Package ‘cclmpute’

January 15, 2026
Type Package

Title ccImpute: an accurate and scalable consensus clustering based
approach to impute dropout events in the single-cell RNA-seq
data (https://doi.org/10.1186/s12859-022-04814-8)

Version 1.13.0

Description Dropout events make the lowly expressed genes indistinguishable
from true zero expression and different than the low expression present in
cells of the same type. This issue makes any subsequent downstream analysis
difficult. ccImpute is an imputation algorithm that uses cell similarity
established by consensus clustering to impute the most probable dropout
events in the scRNA-seq datasets. ccImpute demonstrated performance which
exceeds the performance of existing imputation approaches while introducing
the least amount of new noise as measured by clustering performance
characteristics on datasets with known cell identities.

License GPL-3

Imports Rcpp, sparseMatrixStats, stats, BiocParallel, irlba,
SingleCellExperiment, Matrix, SummarizedExperiment

LinkingTo Rcpp, RcppEigen
Encoding UTF-8
LazyData FALSE

BugReports https://github.com/khazum/ccImpute/issues

URL https://github.com/khazum/ccImpute/
RoxygenNote 7.3.2

biocViews SingleCell, Sequencing, PrincipalComponent,
DimensionReduction, Clustering, RNASeq, Transcriptomics

biocType Software

Suggests knitr, rmarkdown, BiocStyle, sessioninfo, scRNAseq, scater,
mclust, testthat (>= 3.0.0), splatter

VignetteBuilder knitr
Config/testthat/edition 3

https://github.com/khazum/ccImpute/issues
https://github.com/khazum/ccImpute/

git_url https://git.bioconductor.org/packages/ccImpute
git_branch devel

git_last_commit 076b708

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-15

Author Marcin Malec [cre, aut] (ORCID:
<https://orcid.org/0000-0002-2354-513X>),
Parichit Sharma [aut] (ORCID: <https://orcid.org/0000-0003-0822-1089>),
Hasan Kurban [aut] (ORCID: <https://orcid.org/0000-0003-3142-2866>),
Mehmet Dalkilic [aut]

Maintainer Marcin Malec <mamalec@iu.edu>

Contents

cclmpute L
colRanks_fast e
computeDropouts L L
cor_fast e e
doSVD . . .
estkTW . . . L
findDropouts
getConsMItX L e
getCorM L L e
getScale
PINLEr o e e e e
rowVars_fast e

SOIVET e e
SOIVEI2 e e
sparseColRanks_fast
sparseSolver2 e
wCor_fast e e

Index

cclmpute

cclmpute Impute Dropout Values in Single-Cell RNA Sequencing Data

https://orcid.org/0000-0002-2354-513X
https://orcid.org/0000-0003-0822-1089
https://orcid.org/0000-0003-3142-2866

cclmpute 3

Description

Performs imputation of dropout values in single-cell RNA sequencing (scRNA-seq) data using a
consensus clustering-based algorithm (ccImpute). This implementation includes performance en-
hancements over the original ccImpute method described in the paper "ccImpute: an accurate and
scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq
data" (DOI: https://doi.org/10.1186/s12859-022-04814-8).

Defines the generic function ‘ccImpute® and a specific method for ‘SingleCellExperiment* objects.

Usage
ccImpute.SingleCellExperiment(
object,
dist,
nCeil = 2000,

svdMaxRatio = 0.08,
maxSets = 8,

K,

consMin = 0.75,
kmNStart,

kmMax = 1000,

fastSolver = TRUE,
BPPARAM = bpparam(),
verbose = TRUE

)

ccImpute(
object,
dist,
nCeil = 2000,
svdMaxRatio = 0.08,
maxSets = 8,

k,

consMin = 0.75,
kmNStart,

kmMax = 1000,

fastSolver = TRUE,
BPPARAM = bpparam(),
verbose = TRUE

)

S4 method for signature 'SingleCellExperiment'
ccImpute(

object,

dist,

nCeil = 2000,

svdMaxRatio = 0.08,

maxSets = 8,

K,

4 cclmpute

consMin = 0.75,
kmNStart,

kmMax = 1000,
fastSolver = TRUE,
BPPARAM = bpparam(),
verbose = TRUE

)
Arguments

object A SingleCellExperiment class object containing the scRNA-seq data. The
logcounts assay should contain matrix with log-normalized expression values.
This code supports both dense and sparse (dgCMatrix) matrix format storage.

dist (Optional) A distance matrix used for cell similarity. calculations. If not pro-
vided, a weighted Spearman correlation matrix is calculated.

nCeil (Optional) The maximum number of cells used to compute the proportion of
singular vectors (default: 2000).

svdMaxRatio (Optional) The maximum proportion of singular vectors used for generating sub-
sets (default: 0.08).

maxSets (Optional) The maximum number of sub-datasets used for consensus clustering
(default: 8).

k (Optional) The number of clusters (cell groups) in the data. If not provided, it is
estimated using the Tracy-Widom Bound.

consMin (Optional) The low-pass filter threshold for processing the consensus matrix
(default: 0.75).

kmNStart nstart parameter passed to kmeans. function. Can be set manually. By default it
is 1000 for up to 2000 cells and 50 for more than 2000 cells.

kmMax iter.max parameter passed to kmeans.

fastSolver (Optional) Whether to use mean of non-zero values for calculating dropout val-
ues or a linear equation solver (much slower and did show empirical difference
in imputation performance) (default: TRUE).

BPPARAM (Optional) A BiocParallelParamobject for parallel processing (default: bpparam()).

verbose (Optional) Whether to print progress messages (default: TRUE).

Value

A SingleCellExperiment class object with the imputed expression values stored in the ‘"im-
puted"‘ assay.

Examples

library(BiocParallel)

library(splatter)

library(scater)

sce <- splatSimulate(group.prob = rep(1, 5)/5, sparsify = FALSE,
batchCells=100, nGenes=1000, method = "groups”, verbose = FALSE,

colRanks_fast 5

dropout.type = "experiment")
sce <- logNormCounts(sce)
cores <- 2

BPPARAM = MulticoreParam(cores)
sce <- ccImpute(sce, BPPARAM=BPPARAM)

colRanks_fast Computes rankings for each column of a matrix in parallel.

Description

Computes rankings for each column of a matrix in parallel.

Usage

colRanks_fast(x, n_cores)

Arguments

X The input matrix to be ranked.

n_cores The number of CPU cores to use for parallel processing.
Value

A matrix where each column contains the rankings for the corresponding column in the input matrix.

computeDropouts Impute Dropout Values in a Log-normalized Expression Count Matrix

Description

This function imputes dropout values (zeros) in a count matrix using either a fast numerical solver
or a slower linear equations solver.

Usage

computeDropouts(consMtx, logX, droplds, fastSolver = TRUE, nCores)

6 cor_fast

Arguments
consMtx A numeric matrix representing the processed consensus matrix obtained from
clustering analysis.
logX A (sparse or dense) numeric matrix representing the transpose of a log-normalized
gene expression matrix. Rows correspond to cells, and columns correspond to
genes.
dropIds A numeric vector containing the row/col indices of the dropouts to be imputed.
fastSolver A logical value indicating whether to use the fast solver (default) or the slow
solver.
nCores An integer specifying the number of cores to use for parallel processing (if ap-
plicable).
Value

An imputed log-transformed count matrix (same dimensions as ‘logX*).

Examples

library(scater)
library(BiocParallel)
library(splatter)

sce <- splatSimulate(group.prob = rep(1, 5)/5, sparsify = FALSE,
batchCells=100, nGenes=1000, method = "groups"”, verbose = FALSE,
dropout.type = "experiment")

sce <- logNormCounts(sce)

cores <- 2

logX <- as.matrix(logcounts(sce))

w <- rowVars_fast(logX, cores)

corMat <- getCorM("spearman”, logcounts(sce), w, cores)

v <- doSVD(corMat, nCores=cores)

BPPARAM = MulticoreParam(cores)

consMtx <- runkKM(logX, v, BPPARAM=bpparam())

dropIds <- findDropouts(logX, consMtx)

impLogX <- computeDropouts(consMtx, logX, dropIds, nCores=cores)

cor_fast Computes a Pearson

Description

This function calculates a Pearson correlation matrix

Usage

cor_fast(x, n_cores)

doSVD 7

Arguments
X The input matrix, where each column represents a set of observations.
n_cores The number of CPU cores to utilize for parallel computation (optional, defaults
to 1).
Value

A Pearson correlation matrix if ‘useRanks® is ‘false‘. If ‘useRanks‘ is ‘true‘, returns a Spearman
correlation matrix.

doSVD Perform Truncated Singular Value Decomposition (SVD)

Description
Computes a truncated SVD on a matrix using the implicitly restarted Lanczos bidiagonalization
algorithm (IRLBA).

Usage

doSVD(x, svdMaxRatio = ©0.08, nCeil = 2000, nCores)

Arguments
X A numeric matrix to perform SVD on.
svdMaxRatio (Optional) The maximum proportion of singular vectors used for generating sub-
sets (default: @.08).
nCeil (Optional) The maximum number of cells used to compute the proportion of
singular vectors (default: 2000).
nCores The number of cores to use for parallel processing.
Details

This function utilizes the ‘irlba‘ function from the ‘irlba‘ package to efficiently calculate the trun-
cated SVD of the input matrix ‘x‘. The returned matrix contains ‘nv‘ right singular vectors, which
are often used for dimensionality reduction and feature extraction in various applications.

Value

A matrix containing the right singular vectors of ‘x‘.

8 estkTW

Examples

library(scater)
library(splatter)

sce <- splatSimulate(group.prob = rep(1, 5)/5, sparsify = FALSE,
batchCells=100, nGenes=1000, method = "groups”, verbose = FALSE,
dropout.type = "experiment")

sce <- logNormCounts(sce)

cores <- 2

logX <- as.matrix(logcounts(sce))

w <- rowVars_fast(logX, cores)

corMat <- getCorM("”spearman”, logcounts(sce), w, cores)

v <- doSVD(corMat, nCores=cores)

estkTW Estimate the Number of Clusters (k) Using the Tracy-Widom Bound

Description

This function estimates the number of clusters (k) in a dataset using the Tracy-Widom distribution
as a bound for the eigenvalues of the scaled data covariance matrix.

Usage
estkTW(x)
Arguments
X A numeric matrix or data frame where rows are observations and columns are
variables.
Value

The estimated number of clusters (k).

Examples

library(scater)
library(splatter)

sce <- splatSimulate(group.prob = rep(1, 5)/5, sparsify = FALSE,
batchCells=100, nGenes=1000, method = "groups"”, verbose = FALSE,
dropout.type = "experiment")

sce <- logNormCounts(sce)

logX <- as.matrix(logcounts(sce))

k <- estkTW(logX)

findDropouts 9

findDropouts Identify Dropout Events in Single-Cell Expression Data

Description

Determines which zero values within a transposed, log-normalized expression matrix are likely
dropout events. The identification is based on a weighted cell voting scheme, where weights are
derived from a processed consensus matrix.

Usage

findDropouts(logX, consMtx)

Arguments
logX A (sparse or dense) numeric matrix representing the transpose of a log-normalized
gene expression matrix. Rows correspond to cells, and columns correspond to
genes.
consMtx A numeric matrix representing the processed consensus matrix obtained from
clustering analysis.
Value

A two-column matrix (or data frame) where each row indicates the location (row index, column
index) of a potential dropout event in the input matrix ‘logX*.

Examples

library(scater)
library(BiocParallel)
library(splatter)

sce <- splatSimulate(group.prob = rep(1, 5)/5, sparsify = FALSE,
batchCells=100, nGenes=1000, method = "groups"”, verbose = FALSE,
dropout.type = "experiment")

sce <- logNormCounts(sce)

cores <- 2

logX <- as.matrix(logcounts(sce))

w <- rowVars_fast(logX, cores)

corMat <- getCorM("”spearman”, logcounts(sce), w, cores)

v <- doSVD(corMat, nCores=cores)

BPPARAM = MulticoreParam(cores)

consMtx <- runkM(logX, v, BPPARAM=bpparam())

dropIds <- findDropouts(logX, consMtx)

10 getCorM

getConsMtx This function calculates an average consensus matrix from a set of
clustering solutions. It filters out values below a specified minimum
threshold (‘consMin‘) and normalizes the remaining non-zero columns
to sumto 1.

Description

This function calculates an average consensus matrix from a set of clustering solutions. It filters out
values below a specified minimum threshold (‘consMin‘) and normalizes the remaining non-zero
columns to sum to 1.

Usage

getConsMtx(dat, consMin, n_cores)

Arguments
dat An integer matrix where each column represents a different clustering solution
(cluster assignments for each data point).
consMin The minimum consensus value to retain. Values below this threshold are set to
Zero.
n_cores The number of cores to use for parallel processing. This can speed up the nor-
malization step.
Value

A processed consensus matrix where each element (i, j) represents the proportion of times data
points i and j were assigned to the same cluster with filtering and normalization applied.

getCorM Calculate Column-wise Correlation Matrix

Description

Efficiently computes a column-wise correlation matrix for a given input matrix. Supports Pearson
and Spearman correlations, with optional weighting for features.

Usage

getCorM(method, x, w, nCores)

getScale

Arguments

method

nCores

Value

11

A character string specifying the correlation metric to use. Currently supported
options are: - "spearman”: Spearman rank correlation - "pearson”: Pearson
correlation

A numeric matrix where each column represents a sample.

(Optional) A numeric vector of weights for each feature (row) in x. If not pro-
vided, all features are equally weighted.

The number of cores to use for parallel processing.

A correlation matrix of the same dimensions as the number of columns in ‘x‘. The values represent
the pairwise correlations between samples (columns) based on the chosen method and optional

weights.

Examples

library(scater)
library(splatter)

sce <- splatSimulate(group.prob = rep(1, 5)/5, sparsify = FALSE,

batchCells=100, nGenes=1000, method = "groups”, verbose = FALSE,
dropout.type = "experiment")

sce <- logNormCounts(sce)

cores <- 2

logX <- as.matrix(logcounts(sce))
w <- rowVars_fast(logX, cores)
corMat <- getCorM("”spearman”, logcounts(sce), w, cores)

getScale

Computes Means and Standard Deviations for Scaling

Description

Computes Means and Standard Deviations for Scaling

Usage

getScale(x, n_cores)

Arguments

X

n_cores

A numeric matrix representing the gene expression data, where rows are genes
and columns are samples.

The number of cores to use for parallel processing.

12 row Vars_fast

Value

A list containing: * ‘means‘: A numeric vector of column means. * ‘sds‘: A numeric vector of
column standard deviations.

printer Internal Printing Utility

Description
This internal function provides a flexible way to print messages to the console, optionally including
elapsed time information.

Usage

printer(verbose, msg, startTime)

Arguments
verbose logical. If TRUE, messages are printed to the console. If FALSE, messages are
suppressed.
msg The message to be printed.
startTime A timestamp indicating the start time for elapsed time calculation. If omitted,
no elapsed time is shown.
Value
No return
rowVars_fast Computes Row Variances Efficiently
Description

Computes Row Variances Efficiently

Usage

rowVars_fast(x, n_cores)

Arguments

X A numeric dense matrix for which to compute row variances.

n_cores The number of cores to utilize for parallel processing.

runKM 13

Value

A numeric vector containing the variance for each row of the input matrix.

Examples

library(Matrix)

rand_vals <- sample(@:10,1e4,replace=TRUE, p=c(0.99,rep(0.001,10)))
x <- as.matrix(Matrix(rand_vals,ncol=5))

cores <- 2

vars_vector <- rowVars_fast(x, cores)

runkM Perform Consensus K-Means Clustering

Description

Executes k-means clustering on multiple subsets of data defined by singular value decomposition
(SVD) components, and then aggregates the results into a consensus matrix.

Usage
runkM(
logX,
v,
maxSets = 8,
K,
consMin = 0.75,
kmNStart,
kmMax = 1000,
BPPARAM = bpparam()
)
Arguments
logX A (sparse or dense) numeric matrix representing the transpose of a log-normalized
gene expression matrix. Rows correspond to cells, and columns correspond to
genes.
v A matrix of right singular vectors obtained from SVD of a distance matrix de-
rived from ‘logX“.
maxSets (Optional) The maximum number of sub-datasets used for consensus clustering
(default: 8).
k (Optional) The number of clusters (cell groups) in the data. If not provided, it is
estimated using the Tracy-Widom Bound.
consMin (Optional) The low-pass filter threshold for processing the consensus matrix

(default: 0.75).

14 solver

kmNStart nstart parameter passed to kmeans. function. Can be set manually. By default it
is 1000 for up to 2000 cells and 50 for more than 2000 cells.
kmMax iter.max parameter passed to kmeans.
BPPARAM (Optional) A BiocParallelParam object for parallel processing (default: bpparam()).
Value

A consensus matrix summarizing the clustering results across multiple sub-datasets.

Examples

library(scater)
library(BiocParallel)
library(splatter)

sce <- splatSimulate(group.prob = rep(1, 5)/5, sparsify = FALSE,
batchCells=100, nGenes=1000, method = "groups”, verbose = FALSE,

dropout.type = "experiment")
sce <- logNormCounts(sce)
cores <- 2

logX <- as.matrix(logcounts(sce))

w <- rowVars_fast(logX, cores)

corMat <- getCorM("”spearman”, logcounts(sce), w, cores)
v <- doSVD(corMat, nCores=cores)

BPPARAM = MulticoreParam(cores)

consMtx <- runkKM(logX, v, BPPARAM=bpparam())

solver Computes imputed expression matrix using linear eq solver

Description

Computes imputed expression matrix using linear eq solver

Usage

solver(cm, em, ids, n_cores)

Arguments
cm processed consensus matrix
em expression matrix
ids location of values determined to be dropout events
n_cores number of cores to use for parallel computation.
Value

imputed expression matrix

solver2 15

solver2 Fast Calculation of "Dropout” values

Description

Fast Calculation of "Dropout" values

Usage

solver2(cm, em, ids, n_cores)

Arguments
cm A numeric matrix representing the consensus matrix.
em A dense numeric matrix representing the gene expression data, where rows are
genes and columns are samples.
ids An integer matrix specifying the row and column indices of entries for which to
calculate importance scores. Each row of ‘ids‘ should contain two integers: the
row index (gene) and column index (sample) in the ‘em*‘ matrix.
n_cores The number of cores to use for parallel processing.
Value

A numeric vector of imputed dropout values, corresponding to the entries specified in the ‘ids*
matrix.

sparseColRanks_fast Computes rankings for each column of a matrix in parallel.

Description

Computes rankings for each column of a matrix in parallel.

Usage

sparseColRanks_fast(x, n_cores)

Arguments

X The input matrix to be ranked.

n_cores The number of CPU cores to use for parallel processing.
Value

A matrix where each column contains the rankings for the corresponding column in the input matrix.

16 wCor_fast

sparseSolver?2 Fast Calculation of "Dropout” values

Description

Fast Calculation of "Dropout" values

Usage

sparseSolver2(cm, em, ids, n_cores)

Arguments
cm A numeric matrix representing the consensus matrix.
em A sparse numeric matrix representing the gene expression data, where rows are
genes and columns are samples.
ids An integer matrix specifying the row and column indices of entries for which to
calculate importance scores. Each row of ‘ids‘ should contain two integers: the
row index (gene) and column index (sample) in the ‘em‘ matrix.
n_cores The number of cores to use for parallel processing.
Value

A numeric vector of imputed dropout values, corresponding to the entries specified in the ‘ids‘
matrix.

wCor_fast Computes a Weighted Pearson

Description

This function calculates weighted Pearson correlation matrix

Usage

wCor_fast(x, w, n_cores)

Arguments
The input matrix (dense), where each column represents a set of observations.
w A vector of weights, one for each observation (must have the same number of
elements as rows in ‘x°).
n_cores The number of CPU cores to utilize for parallel computation.
Value

A weighted Pearson correlation matrix

Index

* internal
printer, 12

ccImpute, 2

ccImpute,SingleCellExperiment-method
(ccImpute), 2

ccImpute.SingleCellExperiment
(ccImpute), 2

colRanks_fast, 5

computeDropouts, 5

cor_fast, 6

doSVD, 7
estkTw, 8
findDropouts, 9

getConsMtx, 10
getCorM, 10
getScale, 11

kmeans, 4, 14
printer, 12

rowVars_fast, 12
runkM, 13

solver, 14

solver2, 15
sparseColRanks_fast, 15
sparseSolver2, 16

wCor_fast, 16

17

	ccImpute
	colRanks_fast
	computeDropouts
	cor_fast
	doSVD
	estkTW
	findDropouts
	getConsMtx
	getCorM
	getScale
	printer
	rowVars_fast
	runKM
	solver
	solver2
	sparseColRanks_fast
	sparseSolver2
	wCor_fast
	Index

