils
additional parameters
granges A GRanges object
genes The genes you wish to load into a GeneRegionTrack they must all be on the
same chromosome.
genome A valid Gviz genome, ie: 'hg19'.
coalesce.name If this is a character vector, all genes will be joined into a single track with this
name. Otherwise each gene will have its own track.
Details

annmapConnect is used to establish a connection to an instance of the Annmap database, and
annmapDisconnect closes the connection.

arrayType is used to specify the array you wish to use for queries based on Affymetrix probesets.

Many of the functions in annmap cache results locally. The function annmapToggleCaching turns
this functionality on and off, and annmapClearCache can be used to clear the cache (this is not
normally something a user needs to do).

Note that details of how to set up the default databases, connection details, etc. Can be found in the
package vignette.

The function strandAsInteger takes a GRanges object and returns an integer vector of strands in
the Ensembl style. "+" becomes 1, "-" becomes -1, and "*" becomes NA.

The function geneToGeneRegionTrack takes a list of genes (character vector, GRanges object, etc),
and returns a list of GeneRegionTracks which can be plotted in Gviz. There is an example in the
cookbook.

Author(s)

Tim Yates Crispin J. Miller

See Also

annmapTo
annmapDetails
annmapAll
annmapRange
annmapFilters

Examples

if(interactive()) {
annmapConnect ()
annmapToggleCaching()
annmapToggleCaching()

annmapRangeApply (symbolToGene("TP53",as.vector=FALSE), probeInRange)

#NOTE: since the next function empties out the local cache, don't

annmapUtr 21

#run it unless you want to do this!
#annmapClearCache ()

annmapUtr annmap coding functions

Description

Functions to deal with coding regions and UTRs

Usage

transcriptToUtrRange(ids, end=c("both"”, "5", "3"), as.data.frame=FALSE, on.translation.error=stop
transcriptToUtrExon(ids, end=c('both', '5', '3'), as.vector=FALSE, on.translation.error=stop)
transcriptToCodingRange(ids, end=c("both”, "5", "3"), as.data.frame=FALSE, on.translation.error=s
transcriptToCodingExon(ids, end=c('both', '5', '3'), as.vector=FALSE, on.translation.error=stop)
utrProbesets(probesets, transcripts, end=c("both”, "5", "3"), on.translation.error=stop)
codingProbesets(probesets, transcripts, end=c("both", "5", "3"), on.translation.error=stop)
nonIntronicTranscriptLength(ids, end=c('none', 'both', '5', '3'), on.translation.error=stop)
nonIntronicGeneLength(ids)

Arguments

ids A vector of Transcript Names, or a RangedData object of Transcripts returned
from another annmap call.

as.data.frame If FALSE, data will be converted to a RangedData object if possible, otherwise a
data.frame

as.vector If TRUE returns a vector of database identifiers. If FALSE returns a 1ink{GRanges?}
object containing detailed annotation.

probesets An optional vector of Probeset Names, or a RangedData object of Probesets
returned from another annmap call.

transcripts An optional vector of Transcript Names, or a RangedData object of Transcripts
returned from another annmap call.

end Which end ("both”, "3" or "5") of the Transcript(s) you are interested in (de-
faults to both).

on.translation.error
A function to call with a character vector explaining the problem if one is en-
countered with the translation locations in the database.

Details
The first two functions given here, transcriptToUtrRange and transcriptToCodingRange re-
turn the transcripts of interest, with their ranges adjusted depending on the UTR of each.

With transcriptToUtrRange, a RangedData object is returned with the name of the transcript, the
end in question, and the genomic location of that UTR. If both is passed as the end parameter, then

22

annmapUtr

each transcript will generate up to two rows in the returned object. It may return less than two rows
if the end parameter is used, or if there is no UTR for the end specified. (A Transcript with no UTR
will return zero results)

The transcriptToCodingRange function returns the same as calling transcriptDetails, but
with the start and end locations modified by the range of the UTR. If end is passed, then only the
UTR at this end will be taken into consideration and used to modify the returned location.

The transcriptToCodingExon and transcriptToUtrExon functions return the exons for each
transcript limited to only those exons (or partions thereof) which are coding or part of the UTR.

utrProbesets and codingProbesets are functions to find or filter probesets which have probes
targeting the type of region specified by the function name.

A call to utrProbesets with a list of Probesets will return those probesets that have at least one
probe hitting the UTR of any transcript.

A call to utrProbesets with a list of Probesets and a list of Transcripts will return those probesets
the have at least one probe hitting the UTR of any of the specified Transcripts.

A call to utrProbesets with only the probesets parameter omitted, will return all probesets which
have at least one probe in the UTR region of the specified Transcripts.

You cannot omit both the Probesets and Transcripts parameters simultaneously.

The codingProbesets method does the inverse of the utrProbesets function: it returns probesets
having at least one probe in the coding region of a Transcipt (or the specified Transcripts).

Note that the UTR of a Transcript includes the intronic UTR regions, and the coding region of a
Transcript includes the intronic coding regions.

This means that utrProbesets and codingProbesets can sometimes return intronic and/or
intergenic probesets. These can be removed with a call to the appropriate filter function (see
examples).

All unreliable probesets are automatically removed by these functions before mapping.

Calling nonIntronicTranscriptLength will return the length of the exons (coding can be speci-
fied via the end parameter) in a given list of transcripts.

And nonIntronicGenelLength will give the length of all exons in a given gene when overlaps are
taken into account (so two exactly overlapping exons will count once for the length)

Author(s)

Tim Yates

See Also

annmapTo
annmapDetails
annmapAll
annmapRange
annmapFilters

genomicPlotting 23

Examples

if(interactive()) {
Only return exonic probesets hitting the UTRs of ENSTQQ000414566
exonic(utrProbesets(NULL, "ENST0Q000414566"))

}

genomicPlotting Plotting a section of a chromosome.

Description

These functions are used when we need to plot one or both strands of a section of chromosome.

Usage
genomicPlot(xrange, gene.area.height=NULL, gene.layout.padding=100, highlights=NULL, draw.opposite.
padding.lines=1, .genes=NULL, .exons=NULL, invert.strands=FALSE, draw.scale=TRUE, ...)
genomicExonDepthPlot(.exons, start, end, exon.depth.alpha=0.1, exon.depth.col="black', ...)
genomicProbePlot(probes, start, end, probe.col="green', probe.alpha=0.3, ...)
Arguments
xrange An IRanges object representing the region of interest (with a strand if reqd)

gene.area.height
If NULL then both strands to max height of either of them, else if NA then both
strands limited to their implied height otherwise, if an integer then both strands
limited to the specified height

gene.layout.padding
How much space (in bases) needs to be between each gene in a layer. Needed
to stop gene names overlapping

highlights You can pass this a data. frame of values to render as dummy genes in the view.
Columns MUST include start, end, strand and name. It may also optionally
include the columns col to specify a per-gene background colour, or bor to
specify the colour to be used for the gene border and the label text. If these two
are not passed, sensible defaults are chosen automatically.

draw.opposite.strand
Do we draw a washed out representation of the other strand. Only applies if
strand(xrange) != "%’

exon.depth.plot
Should we draw the exondepth? set to NULL if not

padding.lines How much padding above and below the plot (in grid lines)

.genes Optionally pass in the pre-loaded genes and exons (then we skip loading them
in this function)

.exons The exons that are to be used

invert.strands Should the forward strand be on the bottom of the plot?

24 ngsPlot

draw.scale Draw a scale between the two strands?

e Parameters passed on to functions called by this function
exon.depth.alpha
The transparency for the exon.depth rectangles

exon.depth.col The color for the exon.depth rectangles

start The start of the region of interest

end The end of the region of interest

probe.alpha How transparent should probes be rendered?

probe.col The colour to use for probes.

probes The probes for the region of interest (as a data. frame).
Author(s)

Tim Yates

ngsPlot Plotting BAM file data alongside the features of a chromosome

Description

These functions aid plotting a-la xmapbridge but in a format that is more publication friendly

Usage

Utility Methods

convertBamToRle(bam.file.name, chr, start, end, chr.name.mapping=function(name){ name })

generateBridgeData(xrange, bamFiles, colours=NULL, names=NULL)

ngsTraceScale(vector.of.xbams.and.ybams)

ngsTracelLabel(rle.data)

ngsTracePlotter(rle.data, start, end, ylim, trace.label.properties=list(), smoothing.function=funct
trace.clip='inherit', trace.draw.scale=FALSE, trace.bor="'transparent', trace.pad=c(0,0

Plotting Methods
ngsBridgePlot(xrange, data=list(), main=NULL, sub=NULL, highlights=NULL, trace.plotter=ngsTracePlot
trace.scale=ngsTraceScale, trace.draw.scale=NULL, trace.match.strand=TRUE, probe.plot=NULL
.genes=NULL, .exons=NULL, ...)

Arguments
bam.file.name The name of the BAM file to read in
chr The chromosome of interest.
start The start of the region of interest

end The end of the region of interest

ngsPlot 25

chr.name.mapping
The function to convert between the Annmap chr name to the chr name in the
BAM file. By default, this just uses chr supplied as the parameter, however it can
be set to any function you like. One example of this is generalisedNameToNCBI

xrange The genomic range for the x-axis. Should be a GRanges object.

bamFiles A vector containing the filenames of your BAM files.

colours A vector of colours for each file (sensible defaults will be chosen if NULL).
names A vector of names to show on the traces drawn by ngsTracePlotter

vector.of . xbams.and.ybams
The trace.scale function is passes a vector of the elements of xbams and
ybams concatenated together.

rle.data A list containing fields rle (the Rle data to be plotted), name (the name of the
Trace) and col (the colour for the trace).

ylim A vector of min and max values for this plot (usually retrieved from ngs. trace.scale)
trace.label.properties

Properties to be sent to the grid. text call for plotting the label on the trace. To

hide the label, this should be NA.
smoothing. function

A function that generates a smoothed RLE object.

trace.clip Is the trace clipped to it’s bounding box? One of 'inherit', 'on' or 'off'.
See viewport.
trace.draw.scale
If TRUE, x and y scales are drawn with main=TRUE (see grid.xaxis and grid.yaxis),
if FALSE, then neither axis is drawn. You can control individual axis drawing by
passing a vector such as trace.draw.scale="x" to just draw the x axis. You
can also pass a list such as trace.draw.scale=1ist(x=TRUE,y=FALSE), and
this will draw both the x and y axis, but pass main=TRUE to the grid.xaxis call,
and main=FALSE to grid.yaxis

trace.bor The colour for a box that is drawn round this trace.plot.

trace.pad A 2 element vector consisting of the number of ’lines’ of padding to allow at the
top and bottom of the plot respecively

data A list containing an element per trace. Each element of this list is, in turn, passed
to the trace.plotter and trace.scale functions where the plotting happens
—see details.)

main The main title for the plot.
sub A sub-title for the plot.
highlights Highlight regions for the plot. See genomicPlot.

trace.plotter The function to call to draw the traces (see ngsTracePlotter)
genome. layout.weight
The weight for the genomic plot in the layout of this grid

trace.scale Either a function to calculate the global max for the NGS traces (see ngsTraceScale)
OR a 2 element vector cntaining the min and max extent of the trace.

26 ngsPlot

trace.match.strand
If TRUE, we will only draw the rle data from the strand defined in xrange. If
false, we will draw all of the rle data. Can also be setto '+' or '-' to only draw
the trace from the given strand (ignoring the strand of xrange).

probe.plot The function to plot the probes (see genomicProbePlot), NULL if not drawn.

exon.depth.plot
The function to draw the exon depth (see genomicExonDepthPlot), NULL if not

drawn.
.genes Optionally pass a list of genes to limit the plot to.
.exons An optional list of exons to limit the plot to.

Parameters passed on to functions called by this function

Details

convertBamToR1e will take a BAM file name, and a region of interest and return a 1ist () contain-
ing two elements, '+' and '-'. Each element will be an R1e object, one for each strand.

The data parameter to ngsBridgePlot is a list of elements as defined in the rle.data parameter,
one element per NGS trace, ie:

library(grid)
library(annmap)

Connect to datasource with annmapConnect()

Ensure we have a clean plot
grid.newpage()

bamFiles = c('datal.bam', 'data2.bam', 'data3.bam')
colours = rainbow(3, v=0.5, s=0.5)
data = lapply(seqg_along(bamFiles), function(idx) {
list(rle=convertBamToRle(bamFiles[idx], 'I', 40000, 100000),
col=colours[idx 1],
name=paste('Trace', bamFiles[idx]))

i)
ngsBridgePlot (RangedData(space='I", ranges=IRanges(40000, 100000)), data=data, main='Example P1

Author(s)

Tim Yates

See Also

genomicProbePlot, genomicPlot, genomicExonDepthPlot

splicelndex 27

splicelIndex Splice indexing

Description
Calculates the splicing index for the probesets in one or more genes, as defined in the Affymetrix
white paper "Alternative Transcript Analysis Methods for Exon Arrays".
Usage
spliceGroupIndex(x, group.column, members)
spliceIndex(x, ids, group, gps, group.index.fn=spliceGroupIndex, median.gene=FALSE, median.probeset
Arguments

X eSet containing expression data

group.column a column name for the group data

members a set of arrays

ids Character vector of Ensembl gene names

group If defined, the column name in the ExpressionSet’s pData object in which to
look for gps

gps The two sets of arrays to compare

group.index.fn a method which, when passed an ExpressionSet (from the Biobase package), a
column name for the group data and a set of arrays, will return the indices of
interest

median.gene Use the median instead of the mean when calculating averages across genes
median.probeset
Use the median instead of the mean when calculating averages across probesets
in each replicate group

unlogged Unlog the expression data before calculating the splicing index (and then re-log
afterwards)

Details

The splicing index gives a measure of the difference in expression level for each probeset in a gene
between two sets of arrays, relative to the gene-level average in each set. This is calculated only for
those probesets that are defined as exonic (See exonic).

The two sets of arrays can be specified in two ways: First, by using numeric indices defining the
appropriate columns in the expression data. This is done by supplying these as a list to gps (e.g.
gps=list(1:3,4:6) will calculate the splicing index between arrays 1,2,3 and 4,5,6. Alternatively, the
annotation in the phenoData object from x can be used (e.g. group="treatment",gps=c("a","b") will
compare between the arrays labelled *a’, and ’b’ in the ’treatment’ column of pData(x)).

The implementation also calculates a p.value and t.statistic for each probeset; these are returned
alongside the splicing index.

28 splicelndex

By default, the splicing index is calculated using the mean across genes and samples. Specifying
median.gene=TRUE or median.probeset=TRUE will use the median instead (for the gene or probe-
set level averages, respectively). It is calculated using the unlogged data, unless unlogged=FALSE.
This only affects the internal calculations; values in x are always assumed to be logged, and the
splicing index is always returned on the log2 scale.

Author(s)
Tim Yates Crispin J. Miller

See Also

exonic

Examples

if(interactive()) {

Loads the Expression Set into x.rma

load('../unitTests/HuEx-1_0.tp53.expr.RData’)

spliceIndex(x.rma, symbolToGene('tp53'), gps=list(1:3,4:6))
}

Index

* package
annmap-package, 2

allArrays (annmapAll), 3
allChromosomes (annmapAll), 3
allDomains (annmapAll), 3

allEstExons (annmapAll), 3
allEstGenes (annmapAll), 3
allEstTranscripts (annmapAll), 3
allExons (annmapAll), 3

allGenes (annmapAll), 3
allPredictionTranscripts (annmapAll), 3
allProbes (annmapAll), 3

allProbesets (annmapAll), 3
allProteins (annmapAll), 3

allSymbols (annmapAll), 3

allSynonyms (annmapAll), 3
allTranscripts (annmapAll), 3

annmap (annmap-package), 2
annmap-package, 2
annmapAddConnection (annmapUtils), 18
annmapAll, 3, 5, 7-9, 14, 18, 20, 22
annmapClearCache (annmapUtils), 18
annmapConnect (annmapUtils), 18
annmapCoords, 4
annmapDetails, 4, 5,6, 8, 9, 14, 18, 20, 22
annmapDisconnect (annmapUtils), 18
annmapEnv, 7
annmapFilters, 4, 5,7, 8,8, 9, 14, 18, 20, 22
annmapGenePlot (annmapUtils), 18
annmapGetParam (annmapEnv), 7
annmapRange, 4, 5, 7-9, 10, 18, 20, 22
annmapRangeApply (annmapUtils), 18
annmapSeqname, 15

annmapSetParam (annmapEnv), 7
annmapTo, 4, 5, 7-9, 14, 16, 20, 22
annmapToggleCaching (annmapUtils), 18
annmapUtils, 4, 7, 14, 18, 18
annmapUtr, 21

arrayDetails (annmapDetails), 6

29

arrayToProbeset (annmapTo), 16
arrayType (annmapUtils), 18

chromosomeDetails (annmapDetails), 6
codingProbesets (annmapUtr), 21
convertBamToRl1e (ngsPlot), 24

domainDetails (annmapDetails), 6
domainInRange (annmapRange), 10
domainInRange, character-method
(annmapRange), 10
domainInRange,data.frame-method
(annmapRange), 10
domainInRange, factor-method
(annmapRange), 10
domainInRange, GRanges-method
(annmapRange), 10
domainInRange,NULL-method
(annmapRange), 10
domainInRange,RangedData-method
(annmapRange), 10
domainToGene (annmapTo), 16
domainToProbeset (annmapTo), 16
domainToProtein (annmapTo), 16
domainToTranscript (annmapTo), 16

estExonDetails (annmapDetails), 6
estExonInRange (annmapRange), 10
estExonInRange,character-method
(annmapRange), 10
estExonInRange,data.frame-method
(annmapRange), 10
estExonInRange, factor-method
(annmapRange), 10
estExonInRange,GRanges-method
(annmapRange), 10
estExonInRange,NULL-method
(annmapRange), 10
estExonInRange,RangedData-method
(annmapRange), 10

30

estExonToEstGene (annmapTo), 16
estExonToEstTranscript (annmapTo), 16
estExonToProbeset (annmapTo), 16
estGeneDetails (annmapDetails), 6
estGeneInRange (annmapRange), 10
estGeneInRange,character-method
(annmapRange), 10
estGenelInRange,data. frame-method
(annmapRange), 10
estGenelInRange, factor-method
(annmapRange), 10
estGeneInRange,GRanges-method
(annmapRange), 10
estGeneInRange,NULL-method
(annmapRange), 10
estGenelInRange,RangedData-method
(annmapRange), 10
estGeneToEstExon (annmapTo), 16
estGeneToEstTranscript (annmapTo), 16
estGeneToProbeset (annmapTo), 16
estTranscriptDetails (annmapDetails), 6
estTranscriptInRange (annmapRange), 10
estTranscriptInRange,character-method
(annmapRange), 10
estTranscriptInRange,data.frame-method
(annmapRange), 10
estTranscriptInRange, factor-method
(annmapRange), 10
estTranscriptInRange,GRanges-method
(annmapRange), 10
estTranscriptInRange,NULL-method
(annmapRange), 10
estTranscriptInRange,RangedData-method
(annmapRange), 10
estTranscriptToEstExon (annmapTo), 16
estTranscriptToEstGene (annmapTo), 16
estTranscriptToProbeset (annmapTo), 16
exonDetails (annmapDetails), 6
exonic, 27, 28
exonic (annmapFilters), 8
exonInRange (annmapRange), 10
exonInRange, character-method
(annmapRange), 10
exonInRange,data.frame-method
(annmapRange), 10
exonInRange, factor-method
(annmapRange), 10
exonInRange,GRanges-method

INDEX

(annmapRange), 10
exonInRange,NULL-method (annmapRange),

10
exonInRange,RangedData-method

(annmapRange), 10
exonToGene (annmapTo), 16
exonToProbeset (annmapTo), 16
exonToTranscript (annmapTo), 16
ExpressionSet, 18

geneDetails (annmapDetails), 6
genelnRange (annmapRange), 10
genelnRange, character-method
(annmapRange), 10
genelnRange,data. frame-method
(annmapRange), 10
genelnRange, factor-method
(annmapRange), 10
genelnRange,GRanges-method
(annmapRange), 10
geneInRange,NULL-method (annmapRange),
10
genelInRange,RangedData-method
(annmapRange), 10
generalisedNameToEnsembl
(annmapSeqgname), 15
generalisedNameToNCBI (annmapSegname),
15
generateBridgeData (ngsPlot), 24
geneToDomain (annmapTo), 16
geneToExon (annmapTo), 16
geneToExonProbeset (annmapTo), 16
geneToExonProbesetExpr (annmapTo), 16
geneToGeneRegionTrack (annmapUtils), 18
geneToProbeset (annmapTo), 16
geneToProtein (annmapTo), 16
geneToSymbol (annmapTo), 16
geneToSynonym (annmapTo), 16
geneToTranscript (annmapTo), 16
genomeToProteinCoords (annmapCoords), 4
genomeToTranscriptCoords
(annmapCoords), 4
genomicExonDepthPlot, 26
genomicExonDepthPlot (genomicPlotting),
23
genomicPlot, 26
genomicPlot (genomicPlotting), 23
genomicPlotting, 23
genomicProbePlot, 26

INDEX

genomicProbePlot (genomicPlotting), 23
GenomicRanges, 3

GRanges, 3,4,7,13, 14,17, 18
grid.text, 25

grid.xaxis, 25

grid.yaxis, 25

hasProbes (annmapFilters), 8
hasProbesAtleast (annmapFilters), 8
hasProbesBetween (annmapFilters), 8
hasProbesIn (annmapFilters), 8

intergenic (annmapFilters), 8
intronic (annmapFilters), 8
isExonic (annmapFilters), 8
isIntergenic (annmapFilters), 8
isIntronic (annmapFilters), 8
isUnreliable (annmapFilters), 8

ngsBridgePlot (ngsPlot), 24
ngsPlot, 24
ngsTracelLabel (ngsPlot), 24
ngsTracePlotter (ngsPlot), 24
ngsTraceScale (ngsPlot), 24
nonIntronicGenelLength (annmapUtr), 21
nonIntronicTranscriptlLength
(annmapUtr), 21

predictionTranscriptDetails
(annmapDetails), 6

predictionTranscriptInRange
(annmapRange), 10

predictionTranscriptInRange,character-method

(annmapRange), 10

31

probeInRange (annmapRange), 10
probeInRange,character-method
(annmapRange), 10
probeInRange,data.frame-method
(annmapRange), 10
probeInRange,factor-method
(annmapRange), 10
probelInRange,GRanges-method
(annmapRange), 10
probeInRange,NULL-method (annmapRange),
10
probelnRange,RangedData-method
(annmapRange), 10
probesetDetails (annmapDetails), 6
probesetInRange (annmapRange), 10
probesetInRange,character-method
(annmapRange), 10
probesetInRange,data.frame-method
(annmapRange), 10
probesetInRange, factor-method
(annmapRange), 10
probesetInRange,GRanges-method
(annmapRange), 10
probesetInRange,NULL-method
(annmapRange), 10
probesetInRange,RangedData-method
(annmapRange), 10
probesetToCdnatranscript (annmapTo), 16
probesetToDomain (annmapTo), 16
probesetToEstExon (annmapTo), 16
probesetToEstGene (annmapTo), 16
probesetToEstTranscript (annmapTo), 16
probesetToExon (annmapTo), 16

pr‘edictionTranscriptInRange,data.1’rame—methodp’"ObesetTOGe”e(annmapTO)’16

(annmapRange), 10

predictionTranscriptInRange,factor-method

(annmapRange), 10

predictionTranscriptInRange,GRanges-method

(annmapRange), 10

predictionTranscriptInRange,NULL-method

(annmapRange), 10

probesetToHit (annmapTo), 16
probesetToPredictionTranscript
(annmapTo), 16
probesetToProbe (annmapTo), 16
probesetToProtein (annmapTo), 16
probesetToTranscript (annmapTo), 16
probeToHit (annmapTo), 16

predictionTranscriptInRange,RangedData-methodorobeToProbeset (annmapTo), 16

(annmapRange), 10
predictionTranscriptToPredictionExon
(annmapTo), 16
predictionTranscriptToProbeset
(annmapTo), 16
probeDetails (annmapDetails), 6

proteinCoordsToGenome (annmapCoords), 4
proteinDetails (annmapDetails), 6
proteinInRange (annmapRange), 10
proteinInRange,character-method
(annmapRange), 10
proteinInRange,data. frame-method

32

(annmapRange), 10
proteinInRange, factor-method
(annmapRange), 10
proteinInRange,GRanges-method
(annmapRange), 10
proteinInRange,NULL-method
(annmapRange), 10
proteinInRange,RangedData-method
(annmapRange), 10
proteinToDomain (annmapTo), 16
proteinToGene (annmapTo), 16
proteinToProbeset (annmapTo), 16
proteinToTranscript (annmapTo), 16

RangedData, 14, 19
Rle, 25, 26

segnameMapping (annmapSeqgname), 15
segnamesToEnsembl (annmapSeqgname), 15
segnamesToNCBI (annmapSegname), 15
spliceGroupIndex (spliceIndex), 27
splicelndex, 27

strandAsInteger (annmapUtils), 18
symbolToEstGene (annmapTo), 16
symbolToEstTranscript (annmapTo), 16
symbolToGene (annmapTo), 16
symbolToTranscript (annmapTo), 16
synonymDetails (annmapDetails), 6
synonymToEstGene (annmapTo), 16
synonymToEstTranscript (annmapTo), 16
synonymToGene (annmapTo), 16
synonymToTranscript (annmapTo), 16

transcriptCoordsToGenome
(annmapCoords), 4
transcriptDetails (annmapDetails), 6
transcriptInRange (annmapRange), 10
transcriptInRange, character-method
(annmapRange), 10
transcriptInRange,data. frame-method
(annmapRange), 10
transcriptInRange, factor-method
(annmapRange), 10
transcriptInRange, GRanges-method
(annmapRange), 10
transcriptInRange,NULL-method
(annmapRange), 10
transcriptInRange,RangedData-method
(annmapRange), 10

INDEX

transcriptToCdnaprobeset (annmapTo), 16
transcriptToCodingExon (annmapUtr), 21
transcriptToCodingRange (annmapUtr), 21
transcriptToDomain (annmapTo), 16
transcriptToExon (annmapTo), 16
transcriptToExonProbeset (annmapTo), 16
transcriptToGene (annmapTo), 16
transcriptToProbeset (annmapTo), 16
transcriptToProtein (annmapTo), 16
transcriptToSynonym (annmapTo), 16
transcriptToTranslatedprobes
(annmapTo), 16
transcriptToUtrExon (annmapUtr), 21
transcriptToUtrRange (annmapUtr), 21

unreliable, /8
unreliable (annmapFilters), 8
utrProbesets (annmapUtr), 21

viewport, 25

	annmap-package
	annmapAll
	annmapCoords
	annmapDetails
	annmapEnv
	annmapFilters
	annmapRange
	annmapSeqname
	annmapTo
	annmapUtils
	annmapUtr
	genomicPlotting
	ngsPlot
	spliceIndex
	Index

