Package ‘celda’

January 15, 2026

Title CEllular Latent Dirichlet Allocation
Version 1.27.0

Description Celda is a suite of Bayesian hierarchical models for
clustering single-cell RNA-sequencing (scRNA-seq) data. It is able to
perform " " bi-clustering” and simultaneously cluster genes into gene modules
and cells into cell subpopulations. It also contains DecontX, a novel
Bayesian method to computationally estimate and remove RNA contamination in
individual cells without empty droplet information. A variety of scRNA-seq
data visualization functions is also included.

Depends R (>=4.0), SingleCellExperiment, Matrix
VignetteBuilder knitr

Imports plyr, foreach, ggplot2, RColorBrewer, grid, scales, gtable,
grDevices, graphics, matrixStats, doParallel, digest, methods,
reshape2, S4Vectors, data.table, Rcpp, ReppEigen, uwot,
enrichR, SummarizedExperiment, MCMCprecision, ggrepel, Rtsne,
withr, scater (>= 1.14.4), scran, dbscan, DelayedArray,
stringr, ComplexHeatmap, gridExtra, circlize, dendextend,
ggdendro, pROC

Suggests testthat, knitr, roxygen2, rmarkdown, biomaRt, covr,
BiocManager, BiocStyle, TENXxPBMCData, singleCellTK,
M3DExampleData

LinkingTo Rcpp, RcppEigen
License MIT + file LICENSE
Encoding UTF-8

LazyData true
RoxygenNote 7.3.2

BugReports https://github.com/campbio/celda/issues

biocViews SingleCell, GeneExpression, Clustering, Sequencing,
Bayesian, ImmunoOncology, Datalmport

NeedsCompilation yes

git_url https://git.bioconductor.org/packages/celda

1

https://github.com/campbio/celda/issues

2 Contents

git_branch devel

git_last commit 9bceetf
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-01-15

Author Joshua Campbell [aut, cre],
Shiyi Yang [aut],
Zhe Wang [aut],
Sean Corbett [aut],
Yusuke Koga [aut]

Maintainer Joshua Campbell <camp@bu.edu>

Contents
appendCeldallist 4
availableModels 5
bestLogLikelihood 5
celda e e 6
celdaCGGridSearchRes 6
celdaCGMod e e 7
celdaCGSim e e 7
celdaClusters e e 7
celdaCMod e 9
celdaCSim 9
celdaGMod e e 9
celdaGridSearch 10
celdaGSim 12
celdaHeatmap L 13
celdaModel e 14
celdaModules e 15
celdaPerplexity e 16
celdaPerplexity,celdaList-method 16
celdaProbabilityMap 17
celdatosce L e e 19
celdaTsne e 20
celdaUmap e 22
celda_ C s 25
celda CG s 28
celda_ G s, 31
clusterProbability 34
compareCountMatrix e 36
contaminationSim L L. e e 37
countChecksum 37
countChecksum,celdalist-method 38
decontX L e e 38

decontXcCounts L. e e e e 42

Contents

3
distinctColors e 42
eigenMatMultInto 43
eigenMatMultNumeric 44
factorizeMatrix e 44
fastNormProp e 46
fastNormPropLog 46
fastNormPropSqrt L 47
featureModuleLookup 47
featureModuleTable 49
findMarkersTree 50
geneSetEnrich 52
getDeCISIONS L e e e e 54
logLikelihood e 54
logLikelihoodHistory e 55
MatrixXNames oo e e e e e 56
moduleHeatmap 57
NONZEIO .« & o v o vt e e e e e e e e e e e e e e 60
normalizeCounts L 61
PATamIS L e e e e e e e e e e e e e 62
PeIplexity e e 63
plotCeldaViolin e 64
plotDecontXContamination it e e e e 66
plotDecontXMarkerExpression oL oL 67
plotDecontXMarkerPercentage L 68
plotDendro e e e e 70
plotDimReduceCluster 71
plotDimReduceFeature 73
plotDimReduceGrid 77
plotDimReduceModule 80
plotGridSearchPerplexity L 82
plotHeatmap e 83
plotMarkerHeatmap 86
plotRPC e 87
recodeClusterY L 88
recodeClusterZ 89
recursiveSplitCell L 90
recursiveSplitModule oL Lo 93
reorderCelda L 97
reportceldaCG L e 98
resamplePerplexity L 101
resList L 103
retrieveFeaturelndex L 103
runParamso e 105
sampleCells e 105
sampleLabel 106
sceCeldaC e 107
sceCeldaCG o L e 107

sceCeldaCGGridSearch e 108

4 appendCeldaList
sceCeldaG L. 109
selectBestModel 109
selectFeatures L 110
semiPheatmap 112
simulateCells 117
simulateContamination 118
splitModule e 119
subsetCeldallist e e 121
topRank L 122

Index 123

appendCeldalList Append two celdaList objects

Description

Returns a single celdaList representing the combination of two provided celdaList objects.

Usage

appendCeldalList(list1l, list2)
Arguments

list1 A celda_list object

list2 A celda_list object to be joined with list_1
Value

A celdaList object. This object contains all resList entries and runParam records from both lists.
Examples

data(celdaCGGridSearchRes)
appendedList <- appendCeldalList(

celdaCGGridSearchRes,
celdaCGGridSearchRes

)

availableModels 5

availableModels available models

Description

available models

Usage

availableModels

Format

An object of class character of length 3.

bestLoglLikelihood Get the log-likelihood

Description

Retrieves the final log-likelihood from all iterations of Gibbs sampling used to generate a cel-
daModel.

Usage
bestlLoglLikelihood(x, altExpName = "featureSubset")

S4 method for signature 'SingleCellExperiment'’
bestLoglLikelihood(x, altExpName = "featureSubset")

S4 method for signature 'celdaModel'

bestlLoglLikelihood(x)
Arguments
X A SingleCellExperiment object returned by celda_C, celda_G, or celda_CG, or
a celda model object.
altExpName The name for the altExp slot to use. Default "featureSubset".
Value

Numeric. The log-likelihood at the final step of Gibbs sampling used to generate the model.

Examples

data(sceCeldaCG)
bestLoglLikelihood(sceCeldaCG)
data(celdaCGMod)
bestLoglLikelihood(celdaCGMod)

celdaCGGridSearchRes

celda Celda models

Description

List of available Celda models with correpsonding descriptions.

Usage
celda()

Value

None

Examples

celda()

celdaCGGridSearchRes celdaCGGridSearchRes

Description

Example results of old celdaGridSearch on celdaCGSim

Usage

celdaCGGridSearchRes

Format

An object as returned from old celdaGridSearch()

celdaCGMod

celdaCGMod celdaCGmod

Description

celda_CG model object generated from celdaCGSim using old celda_CG function.

Usage

celdaCGMod

Format

A celda_CG object

celdaCGSim celdaCGSim

Description

An deprecated example of simulated count matrix from the celda_CG model.

Usage

celdaCGSim

Format

A list of counts and properties as returned from old simulateCells().

celdaClusters Get or set the cell cluster labels from a celda SingleCellExperiment

object or celda model object.

Description

Return or set the cell cluster labels determined by celda_C or celda_CG models.

Usage

celdaClusters

celdaClusters(x, altExpName = "featureSubset")

S4 method for signature 'SingleCellExperiment'’
celdaClusters(x, altExpName = "featureSubset")

S4 method for signature 'celdaModel'
celdaClusters(x)

celdaClusters(x, altExpName = "featureSubset”) <- value

S4 replacement method for signature 'SingleCellExperiment'

celdaClusters(x, altExpName = "featureSubset”) <- value
Arguments
X Can be one of
* A SingleCellExperiment object returned by celda_C, or celda_CG, with
the matrix located in the useAssay assay slot. The a altExp slot with name
altExpName will be used. Rows represent features and columns represent
cells.
* Celda model object.
altExpName The name for the altExp slot to use. Default "featureSubset".
value Character vector of cell cluster labels for replacements. Works only if x is a
SingleCellExperiment object.
Value
One of
* Character vector if x is a SingleCellExperiment object. Contains cell cluster labels for each
cell in x.
* Listif x is a celda model object. Contains cell cluster labels (for celda_C and celdaCG Models)
and/or feature module labels (for celda_G and celdaCG Models).
Examples
data(sceCeldaCG)

celdaClusters(sceCeldaCG)

data(celdaCGMod)

celdaClusters(celdaCGMod)

celdaCMod

celdaCMod celdaCMod

Description

Old celda_C results generated from celdaCSim

Usage
celdaCMod

Format

A celda_C object

celdaCSim celdaCSim

Description

An old example simulated count matrix from the celda_C model.

Usage
celdaCSim

Format

A list of counts and properties as returned from old simulateCells().

celdaGMod celdaGMod

Description

Old celda_G results generated from celdaGsim

Usage
celdaGMod

Format

A celda_G object

10

celdaGridSearch

celdaGridSearch

Run Celda in parallel with multiple parameters

Description

Run Celda with different combinations of parameters and multiple chains in parallel. The variable
availableModels contains the potential models that can be utilized. Different parameters to be tested
should be stored in a list and passed to the argument paramsTest. Fixed parameters to be used in
all models, such as samplelLabel, can be passed as a list to the argument paramsFixed. When
verbose = TRUE, output from each chain will be sent to a log file but not be displayed in stdout.

Usage

celdaGridSearch(

X,

useAssay = "counts”,
altExpName = "featureSubset”,
model,

paramsTest,

paramsFixed = NULL,

maxIter = 200,

nchains = 3,

cores = 1,
bestOnly = TRUE,
seed = 12345,

perplexity = TRUE,
verbose = TRUE,
logfilePrefix = "Celda”

)
S4 method for signature 'SingleCellExperiment'’
celdaGridSearch(

X,

useAssay = "counts”,

altExpName = "featureSubset”,

model,

paramsTest,

paramsFixed = NULL,
maxIter = 200,
nchains = 3,

cores = 1,
bestOnly = TRUE,
seed = 12345,

perplexity = TRUE,
verbose = TRUE,
logfilePrefix = "Celda”

celdaGridSearch

11

S4 method for signature 'matrix’
celdaGridSearch(

X7

useAssay = "counts”,

altExpName
model,
paramsTest,

paramsFixed =

"featureSubset”,

NULL,

maxIter = 200,

nchains =
cores = 1,

3,

bestOnly = TRUE,

seed = 12345,

perplexity = TRUE,
verbose = TRUE,
logfilePrefix = "Celda”

Arguments

X

useAssay
altExpName
model
paramsTest

paramsFixed

maxIter
nchains
cores
bestOnly

seed

perplexity

verbose

logfilePrefix

A numeric matrix of counts or a SingleCellExperiment with the matrix located in
the assay slot under useAssay. Rows represent features and columns represent
cells.

A string specifying the name of the assay slot to use. Default "counts".
The name for the altExp slot to use. Default "featureSubset".
Celda model. Options available in availableModels.

List. A list denoting the combinations of parameters to run in a celda model. For
example, list(K = seq(5, 10), L = seq(15, 20)) will run all combinations of
K from 5 to 10 and L from 15 to 20 in model celda_CG.

List. A list denoting additional parameters to use in each celda model. Default
NULL.

Integer. Maximum number of iterations of sampling to perform. Default 200.
Integer. Number of random cluster initializations. Default 3.
Integer. The number of cores to use for parallel estimation of chains. Default 1.

Logical. Whether to return only the chain with the highest log likelihood per
combination of parameters or return all chains. Default TRUE.

Integer. Passed to with_seed. For reproducibility, a default value of 12345 is
used. Seed values seq(seed, (seed + nchains - 1)) will be supplied to each
chain in nchains. If NULL, no calls to with_seed are made.

Logical. Whether to calculate perplexity for each model. If FALSE, then per-
plexity can be calculated later with resamplePerplexity. Default TRUE.

Logical. Whether to print log messages during celda chain execution. Default
TRUE.

Character. Prefix for log files from worker threads and main process. Default
"Celda".

12 celdaGSim

Value

A SingleCellExperiment object. Function parameter settings and celda model results are stored in
the metadata "celda_grid_search” slot.

See Also

celda_G for feature clustering, celda_C for clustering of cells, and celda_CG for simultaneous
clustering of features and cells. subsetCeldaList can subset the celdalList object. selectBestModel
can get the best model for each combination of parameters.

Examples

Not run:
data(celdaCGSim)
Run various combinations of parameters with 'celdaGridSearch'
celdaCGGridSearchRes <- celdaGridSearch(celdaCGSim$counts,
model = "celda_CG",
paramsTest = list(K = seq(4, 6), L = seq(9, 11)),
paramsFixed = list(sampleLabel = celdaCGSim$samplelLabel),
bestOnly = TRUE,
nchains = 1,
cores = 1)

End(Not run)

celdaGSim celdaGSim

Description

An old example simulated count matrix from the celda_G model.

Usage

celdaGSim

Format

A list of counts and properties as returned from old simulateCells()

celdaHeatmap 13

celdaHeatmap Plot celda Heatmap

Description

Render a stylable heatmap of count data based on celda clustering results.

Usage

celdaHeatmap(

sce,
useAssay = "counts”,
altExpName = "featureSubset”,
featureIx = NULL,

nfeatures = 25,

)

S4 method for signature 'SingleCellExperiment'’
celdaHeatmap(

sce,

useAssay = "counts”,

altExpName = "featureSubset”,
featureIx = NULL,
nfeatures = 25,

Arguments
sce A SingleCellExperiment object returned by celda_C, celda_G, or celda_CG.
useAssay A string specifying which assay slot to use. Default "counts".
altExpName The name for the altExp slot to use. Default "featureSubset".
featureIx Integer vector. Select features for display in heatmap. If NULL, no subsetting
will be performed. Default NULL. Only used for sce containing celda_C
model result returned by celda_C.
nfeatures Integer. Maximum number of features to select for each gene module. Default
25. Only used for sce containing celda_CG or celda_G model results re-
turned by celda_CG or celda_G.
Additional parameters passed to plotHeatmap.
Value

list A list containing dendrogram information and the heatmap grob

14 celdaModel

See Also

‘celdaTsne()‘ for generating 2-dimensional tSNE coordinates

Examples

data(sceCeldaCG)
celdaHeatmap(sceCeldaCG)

celdaModel Get celda model from a celda SingleCellExperiment object

Description

Return the celda model for sce returned by celda_C, celda_G or celda_CG.

Usage

celdaModel (sce, altExpName = "featureSubset")

S4 method for signature 'SingleCellExperiment’
celdaModel (sce, altExpName = "featureSubset"”)

Arguments
sce A SingleCellExperiment object returned by celda_C, celda_G, or celda_CG.
altExpName The name for the altExp slot to use. Default "featureSubset".

Value

Character. The celda model. Can be one of "celda_C", "celda_G", or "celda_CG".

Examples

data(sceCeldaCG)
celdaModel (sceCeldaCG)

celdaModules 15

celdaModules Get or set the feature module labels from a celda SingleCellExperi-
ment object.

Description

Return or set the feature module cluster labels determined by celda_G or celda_CG models.

Usage
celdaModules(sce, altExpName = "featureSubset")

S4 method for signature 'SingleCellExperiment’
celdaModules(sce, altExpName = "featureSubset”)

celdaModules(sce, altExpName = "featureSubset"”) <- value

S4 replacement method for signature 'SingleCellExperiment'

celdaModules(sce, altExpName = "featureSubset”) <- value
Arguments
sce A SingleCellExperiment object returned by celda_G, or celda_CG, with the ma-

trix located in the useAssay assay slot. Rows represent features and columns
represent cells.

altExpName The name for the altExp slot to use. Default "featureSubset".

value Character vector of feature module labels for replacements. Works only if x is a
SingleCellExperiment object.

Value

Character vector. Contains feature module labels for each feature in x.

Examples

data(sceCeldaCG)
celdaModules(sceCeldaCG)

16 celdaPerplexity,celdaList-method

celdaPerplexity Get perplexity for every model in a celdaList

Description

Returns perplexity for each model in a celdaList as calculated by ‘perplexity().*

Usage
celdaPerplexity(celdalList)

Arguments

celdalList An object of class celdaList.

Value

List. Contains one celdaModel object for each of the parameters specified in the ‘runParams()‘ of
the provided celda list.

Examples

data(celdaCGGridSearchRes)
celdaCGGridModelPerplexities <- celdaPerplexity(celdaCGGridSearchRes)

celdaPerplexity,celdalist-method
Get perplexity for every model in a celdaList

Description

3

Returns perplexity for each model in a celdaList as calculated by ‘perplexity().

Usage

S4 method for signature 'celdalist'
celdaPerplexity(celdalist)

Arguments

celdalist An object of class celdaList.

Value

List. Contains one celdaModel object for each of the parameters specified in the ‘runParams()‘ of
the provided celda list.

celdaProbabilityMap 17

Examples

data(celdaCGGridSearchRes)
celdaCGGridModelPerplexities <- celdaPerplexity(celdaCGGridSearchRes)

celdaProbabilityMap Probability map for a celda model

Description

Renders probability and relative expression heatmaps to visualize the relationship between features
and cell populations (or cell populations and samples).

Usage
celdaProbabilityMap(
sce,
useAssay = "counts”,
altExpName = "featureSubset”,
level = c("cellPopulation”, "sample"),
ncols = 100,

col2 = circlize::colorRamp2(c(-2, @, 2), c("#1E90FF", "#FFFFFF", "#CD2626")),
titlel = "Absolute probability”,
title2 = "Relative expression”,
showColumnNames = TRUE,
showRowNames = TRUE,

rowNamesgp = grid::gpar(fontsize
colNamesgp = grid::gpar(fontsize
clusterRows = FALSE,
clusterColumns = FALSE,
showHeatmapLegend = TRUE,
heatmapLegendParam = list(title = NULL, legend_height = grid::unit(6, "cm")),

8),
12),

)
S4 method for signature 'SingleCellExperiment'’
celdaProbabilityMap(

sce,

useAssay = "counts”,

altExpName = "featureSubset”,

level = c("cellPopulation”, "sample"),

ncols = 100,

col2 = circlize::colorRamp2(c(-2, @, 2), c("#1E90FF", "#FFFFFF", "#CD2626")),
titlel = "Absolute probability”,

title2 = "Relative expression”,

showColumnNames = TRUE,

showRowNames = TRUE,

rowNamesgp = grid::gpar(fontsize = 8),

18

celdaProbabilityMap

colNamesgp = grid::gpar(fontsize = 12),

clusterRows

FALSE,

clusterColumns = FALSE,
showHeatmapLegend = TRUE,
heatmapLegendParam = list(title = NULL, legend_height = grid::unit(6, "cm")),

Arguments

sce
useAssay
altExpName

level

ncols

col2

titlel

title2

showColumnNames

showRowNames
rowNamesgp
colNamesgp

clusterRows

A SingleCellExperiment object returned by celda_C, celda_G, or celda_CG.
A string specifying which assay slot to use. Default "counts".
The name for the altExp slot to use. Default "featureSubset".

Character. One of "cellPopulation" or "Sample". "cellPopulation" will display
the absolute probabilities and relative normalized expression of each module in
each cell population. level = "cellPopulation” only works for celda_CG
sce objects. "sample"” will display the absolute probabilities and relative nor-
malized abundance of each cell population in each sample. Default "cellPopu-
lation".

The number of colors (>1) to be in the color palette of the absolute probability
heatmap.

Passed to col argument of Heatmap. Set color boundaries and colors for the
relative expression heatmap.

Passed to column_title argument of Heatmap. Figure title for the absolute
probability heatmap.

Passed to column_title argument of Heatmap. Figure title for the relative
expression heatmap.

Passed to show_column_names argument of Heatmap. Show column names.
Passed to show_row_names argument of Heatmap. Show row names.
Passed to row_names_gp argument of Heatmap. Set row name font.

Passed to column_names_gp argument of Heatmap. Set column name font.

Passed to cluster_rows argument of Heatmap. Cluster rows.

clusterColumns Passed to cluster_columns argument of Heatmap. Cluster columns.

showHeatmapLegend

Passed to show_heatmap_legend argument of Heatmap. Show heatmap legend.

heatmapLegendParam

Value

Passed to heatmap_legend_param argument of Heatmap. Heatmap legend pa-
rameters.

Additional parameters passed to Heatmap.

A HeatmapList object containing 2 Heatmap-class objects

celdatosce 19

See Also

celda_C for clustering cells. celda_CG for clustering features and cells

Examples

data(sceCeldaCG)
celdaProbabilityMap(sceCeldaCG)

celdatosce Convert old celda model object to SCE object

Description

Convert a old celda model object (celda_C, celda_G, or celda_CG object) to a SingleCellExper-
iment object containing celda model information in metadata slot. Counts matrix is stored in the
"counts” assay slot in assays.

Usage

celdatosce(
celdaModel,
counts,
useAssay = "counts”,
altExpName = "featureSubset”

S4 method for signature 'celda_C'
celdatosce(

celdaModel,

counts,

useAssay = "counts”,

altExpName = "featureSubset”

S4 method for signature 'celda_G'
celdatosce(

celdaModel,

counts,

useAssay = "counts”,

altExpName = "featureSubset”

S4 method for signature 'celda_CG'
celdatosce(

celdaModel,

counts,

useAssay = "counts”,

20 celdaTsne

altExpName = "featureSubset”

)
S4 method for signature 'celdalist'
celdatosce(
celdaModel,
counts,
useAssay = "counts”,
altExpName = "featureSubset”
)
Arguments
celdaModel A celdaModel or celdalList object generated using older versions of celda.
counts A numeric matrix of counts used to generate celdaModel. Dimensions and
MDS5 checksum will be checked by compareCountMatrix.
useAssay A string specifying the name of the assay slot to use. Default "counts".
altExpName The name for the altExp slot to use. Default "featureSubset".
Value

A SingleCellExperiment object. Function parameter settings are stored in the metadata "celda_parameters”
slot. Columns celda_sample_label and celda_cell_cluster in colData contain sample labels

and celda cell population clusters. Column celda_feature_module in rowData contain feature
modules.

Examples

data(celdaCMod, celdaCSim)

sce <- celdatosce(celdaCMod, celdaCSim$counts)
data(celdaGMod, celdaGSim)

sce <- celdatosce(celdaGMod, celdaGSim$counts)
data(celdaCGMod, celdaCGSim)

sce <- celdatosce(celdaCGMod, celdaCGSim$counts)
data(celdaCGGridSearchRes, celdaCGSim)

sce <- celdatosce(celdaCGGridSearchRes, celdaCGSim$counts)

celdaTsne t-Distributed Stochastic Neighbor Embedding (t-SNE) dimension re-
duction for celda sce object

Description

Embeds cells in two dimensions using Rtsne based on a celda model. For celda_C sce objects,
PCA on the normalized counts is used to reduce the number of features before applying t-SNE. For
celda_CG and celda_G sce objects, tSNE is run on module probabilities to reduce the number of
features instead of using PCA. Module probabilities are square-root transformed before applying
tSNE.

celdaTsne 21

Usage

celdaTsne(
sce,
useAssay = "counts”,
altExpName = "featureSubset”,
maxCells = NULL,
minClusterSize = 100,
initialDims = 20,
modules = NULL,
perplexity = 20,
maxIter = 2500,
normalize = "proportion”,
scaleFactor = NULL,
transformationFun = sqrt,
seed = 12345

)

S4 method for signature 'SingleCellExperiment'’
celdaTsne(
sce,
useAssay = "counts”,
altExpName = "featureSubset”,
maxCells = NULL,
minClusterSize = 100,
initialDims = 20,
modules = NULL,
perplexity = 20,
maxIter = 2500,
normalize = "proportion”,
scaleFactor = NULL,
transformationFun = sqrt,

seed = 12345
)
Arguments
sce A SingleCellExperiment object returned by celda_C, celda_G, or celda_CG.
useAssay A string specifying which assay slot to use. Default "counts".
altExpName The name for the altExp slot to use. Default "featureSubset".
maxCells Integer. Maximum number of cells to plot. Cells will be randomly subsampled

if ncol(counts) > maxCells. Larger numbers of cells requires more memory.
If NULL, no subsampling will be performed. Default NULL.

minClusterSize Integer. Do not subsample cell clusters below this threshold. Default 100.

initialDims Integer. PCA will be used to reduce the dimensionality of the dataset. The top
“initialDims’ principal components will be used for tSNE. Default 20.

modules Integer vector. Determines which feature modules to use for tSNE. If NULL, all
modules will be used. Default NULL.

22 celdaUmap

perplexity Numeric. Perplexity parameter for tSNE. Default 20.
maxIter Integer. Maximum number of iterations in tSNE generation. Default 2500.
normalize Character. Passed to normalizeCounts in normalization step. Divides counts by

the library sizes for each cell. One of ’proportion’, ’cpm’, *'median’, or 'mean’.
“proportion’ uses the total counts for each cell as the library size. cpm’ divides
the library size of each cell by one million to produce counts per million. *me-
dian’ divides the library size of each cell by the median library size across all
cells. mean’ divides the library size of each cell by the mean library size across
all cells.

scaleFactor Numeric. Sets the scale factor for cell-level normalization. This scale factor is
multiplied to each cell after the library size of each cell had been adjusted in
normalize. Default NULL which means no scale factor is applied.
transformationFun
Function. Applys a transformation such as ’sqrt’, ’log’, ’log2’, ’logl0’, or
’loglp’. If NULL, no transformation will be applied. Occurs after applying nor-
malization and scale factor. Default NULL.

seed Integer. Passed to with_seed. For reproducibility, a default value of 12345 is
used. If NULL, no calls to with_seed are made.

Value

sce with t-SNE coordinates (columns "celda_tSNE1" & "celda_tSNE2") added to reducedDim(sce,
"celda_tSNE").

Examples

data(sceCeldaCG)
tsneRes <- celdaTsne(sceCeldaCG)

celdaUmap Uniform Manifold Approximation and Projection (UMAP) dimension
reduction for celda sce object

Description

Embeds cells in two dimensions using umap based on a celda model. For celda_C sce objects,
PCA on the normalized counts is used to reduce the number of features before applying UMAP.
For celda_CG sce object, UMAP is run on module probabilities to reduce the number of features
instead of using PCA. Module probabilities are square-root transformed before applying UMAP.

Usage

celdaUmap(
sce,
useAssay = "counts”,
altExpName = "featureSubset”,

celdaUmap 23

maxCells = NULL,
minClusterSize = 100,
modules = NULL,

seed = 12345,
nNeighbors = 30,
minDist = 0.75,

spread = 1,

pca = TRUE,

initialDims = 50,
normalize = "proportion”,

scaleFactor = NULL,
transformationFun = sqrt,

cores =1,
)
S4 method for signature 'SingleCellExperiment’
celdaUmap(

sce,

useAssay = "counts”,

altExpName = "featureSubset”,
maxCells = NULL,
minClusterSize = 100,

modules = NULL,

seed = 12345,

nNeighbors = 30,

minDist = 0.75,

spread = 1,

pca = TRUE,

initialDims = 50,
normalize = "proportion”,

scaleFactor = NULL,
transformationFun = sqrt,

cores = 1,
)
Arguments
sce A SingleCellExperiment object returned by celda_C, celda_G, or celda_CG.
useAssay A string specifying which assay slot to use. Default "counts".
altExpName The name for the altExp slot to use. Default "featureSubset".
maxCells Integer. Maximum number of cells to plot. Cells will be randomly subsampled

if ncol(sce) > maxCells. Larger numbers of cells requires more memory. If
NULL, no subsampling will be performed. Default NULL.

minClusterSize Integer. Do not subsample cell clusters below this threshold. Default 100.

modules Integer vector. Determines which features modules to use for UMAP. If NULL,
all modules will be used. Default NULL.

24 celdaUmap

seed Integer. Passed to with_seed. For reproducibility, a default value of 12345 is
used. If NULL, no calls to with_seed are made.

nNeighbors The size of local neighborhood used for manifold approximation. Larger values
result in more global views of the manifold, while smaller values result in more
local data being preserved. Default 30. See umap for more information.

minDist The effective minimum distance between embedded points. Smaller values will
result in a more clustered/clumped embedding where nearby points on the man-
ifold are drawn closer together, while larger values will result on a more even
dispersal of points. Default 0.75. See umap for more information.

spread The effective scale of embedded points. In combination with min_dist, this
determines how clustered/clumped the embedded points are. Default 1. See
umap for more information.

pca Logical. Whether to perform dimensionality reduction with PCA before UMAP.
Only works for celda_C sce objects.

initialDims Integer. Number of dimensions from PCA to use as input in UMAP. Default 50.
Only works for celda_C sce objects.

normalize Character. Passed to normalizeCounts in normalization step. Divides counts by
the library sizes for each cell. One of *proportion’, ’cpm’, *'median’, or “mean’.
“proportion’ uses the total counts for each cell as the library size. ’cpm’ divides
the library size of each cell by one million to produce counts per million. *me-
dian’ divides the library size of each cell by the median library size across all
cells. ’mean’ divides the library size of each cell by the mean library size across
all cells.

scaleFactor Numeric. Sets the scale factor for cell-level normalization. This scale factor is
multiplied to each cell after the library size of each cell had been adjusted in
normalize. Default NULL which means no scale factor is applied.

transformationFun
Function. Applys a transformation such as ’sqrt’, ’log’, ’log2’, ’logl0’, or
’loglp’. If NULL, no transformation will be applied. Occurs after applying nor-
malization and scale factor. Default NULL.

cores Number of threads to use. Default 1.

Additional parameters to pass to umap.

Value

sce with UMAP coordinates (columns "celda_UMAPI1" & "celda_UMAP2") added to reducedDim(sce,
"celda_UMAP").

Examples

data(sceCeldaCG)
umapRes <- celdaUmap(sceCeldaCG)

celda C

25

celda_C Cell clustering with Celda

Description

Clusters the columns of a count matrix containing single-cell data into K subpopulations. The
useAssay assay slot in altExpName altExp slot will be used if it exists. Otherwise, the useAssay

assay slot in x will be used if x is a SingleCellExperiment object.

Usage

celda_C(

X,

useAssay = "counts”,
altExpName = "featureSubset”,
samplelLabel = NULL,

K,

alpha = 1,

beta = 1,

algorithm = c("EM", "Gibbs"),
stopIlter = 10,

maxIter = 200,

splitOnIter = 10,

splitOnLast = TRUE,

seed = 12345,

nchains = 3,

zInitialize = c("split”, "random”, "predefined"”),
countChecksum = NULL,

zInit = NULL,

logfile = NULL,
verbose = TRUE

)
S4 method for signature 'SingleCellExperiment'’
celda_C(

X)

useAssay = "counts”,

altExpName = "featureSubset”,
samplelLabel = NULL,

K,

alpha = 1,

beta = 1,

algorithm = c("EM", "Gibbs"),
stopIlter = 10,

maxIter = 200,

splitOnIter = 10,

splitOnLast = TRUE,

26

)

seed = 12345,
nchains = 3,

zInitialize = c("split”, "random”, "predefined"),

countChecksum = NULL,
zInit = NULL,

logfile = NULL,
verbose = TRUE

S4 method for signature 'ANY'

celda_C(

X!

useAssay = "counts”,
altExpName = "featureSubset”,
samplelLabel = NULL,

K,

alpha = 1,

beta = 1,

algorithm = c("EM", "Gibbs"),
stopIlter = 10,

maxIter = 200,

splitOnIter = 10,

splitOnLast = TRUE,

seed = 12345,

nchains = 3,

zInitialize = c("split”, "random”, "predefined"),

countChecksum = NULL,
zInit = NULL,

logfile = NULL,
verbose = TRUE

celda C

Arguments

X

useAssay
altExpName
samplelabel

K
alpha

beta

A SingleCellExperiment with the matrix located in the assay slot under useAssay.
Rows represent features and columns represent cells. Alternatively, any matrix-
like object that can be coerced to a sparse matrix of class "dgCMatrix" can be
directly used as input. The matrix will automatically be converted to a Single-
CellExperiment object.

A string specifying the name of the assay slot to use. Default "counts".

The name for the altExp slot to use. Default "featureSubset".

Vector or factor. Denotes the sample label for each cell (column) in the count
matrix.

Integer. Number of cell populations.

Numeric. Concentration parameter for Theta. Adds a pseudocount to each cell
population in each sample. Default 1.

Numeric. Concentration parameter for Phi. Adds a pseudocount to each feature
in each cell population. Default 1.

celda C

algorithm

stoplter

maxIter

splitOnIter

splitOnLast

seed

nchains

zInitialize

countChecksum

zInit

logfile

verbose

Value

A SingleCellExperiment object. Function parameter settings are stored in the metadata "celda_parameters”

27

String. Algorithm to use for clustering cell subpopulations. One of ’"EM’ or
’Gibbs’. The EM algorithm is faster, especially for larger numbers of cells.
However, more chains may be required to ensure a good solution is found. If
"EM’ is selected, then ’stoplter’ will be automatically set to 1. Default 'EM’.

Integer. Number of iterations without improvement in the log likelihood to stop
inference. Default 10.

Integer. Maximum number of iterations of Gibbs sampling or EM to perform.
Default 200.

Integer. On every ‘splitOnlter* iteration, a heuristic will be applied to determine
if a cell population should be reassigned and another cell population should be
split into two clusters. To disable splitting, set to -1. Default 10.

Integer. After ‘stoplter’ iterations have been performed without improvement, a
heuristic will be applied to determine if a cell population should be reassigned
and another cell population should be split into two clusters. If a split occurs,
then ‘stoplter® will be reset. Default TRUE.

Integer. Passed to with_seed. For reproducibility, a default value of 12345 is
used. If NULL, no calls to with_seed are made.

Integer. Number of random cluster initializations. Default 3.

Character. One of 'random’, ’split’, or ’predefined’. With 'random’, cells are
randomly assigned to a populations. With ’split’, cells will be split into sqrt(K)
populations and then each population will be subsequently split into another
sqrt(K) populations. With ’predefined’, values in ‘zInit* will be used to initialize
‘z‘. Default “split’.

Character. An MDS5 checksum for the ‘counts‘ matrix. Default NULL.

Integer vector. Sets initial starting values of z. ’zInit’ is only used when ‘zIni-
tialize = ’predfined’ ‘. Default NULL.

Character. Messages will be redirected to a file named ‘logfile’. If NULL,
messages will be printed to stdout. Default NULL.

Logical. Whether to print log messages. Default TRUE.

slot. Columns celda_sample_label and celda_cell_cluster in colData contain sample labels
and celda cell population clusters.

See Also

celda_G for feature clustering and celda_CG for simultaneous clustering of features and cells.
celdaGridSearch can be used to run multiple values of K and multiple chains in parallel.

Examples

data(celdaCSim)

sce <- celda_C(celdaCSim$counts,
K = celdaCSim$K,

28 celda CG
sampleLabel = celdaCSim$samplelabel,
nchains = 1)
celda_CG Cell and feature clustering with Celda
Description
Clusters the rows and columns of a count matrix containing single-cell data into L modules and K
subpopulations, respectively. The useAssay assay slot in altExpName altExp slot will be used if it
exists. Otherwise, the useAssay assay slot in x will be used if x is a SingleCellExperiment object.
Usage
celda_CG(
X,
useAssay = "counts”,

altExpName = "featureSubset”,

samplelLabel = NULL,
K,

L,

alpha = 1,

beta = 1,

delta = 1,

gamma = 1,
algorithm = c("EM",
stopIlter = 10,
maxIter = 200,
splitOnIter = 10,
splitOnLast = TRUE,
seed = 12345,
nchains = 3,

"Gibbs"),

zInitialize = c("split”, "random”, "predefined”),
yInitialize = c("split”, "random”, "predefined"),
countChecksum = NULL,

zInit = NULL,

yInit = NULL,

logfile = NULL,

verbose = TRUE
)

S4 method for signature 'SingleCellExperiment'’

celda_CG(
X’

useAssay = "counts”

’

altExpName = "featureSubset”,

samplelLabel = NULL,

celda CG

K,
L,
alpha = 1,
beta = 1,
delta =1,
gamma = 1,

algorithm = c("EM", "Gibbs"),

stopIter = 10,

maxIter = 200,

splitOnIter = 10,

splitOnLast = TRUE,

seed = 12345,

nchains = 3,

zInitialize = c("split”, "random”, "predefined"),
yInitialize = c("split”, "random”, "predefined"),
countChecksum = NULL,

zInit = NULL,

yInit = NULL,

logfile = NULL,

verbose = TRUE

)
S4 method for signature 'ANY'
celda_CG(

X’

useAssay = "counts”,

altExpName = "featureSubset”,
samplelLabel = NULL,

K,
L,
alpha = 1,
beta = 1,
delta =1,
gamma = 1,

algorithm = c("EM", "Gibbs"),

stopIlter = 10,

maxIter = 200,

splitOnIter = 10,

splitOnLast = TRUE,

seed = 12345,

nchains = 3,

zInitialize = c("split”, "random”, "predefined"),
yInitialize = c("split”, "random”, "predefined"),
countChecksum = NULL,

zInit = NULL,

yInit = NULL,

logfile = NULL,

verbose = TRUE

30

Arguments

X

useAssay
altExpName
samplelabel

K
L
alpha

beta

delta

gamma

algorithm

stoplter

maxIter

splitOnIter

splitOnLast

seed

nchains

celda CG

A SingleCellExperiment with the matrix located in the assay slot under useAssay.
Rows represent features and columns represent cells. Alternatively, any matrix-
like object that can be coerced to a sparse matrix of class "dgCMatrix" can be
directly used as input. The matrix will automatically be converted to a Single-
CellExperiment object.

A string specifying the name of the assay slot to use. Default "counts".
The name for the altExp slot to use. Default "featureSubset".

Vector or factor. Denotes the sample label for each cell (column) in the count
matrix.

Integer. Number of cell populations.
Integer. Number of feature modules.

Numeric. Concentration parameter for Theta. Adds a pseudocount to each cell
population in each sample. Default 1.

Numeric. Concentration parameter for Phi. Adds a pseudocount to each feature
module in each cell population. Default 1.

Numeric. Concentration parameter for Psi. Adds a pseudocount to each feature
in each module. Default 1.

Numeric. Concentration parameter for Eta. Adds a pseudocount to the number
of features in each module. Default 1.

String. Algorithm to use for clustering cell subpopulations. One of ’EM’ or
’Gibbs’. The EM algorithm for cell clustering is faster, especially for larger
numbers of cells. However, more chains may be required to ensure a good
solution is found. Default "EM’.

Integer. Number of iterations without improvement in the log likelihood to stop
inference. Default 10.

Integer. Maximum number of iterations of Gibbs sampling to perform. Default
200.

Integer. On every splitOnIter iteration, a heuristic will be applied to deter-
mine if a cell population or feature module should be reassigned and another
cell population or feature module should be split into two clusters. To disable
splitting, set to -1. Default 10.

Integer. After stopIter iterations have been performed without improvement,
a heuristic will be applied to determine if a cell population or feature module
should be reassigned and another cell population or feature module should be
split into two clusters. If a split occurs, then ’stoplter’ will be reset. Default
TRUE.

Integer. Passed to with_seed. For reproducibility, a default value of 12345 is
used. If NULL, no calls to with_seed are made.

Integer. Number of random cluster initializations. Default 3.

celda G 31

zInitialize Chararacter. One of ‘random’, ’split’, or ’predefined’. With 'random’, cells are
randomly assigned to a populations. With ’split’, cells will be split into sqrt(K)
populations and then each population will be subsequently split into another
sqrt(K) populations. With *predefined’, values in zInit will be used to initialize
z. Default ’split’.

yInitialize Character. One of 'random’, ’split’, or "predefined’. With ‘random’, features are
randomly assigned to a modules. With ’split’, features will be split into sqrt(L)
modules and then each module will be subsequently split into another sqrt(L)
modules. With *predefined’, values in yInit will be used to initialize y. Default

“split’.

countChecksum Character. An MD5 checksum for the counts matrix. Default NULL.

zInit Integer vector. Sets initial starting values of z. ’zInit’ is only used when ‘zIni-
tialize = ’predfined’ ‘. Default NULL.

yInit Integer vector. Sets initial starting values of y. ’yInit’ is only be used when
‘yInitialize = "predefined" ‘. Default NULL.

logfile Character. Messages will be redirected to a file named ‘logfile’. If NULL,
messages will be printed to stdout. Default NULL.

verbose Logical. Whether to print log messages. Default TRUE.

Value

A SingleCellExperiment object. Function parameter settings are stored in metadata "celda_parameters”
in altExp slot. In altExp slot, columns celda_sample_label and celda_cell_cluster in colData
contain sample labels and celda cell population clusters. Column celda_feature_module in row-

Data contains feature modules.

See Also

celda_G for feature clustering and celda_C for clustering cells. celdaGridSearch can be used to run
multiple values of K/L and multiple chains in parallel.

Examples

data(celdaCGSim)
sce <- celda_CG(celdaCGSim$counts,
K = celdaCGSim$K,
L = celdaCGSim$L,
sampleLabel = celdaCGSim$samplelLabel,
nchains = 1)

celda_G Feature clustering with Celda

Description

Clusters the rows of a count matrix containing single-cell data into L modules. The useAssay assay
slot in altExpName altExp slot will be used if it exists. Otherwise, the useAssay assay slot in x will
be used if x is a SingleCellExperiment object.

32

Usage

celda_G(

)

X,

useAssay = "counts”,
altExpName = "featureSubset”,
L,

beta = 1

delta
gamma ,
stopIlter = 10,
maxIter = 200,
splitOnIter = 10,
splitOnLast = TRUE,

’

1
o .

seed = 12345,

nchains = 3,

yInitialize = c("split”, "random”, "predefined"),
countChecksum = NULL,

yInit = NULL,

logfile = NULL,
verbose = TRUE

S4 method for signature 'SingleCellExperiment’
celda_G(

)

X,

useAssay = "counts”,
altExpName = "featureSubset”,
L,

beta = 1,

delta = 1,

gamma = 1,

stopIlter = 10,
maxIter = 200,
splitOnIter = 10,
splitOnLast = TRUE,

seed = 12345,

nchains = 3,

yInitialize = c("split”, "random”, "predefined"),
countChecksum = NULL,

yInit = NULL,

logfile = NULL,
verbose = TRUE

S4 method for signature 'ANY'
celda_G(

X)
useAssay = "counts”,

celda G

celda G

33

altExpName = "featureSubset”,

L’

beta = 1,
delta = 1,
gamma = 1

stopIter = 10
maxIter = 200
splitOnIter =
splitOnLast =
seed = 12345,
nchains = 3,

yInitialize =
countChecksum
yInit = NULL,

’

’

10,
TRUE,

c("split”, "random”, "predefined"),
= NULL,

logfile = NULL,
verbose = TRUE

Arguments

X

useAssay
altExpName
L

beta

delta

gamma

stoplter

maxIter

splitOnIter

splitOnLast

A SingleCellExperiment with the matrix located in the assay slot under useAssay.
Rows represent features and columns represent cells. Alternatively, any matrix-
like object that can be coerced to a sparse matrix of class "dgCMatrix" can be
directly used as input. The matrix will automatically be converted to a Single-
CellExperiment object.

A string specifying the name of the assay slot to use. Default "counts".
The name for the altExp slot to use. Default "featureSubset".
Integer. Number of feature modules.

Numeric. Concentration parameter for Phi. Adds a pseudocount to each feature
module in each cell. Default 1.

Numeric. Concentration parameter for Psi. Adds a pseudocount to each feature
in each module. Default 1.

Numeric. Concentration parameter for Eta. Adds a pseudocount to the number
of features in each module. Default 1.

Integer. Number of iterations without improvement in the log likelihood to stop
inference. Default 10.

Integer. Maximum number of iterations of Gibbs sampling to perform. Default
200.

Integer. On every ‘splitOnlter* iteration, a heuristic will be applied to determine
if a feature module should be reassigned and another feature module should be
split into two clusters. To disable splitting, set to -1. Default 10.

Integer. After ‘stoplter® iterations have been performed without improvement, a
heuristic will be applied to determine if a cell population should be reassigned
and another cell population should be split into two clusters. If a split occurs,
then ‘stoplter* will be reset. Default TRUE.

34 clusterProbability

seed Integer. Passed to with_seed. For reproducibility, a default value of 12345 is
used. If NULL, no calls to with_seed are made.

nchains Integer. Number of random cluster initializations. Default 3.

yInitialize Chararacter. One of 'random’, ’split’, or ’predefined’. With 'random’, features

are randomly assigned to a modules. With ’split’, features will be split into
sqrt(L) modules and then each module will be subsequently split into another
sqrt(L) modules. With ’predefined’, values in ‘yInit* will be used to initialize
‘y*. Default "split’.

countChecksum Character. An MD5 checksum for the ‘counts‘ matrix. Default NULL.

yInit Integer vector. Sets initial starting values of y. ‘yInit‘ can only be used when
‘yInitialize = ’predefined’ ‘. Default NULL.

logfile Character. Messages will be redirected to a file named logfile. If NULL,
messages will be printed to stdout. Default NULL.
verbose Logical. Whether to print log messages. Default TRUE.
Value

i

A SingleCellExperiment object. Function parameter settings are stored in the metadata "celda_parameters’
slot. Column celda_feature_module in rowData contains feature modules.

See Also

celda_C for cell clustering and celda_CG for simultaneous clustering of features and cells. celda-
GridSearch can be used to run multiple values of L and multiple chains in parallel.

Examples

data(celdaGSim)
sce <- celda_G(celdaGSim$counts, L = celdaGSim$L, nchains = 1)

clusterProbability Get the conditional probabilities of cell in subpopulations from celda
model

Description

Calculate the conditional probability of each cell belonging to each subpopulation given all other
cell cluster assignments and/or each feature belonging to each module given all other feature cluster
assignments in a celda model.

clusterProbability 35

Usage
clusterProbability(
sce,
useAssay = "counts”,
altExpName = "featureSubset”,
log = FALSE
)
S4 method for signature 'SingleCellExperiment’
clusterProbability(
sce,
useAssay = "counts”,
altExpName = "featureSubset”,
log = FALSE
)
Arguments
sce A SingleCellExperiment object returned by celda_C, celda_G, or celda_CG,

with the matrix located in the useAssay assay slot. Rows represent features
and columns represent cells.

useAssay A string specifying which assay slot to use. Default "counts".
altExpName The name for the altExp slot to use. Default "featureSubset".
log Logical. If FALSE, then the normalized conditional probabilities will be returned.

If TRUE, then the unnormalized log probabilities will be returned. Default FALSE.

Value

A list containging a matrix for the conditional cell subpopulation cluster and/or feature module
probabilities.

See Also

‘celda_C()* for clustering cells

Examples

data(sceCeldaCG)

clusterProb <- clusterProbability(sceCeldaCG, log = TRUE)
data(sceCeldaC)

clusterProb <- clusterProbability(sceCeldaC)

36 compareCountMatrix

compareCountMatrix Check count matrix consistency

Description

Checks if the counts matrix is the same one used to generate the celda model object by comparing
dimensions and MD5 checksum.

Usage

compareCountMatrix(counts, celdaMod, errorOnMismatch = TRUE)

S4 method for signature 'ANY,celdaModel'
compareCountMatrix(counts, celdaMod, errorOnMismatch = TRUE)

S4 method for signature 'ANY,celdalist'
compareCountMatrix(counts, celdaMod, errorOnMismatch = TRUE)

Arguments
counts Integer , Numeric, or Sparse matrix. Rows represent features and columns rep-
resent cells.
celdaMod A celdaModel or celdalist object.
errorOnMismatch
Logical. Whether to throw an error in the event of a mismatch. Default TRUE.
Value

Returns TRUE if provided count matrix matches the one used in the celda object and/or errorOnMismatch
= FALSE, FALSE otherwise.

Examples

data(celdaCGSim, celdaCGMod)

compareCountMatrix(celdaCGSim$counts, celdaCGMod, errorOnMismatch = FALSE)

data(celdaCGSim, celdaCGGridSearchRes)

compareCountMatrix(celdaCGSim$counts, celdaCGGridSearchRes,
errorOnMismatch = FALSE)

contaminationSim 37

contaminationSim contaminationSim

Description

A toy contamination data generated by simulateContamination

Usage

contaminationSim

Format

A list

countChecksum Get the MDS5 hash of the count matrix from the celdaList

Description

Returns the MD5 hash of the count matrix used to generate the celdaList.

Usage

countChecksum(celdalList)

Arguments

celdalist An object of class celdaList.

Value

A character string of length 32 containing the MDS5 digest of the count matrix.

Examples

data(celdaCGGridSearchRes)
countChecksum <- countChecksum(celdaCGGridSearchRes)

38 decontX

countChecksum, celdalList-method
Get the MDS5 hash of the count matrix from the celdaList

Description

Returns the MDS5 hash of the count matrix used to generate the celdaList.

Usage
S4 method for signature 'celdalList'
countChecksum(celdalList)

Arguments

celdalist An object of class celdaList.

Value

A character string of length 32 containing the MDS5 digest of the count matrix.

Examples

data(celdaCGGridSearchRes)
countChecksum <- countChecksum(celdaCGGridSearchRes)

decontX Contamination estimation with decontX

Description

Identifies contamination from factors such as ambient RNA in single cell genomic datasets.

Usage

decontX(x, ...)

S4 method for signature 'SingleCellExperiment'’
decontX(

X,

assayName = "counts",

z = NULL,

batch = NULL,

background = NULL,

bgAssayName = NULL,

bgBatch = NULL,

decontX

)

maxIter = 500,

delta = c(10, 10),
estimateDelta = TRUE,
convergence = 0.001,
iterLoglLik = 10,
varGenes = 5000,
dbscankps = 1,

seed = 12345,

logfile = NULL,
verbose = TRUE

S4 method for signature 'ANY'
decontX(

X)

z = NULL,

batch = NULL,
background = NULL,
bgBatch = NULL,
maxIter = 500,

delta = c(10, 10),
estimateDelta = TRUE,
convergence = 0.001,
iterLoglLik = 10,
varGenes = 5000,
dbscankEps = 1,

seed = 12345,
logfile = NULL,
verbose = TRUE

Arguments

X

assayName

z

batch

39

A numeric matrix of counts or a SingleCellExperiment with the matrix located
in the assay slot under assayName. Cells in each batch will be subsetted and
converted to a sparse matrix of class dgCMatrix from package Matrix before
analysis. This object should only contain filtered cells after cell calling. Empty
cell barcodes (low expression droplets before cell calling) are not needed to run

DecontX.

For the generic, further arguments to pass to each method.

Character. Name of the assay to use if x is a SingleCellExperiment.

Numeric or character vector. Cell cluster labels. If NULL, PCA will be used to
reduce the dimensionality of the dataset initially, 'umap’ from the "uwot’ pack-
age will be used to further reduce the dataset to 2 dimenions and the ’dbscan’
function from the *dbscan’ package will be used to identify clusters of broad cell

types. Default NULL.

Numeric or character vector. Batch labels for cells. If batch labels are sup-

plied, DecontX is run on cells from each batch separately. Cells run in different

40

background

bgAssayName

bgBatch

maxIter
delta

estimateDelta

convergence

iterLoglLik

varGenes

dbscanEps

seed

logfile

verbose

Value

decontX

channels or assays should be considered different batches. Default NULL.

A numeric matrix of counts or a SingleCellExperiment with the matrix located
in the assay slot under assayName. It should have the same data format as x
except it contains the empty droplets instead of cells. When supplied, empirical
distribution of transcripts from these empty droplets will be used as the contam-
ination distribution. Default NULL.

Character. Name of the assay to use if background is a SingleCellExperiment.
Default to same as assayName.

Numeric or character vector. Batch labels for background. Its unique values
should be the same as those in batch, such that each batch of cells have their
corresponding batch of empty droplets as background, pointed by this parame-
ter. Default to NULL.

Integer. Maximum iterations of the EM algorithm. Default 500.

Numeric Vector of length 2. Concentration parameters for the Dirichlet prior
for the contamination in each cell. The first element is the prior for the native
counts while the second element is the prior for the contamination counts. These
essentially act as pseudocounts for the native and contamination in each cell. If
estimateDelta = TRUE, this is only used to produce a random sample of propor-
tions for an initial value of contamination in each cell. Then fit_dirichlet is
used to update delta in each iteration. If estimateDelta = FALSE, then delta
is fixed with these values for the entire inference procedure. Fixing delta and
setting a high number in the second element will force decontX to be more ag-
gressive and estimate higher levels of contamination at the expense of potentially
removing native expression. Default c(10, 10).

Boolean. Whether to update delta at each iteration.

Numeric. The EM algorithm will be stopped if the maximum difference in the
contamination estimates between the previous and current iterations is less than
this. Default 0.001.

Integer. Calculate log likelihood every iterLoglLik iteration. Default 10.

Integer. The number of variable genes to use in dimensionality reduction be-
fore clustering. Variability is calcualted using modelGeneVar function from the
’scran’ package. Used only when z is not provided. Default 5000.

Numeric. The clustering resolution parameter used in *dbscan’ to estimate broad
cell clusters. Used only when z is not provided. Default 1.

Integer. Passed to with_seed. For reproducibility, a default value of 12345 is
used. If NULL, no calls to with_seed are made.

Character. Messages will be redirected to a file named ‘logfile’. If NULL,
messages will be printed to stdout. Default NULL.

Logical. Whether to print log messages. Default TRUE.

If x is a matrix-like object, a list will be returned with the following items:

decontXcounts: The decontaminated matrix. Values obtained from the variational inference pro-

cedure may be non-integer. However, integer counts can be obtained by rounding, e.g. round(decontXcounts).

decontX 41

contamination: Percentage of contamination in each cell.

estimates: List of estimated parameters for each batch. If z was not supplied, then the UMAP
coordinates used to generated cell cluster labels will also be stored here.

z: Cell population/cluster labels used for analysis.

runParams: List of arguments used in the function call.

If x is a SingleCellExperiment, then the decontaminated counts will be stored as an assay and can
be accessed with decontXcounts(x). The contamination values and cluster labels will be stored
in colData(x). estimates and runParams will be stored in metadata(x)$decontX. The UMAPs
used to generated cell cluster labels will be stored in reducedDims slot in x.

Author(s)

Shiyi Yang, Yuan Yin, Joshua Campbell

Examples

Generate matrix with contamination
s <- simulateContamination(seed = 12345)

library(SingleCellExperiment)
sce <- SingleCellExperiment(list(counts = s$observedCounts))
sce <- decontX(sce)

Plot contamination on UMAP
plotDecontXContamination(sce)

Plot decontX cluster labels

umap <- reducedDim(sce)

plotDimReduceCluster(x = sce$decontX_clusters,
diml = umap[, 11, dim2 = umap[, 21,)

Plot percentage of marker genes detected

in each cell cluster before decontamination

s$markers

plotDecontXMarkerPercentage(sce, markers = s$markers, assayName = "counts")

Plot percentage of marker genes detected

in each cell cluster after contamination

plotDecontXMarkerPercentage(sce, markers = s$markers,
assayName = "decontXcounts™)

Plot percentage of marker genes detected in each cell
comparing original and decontaminated counts side-by-side
plotDecontXMarkerPercentage(sce, markers = s$markers,

assayName = c("”counts”, "decontXcounts"))

Plot raw counts of indiviual markers genes before
and after decontamination
plotDecontXMarkerExpression(sce, unlist(s$markers))

42 distinctColors

decontXcounts Get or set decontaminated counts matrix

Description

Gets or sets the decontaminated counts matrix from a a SingleCellExperiment object.

Usage
decontXcounts(object, ...)
decontXcounts(object, ...) <- value

S4 method for signature 'SingleCellExperiment'’
decontXcounts(object, ...)

S4 replacement method for signature 'SingleCellExperiment'

decontXcounts(object, ...) <- value
Arguments
object A SingleCellExperiment object.

For the generic, further arguments to pass to each method.

value A matrix to save as an assay called decontXcounts

Value
If getting, the assay from object with the name decontXcounts will be returned. If setting, a
SingleCellExperiment object will be returned with decontXcounts listed in the assay slot.

See Also

assay and assay<-

distinctColors Create a color palette

Description

Generate a palette of ‘n‘ distinct colors.

eigenMatMultInt 43

Usage

distinctColors(
n,
hues = c("red”, "cyan”, "orange”, "blue”, "yellow"”, "purple”, "green”, "magenta"),
saturationRange = c(0.7, 1),
valueRange = c(0.7, 1)

)
Arguments
n Integer. Number of colors to generate.
hues Character vector. Colors available from ‘colors()‘. These will be used as the

base colors for the clustering scheme in HSV. Different saturations and values

non

will be generated for each hue. Default c("red", "cyan", "orange", "blue", "yel-

non "non non

low", "purple”, "green", "magenta").
saturationRange

Numeric vector. A vector of length 2 denoting the saturation for HSV. Values
must be in [0,1]. Default: ¢(0.25, 1).

valueRange Numeric vector. A vector of length 2 denoting the range of values for HSV.
Values must be in [0,1]. Default: ‘c(0.5, 1)°.

Value

A vector of distinct colors that have been converted to HEX from HSV.

Examples

colorPal <- distinctColors(6) # can be used in plotting functions

eigenMatMultInt Fast matrix multiplication for double x int

Description

Fast matrix multiplication for double x int

Usage

eigenMatMultInt(A, B)

Arguments
A a double matrix
B an integer matrix
Value

An integer matrix representing the product of A and B

44 factorizeMatrix

eigenMatMultNumeric Fast matrix multiplication for double x double

Description

Fast matrix multiplication for double x double

Usage

eigenMatMultNumeric(A, B)

Arguments
A a double matrix
B an integer matrix
Value

An integer matrix representing the product of A and B

factorizeMatrix Generate factorized matrices showing each feature’s influence on cell
/ gene clustering

Description

Generates factorized matrices showing the contribution of each feature in each cell population or
each cell population in each sample.

Usage
factorizeMatrix(
X,
celdaMod,
useAssay = "counts”,
altExpName = "featureSubset”,
type = c("counts”, "proportion”, "posterior")
)
S4 method for signature 'SingleCellExperiment, ANY'
factorizeMatrix(
X,
useAssay = "counts”,

altExpName = "featureSubset”,
type = c("counts”, "proportion”, "posterior")

factorizeMatrix

45

S4 method for signature 'ANY,celda_CG'
factorizeMatrix(x, celdaMod, type = c("counts”, "proportion”, "posterior"))

S4 method for signature 'ANY,celda_C'
factorizeMatrix(x, celdaMod, type = c("counts”, "proportion”, "posterior"))

S4 method for signature 'ANY,celda_G'
factorizeMatrix(x, celdaMod, type = c("counts”, "proportion”, "posterior"))

Arguments

X

celdaMod

useAssay

altExpName
type

Value

Can be one of

* A SingleCellExperiment object returned by celda_C, celda_G or celda_CG,
with the matrix located in the useAssay assay slotin altExp(x, altExpName).
Rows represent features and columns represent cells.

* Integer counts matrix. Rows represent features and columns represent cells.
This matrix should be the same as the one used to generate celdaMod.

Celda model object. Only works if x is an integer counts matrix.

A string specifying which assay slot to use if x is a SingleCellExperiment object.
Default "counts".

The name for the altExp slot to use. Default "featureSubset".

non

Character vector. A vector containing one or more of "counts", "proportion”,
or "posterior". "counts" returns the raw number of counts for each factorized
matrix. "proportions" returns the normalized probabilities for each factorized
matrix, which are calculated by dividing the raw counts in each factorized matrix
by the total counts in each column. "posterior" returns the posterior estimates
which include the addition of the Dirichlet concentration parameter (essentially
as a pseudocount). Default "counts”.

non

For celda_CG model, A list with elements for "counts", "proportions"”, or "posterior" probabilities.

"non

Each element will be a list containing factorized matrices for "module", "cellPopulation"”, and "sam-
ple". Additionally, the contribution of each module in each individual cell will be included in the
"cell" element of "counts" and "proportions" elements.

For celda_C model, a list with elements for "counts", "proportions", or "posterior" probabilities.
Each element will be a list containing factorized matrices for "module"” and "sample".

For celda_G model, a list with elements for "counts", "proportions", or "posterior” probabilities.
Each element will be a list containing factorized matrices for "module" and "cell".

Examples

data(sceCeldaCG)

factorizedMatrices <- factorizeMatrix(sceCeldaCG, type = "posterior")
data(celdaCGSim, celdaCGMod)

46

factorizedMatrices <- factorizeMatrix(
celdaCGSim$counts,
celdaCGMod,
"posterior")
data(celdaCSim, celdaCMod)
factorizedMatrices <- factorizeMatrix(
celdaCSim$counts,
celdaCMod, "posterior”
)
data(celdaGSim, celdaGMod)
factorizedMatrices <- factorizeMatrix(

fastNormPropLog

celdaGSim$counts,
celdaGMod, "posterior”
)
fastNormProp Fast normalization for numeric matrix
Description

Fast normalization for numeric matrix

Usage

fastNormProp(R_counts, R_alpha)

Arguments

R_counts An integer matrix

R_alpha A double value to be added to the matrix as a pseudocount
Value

A numeric matrix where the columns have been normalized to proportions

fastNormPropLog Fast normalization for numeric matrix

Description

Fast normalization for numeric matrix

Usage

fastNormPropLog(R_counts, R_alpha)

fastNormPropSqrt 47

Arguments

R_counts An integer matrix

R_alpha A double value to be added to the matrix as a pseudocount
Value

A numeric matrix where the columns have been normalized to proportions

fastNormPropSqrt Fast normalization for numeric matrix

Description

Fast normalization for numeric matrix

Usage

fastNormPropSqrt(R_counts, R_alpha)

Arguments

R_counts An integer matrix

R_alpha A double value to be added to the matrix as a pseudocount
Value

A numeric matrix where the columns have been normalized to proportions

featureModulelLookup Obtain the gene module of a gene of interest

Description

This function will output the corresponding feature module for a specified vector of genes from a
celda_CG or celda_G celdaModel. features must match the rownames of sce.

48 featureModuleLookup
Usage
featureModulelLookup(
sce,
features,
altExpName = "featureSubset”,
exactMatch = TRUE,
by = "rownames”
)
S4 method for signature 'SingleCellExperiment'’
featureModulelookup(
sce,
features,
altExpName = "featureSubset”,
exactMatch = TRUE,
by = "rownames”
)
Arguments
sce A SingleCellExperiment object returned by celda_G, or celda_CG, with the ma-

features

altExpName

exactMatch

by

Value

trix located in the useAssay assay slot. Rows represent features and columns
represent cells.

Character vector. Identify feature modules for the specified feature names.
feature must match the rownames of sce.

The name for the altExp slot to use. Default "featureSubset".

Logical. Whether to look for exactMatch of the gene name within counts matrix.
Default TRUE.

Character. Where to search for features in the sce object. If set to "rownames”
then the features will be searched for among rownames(sce). This can also be
set to one of the colnames of rowData(sce). Default "rownames”.

Numeric vector containing the module numbers for each feature. If the feature was not found, then
an NA value will be returned in that position. If no features were found, then an error will be given.

Examples

data(sceCeldaCG)

module <- featureModulelLookup(sce = sceCeldaCG,
features = c("Gene_1", "Gene_XXX"))

featureModuleTable 49

featureModuleTable Output a feature module table

Description

Creates a table that contains the list of features in each feature module.

Usage
featureModuleTable(
sce,
useAssay = "counts”,

altExpName = "featureSubset”,
displayName = NULL,
outputFile = NULL

)
Arguments
sce A SingleCellExperiment object returned by celda_G, or celda_CG, with the ma-
trix located in the useAssay assay slot. Rows represent features and columns
represent cells.
useAssay A string specifying which assay slot to use. Default "counts".
altExpName The name for the altExp slot to use. Default "featureSubset".
displayName Character. The column name of rowData(sce) that specifies the display names
for the features. Default NULL, which displays the row names.
outputFile File name for feature module table. If NULL, file will not be created. Default
NULL.
Value

Matrix. Contains a list of features per each column (feature module)

Examples

data(sceCeldaCG)
featureModuleTable(sceCeldaCG)

50

findMarkersTree

findMarkersTree

Generate marker decision tree from single-cell clustering output

Description

Create a decision tree that identifies gene markers for given cell populations. The algorithm uses a
decision tree procedure to generate a set of rules for each cell cluster defined by single-cell cluster-
ing. Splits are determined by one of two metrics at each split: a one-off metric to determine rules
for identifying clusters by a single feature, and a balanced metric to determine rules for identifying
sets of similar clusters.

Usage

findMarkersTree(

features,
class,

oneoffMetric
metaclusters,

= c("modified F1", "pairwise AUC"),

featurelLabels,

counts,
celda,
seurat,

threshold = 0.
reuseFeatures

9,
= FALSE,

altSplit = TRUE,
consecutiveOneoff = FALSE,
autoMetaclusters = TRUE,

seed = 12345

Arguments

features
class

oneoffMetric

metaclusters

featurelLabels

counts

features-by-samples numeric matrix, e.g. counts matrix.
Vector of cell cluster labels.

A character string. What one-off metric to run, either ‘modified F1° or ‘pairwise
AUC". Default is 'modified F1°.

List where each element is a metacluster (e.g. known cell type) and all the
clusters within that metacluster (e.g. subtypes).

Vector of feature assignments, e.g. which cluster does each gene belong to?
Useful when using clusters of features (e.g. gene modules or Seurat PCs) and
user wishes to expand tree results to individual features (e.g. score individual
genes within marker gene modules).

Numeric counts matrix. Useful when using clusters of features (e.g. gene mod-
ules) and user wishes to expand tree results to individual features (e.g. score
individual genes within marker gene modules). Row names should be individ-
ual feature names.

findMarkersTree

51

celda A celda_CG or celda_C object. Counts matrix has to be provided as well.

seurat A seurat object. Note that the seurat functions RunPCA and FindClusters must
have been run on the object.

threshold Numeric between 0 and 1. The threshold for the oneoff metric. Smaller values
will result in more one-off splits. Default is 0.90.

reuseFeatures Logical. Whether or not a feature can be used more than once on the same
cluster. Default is TRUE.

altSplit Logical. Whether or not to force a marker for clusters that are solely defined by
the absence of markers. Default is TRUE.

consecutiveOneoff
Logical. Whether or not to allow one-off splits at consecutive brances. Default
is FALSE.

autoMetaclusters
Logical. Whether to identify metaclusters prior to creating the tree based on
the distance between clusters in a UMAP dimensionality reduction projection.
A metacluster is simply a large cluster that includes several clusters within it.
Default is TRUE.

seed Numeric. Seed used to enable reproducible UMAP results for identifying meta-
clusters. Default is 12345.

Value

A named list with six elements:

* rules - A named list with one data frame for every label. Each data frame has five columns
and gives the set of rules for disinguishing each label.

— feature - Marker feature, e.g. marker gene name.

— direction - Relationship to feature value. -1 if cluster is down-regulated for this feature, 1
if cluster is up-regulated.

— stat - The performance value returned by the splitting metric for this split.

— statUsed - Which performance metric was used. "Split" if information gain and "One-off"
if one-off.

— level - The level of the tree at which is rule was defined. 1 is the level of the first split of

the tree.

— metacluster - Optional. If metaclusters were used, the metacluster this rule is applied to.

* dendro - A dendrogram object of the decision tree output. Plot with plotDendro()

¢ classLabels - A vector of the class labels used in the model, i.e. cell cluster labels.

* metaclusterLabels - A vector of the metacluster labels used in the model

* prediction - A character vector of label of predictions of the training data using the final model.
"MISSING" if label prediction was ambiguous.

* performance - A named list denoting the training performance of the model:

— accuracy - (number correct/number of samples) for the whole set of samples.

— balAcc - mean sensitivity across all clusters

— meanPrecision - mean precision across all clusters

52 geneSetEnrich

correct - the number of correct predictions of each cluster
sizes - the number of actual counts of each cluster

sensitivity - the sensitivity of the prediciton of each cluster

precision - the precision of the prediciton of each cluster

Examples

Generate simulated single-cell dataset using celda
sce <- celda::simulateCells(”"celda_CG", K = 4, L = 10, G = 100)

Select top features
sce <- selectFeatures(sce)

Celda clustering into 5 clusters & 10 modules
sce <- celda_CG(sce, K=5, L=10, verbose=FALSE)

Get features matrix and cluster assignments
factorizedCounts <- factorizeMatrix(sce, type = "counts")
featureMatrix <- factorizedCounts$counts$cell

classes <- as.integer(celdaClusters(sce))

Generate Decision Tree
DecTree <- findMarkersTree(featureMatrix, classes)

Plot dendrogram
plotDendro(DecTree)

geneSetEnrich Gene set enrichment

Description

Identify and return significantly-enriched terms for each gene module in a Celda object or a Single-
CellExperiment object. Performs gene set enrichment analysis for Celda identified modules using
the enrichr.

Usage

geneSetEnrich(
X,
celdaModel,
useAssay = "counts”,
altExpName = "featureSubset”,
databases,
fdr = 0.05

geneSetEnrich 53

S4 method for signature 'SingleCellExperiment’
geneSetEnrich(

X,

useAssay = "counts”,

altExpName = "featureSubset”,

databases,

fdr = @.05

S4 method for signature 'matrix’
geneSetEnrich(x, celdaModel, databases, fdr = 0.05)

Arguments
X A numeric matrix of counts or a SingleCellExperiment with the matrix located in
the assay slot under useAssay. Rows represent features and columns represent
cells. Rownames of the matrix or SingleCellExperiment object should be gene
names.
celdaModel Celda object of class celda_G or celda_CG.
useAssay A string specifying which assay slot to use if x is a SingleCellExperiment object.
Default "counts".
altExpName The name for the altExp slot to use. Default "featureSubset".
databases Character vector. Name of reference database. Available databases can be
viewed by listEnrichrDbs.
fdr False discovery rate (FDR). Numeric. Cutoff value for adjusted p-value, terms
with FDR below this value are considered significantly enriched.
Value

List of length "L’ where each member contains the significantly enriched terms for the correspond-
ing module.

Author(s)
Ahmed Youssef, Zhe Wang

Examples

library(M3DExampleData)
counts <- M3DExampleData: :Mmus_example_list$data
subset 500 genes for fast clustering
counts <- counts[seq(1501, 2000),]
cluster genes into 10 modules for quick demo
sce <- celda_G(x = as.matrix(counts), L = 10, verbose = FALSE)
gse <- geneSetEnrich(sce,
databases = c("GO_Biological_Process_2018", "GO_Molecular_Function_2018"))

54 logLikelihood

getDecisions Gets cluster estimates using rules generated by
‘celda::findMarkersTree

Description

Get decisions for a matrix of features. Estimate cell cluster membership using feature matrix input.

Usage

getDecisions(rules, features)

Arguments
rules List object. The ‘rules® element from ‘findMarkersTree‘ output. Returns NA if
cluster estimation was ambiguous.
features A L(features) by N(samples) numeric matrix.
Value

A character vector of label predicitions.

loglikelihood Calculate the Log-likelihood of a celda model

Description

Calculate the log-likelihood for cell population and feature module cluster assignments on the count
matrix, per celda model.

Usage
loglLikelihood(x, celdaMod, useAssay = "counts”, altExpName = "featureSubset”)

S4 method for signature 'SingleCellExperiment,ANY'
loglikelihood(x, useAssay = "counts”, altExpName = "featureSubset”)

S4 method for signature 'matrix,celda_C'
loglLikelihood(x, celdaMod)

S4 method for signature 'matrix,celda_G'
loglLikelihood(x, celdaMod)

S4 method for signature 'matrix,celda_CG'
loglLikelihood(x, celdaMod)

logLikelihoodHistory 55

Arguments
X A SingleCellExperiment object returned by celda_C, celda_G, or celda_CG,
with the matrix located in the useAssay assay slot. Rows represent features
and columns represent cells.
celdaMod celda model object. Ignored if x is a SingleCellExperiment object.
useAssay A string specifying which assay slot to use. Default "counts".
altExpName The name for the altExp slot to use. Default "featureSubset".
Value

The log-likelihood of the cluster assignment for the provided SingleCellExperiment.

See Also

‘celda_C()* for clustering cells

Examples

data(sceCeldaC, sceCeldaCG)
loglikC <- logLikelihood(sceCeldaC)
loglikCG <- loglLikelihood(sceCeldaCG)

loglLikelihoodHistory Get log-likelihood history

Description

Retrieves the complete log-likelihood from all iterations of Gibbs sampling used to generate a celda
model.

Usage

loglikelihoodHistory(x, altExpName = "featureSubset")

S4 method for signature 'SingleCellExperiment'’
loglLikelihoodHistory(x, altExpName = "featureSubset”)

S4 method for signature 'celdaModel'
loglLikelihoodHistory(x)

Arguments

X A SingleCellExperiment object returned by celda_C, celda_G, or celda_CG, or
a celda model object.

altExpName The name for the altExp slot to use. Default "featureSubset".

56 matrixNames

Value

Numeric. The log-likelihood at each step of Gibbs sampling used to generate the model.

Examples

data(sceCeldaCG)
loglikelihoodHistory(sceCeldaCG)
data(celdaCGMod)
loglikelihoodHistory(celdaCGMod)

matrixNames Get feature, cell and sample names from a celdaModel

Description

Retrieves the row, column, and sample names used to generate a celdaModel.

Usage

matrixNames(celdaMod)

S4 method for signature 'celdaModel'
matrixNames(celdaMod)

Arguments

celdaMod celdaModel. Options available in ‘celda::availableModels®.

Value

List. Contains row, column, and sample character vectors corresponding to the values provided
when the celdaModel was generated.

Examples

data(celdaCGMod)
matrixNames(celdaCGMod)

moduleHeatmap

57

moduleHeatmap

Heatmap for featureModules

Description

Renders a heatmap for selected featureModule. Cells are ordered from those with the lowest
probability of the module on the left to the highest probability on the right. Features are ordered
from those with the highest probability in the module on the top to the lowest probability on the
bottom.

Usage

moduleHeatmap(

)

S4 method for signature

X,

useAssay = "counts”,
altExpName = "featureSubset”,
modules = NULL,

featureModule = NULL,

col = circlize::colorRamp2(c(-2,
topCells = 100,

topFeatures = NULL,
normalizedCounts = NA,
normalize = "proportion”,
transformationFun = sqgrt,
scaleRow = scale,
showFeatureNames = TRUE,
displayName = NULL,

trim = c(-2, 2),

rowFontSize = NULL,
showHeatmapLegend = FALSE,
showTopAnnotationLegend = FALSE,
showTopAnnotationName = FALSE,
topAnnotationHeight = 5,
showModulelLabel = TRUE,
modulelLabel = "auto”,
modulelLabelSize = NULL,

byrow = TRUE,

top = NA,

unit = "mm",

ncol = NULL,

useRaster = TRUE,

returnAsList = FALSE,

moduleHeatmap(

0, 2), c("#1E9QFF", "#FFFFFF", "#CD2626")),

'SingleCellExperiment'’

58

X’

moduleHeatmap

useAssay = "counts”,

altExpName = "featureSubset”,

modules = NULL,

featureModule = NULL,

col = circlize::colorRamp2(c(-2, @, 2), c("#1E90QFF", "#FFFFFF", "#CD2626")),
topCells = 100,

topFeatures

NULL,

normalizedCounts = NA,

normalize =

"proportion”,

transformationFun = sqrt,
scaleRow = scale,
showFeatureNames = TRUE,

displayName

NULL,

trim = c(-2, 2),

rowFontSize

NULL,

showHeatmapLegend = FALSE,
showTopAnnotationLegend = FALSE,
showTopAnnotationName = FALSE,
topAnnotationHeight = 5,
showModulelLabel = TRUE,
modulelabel = "auto",
modulelabelSize = NULL,

byrow = TRUE,

top = NA,

n n

unit = "mm

ncol = NULL,

useRaster =

TRUE,

returnAsList = FALSE,

Arguments

X

useAssay

altExpName
modules

featureModule
col
topCells

A numeric matrix of counts or a SingleCellExperiment with the matrix located in
the assay slot under useAssay. Rows represent features and columns represent
cells. Celda results must be present under metadata(altExp(x, altExpName)).
A string specifying which assay slot to use if x is a SingleCellExperiment object.
Default "counts".

The name for the altExp slot to use. Default "featureSubset".

Integer Vector. The featureModule(s) to display. Multiple modules can be in-
cluded in a vector. Default NULL which plots all module heatmaps.

Same as modules. Either can be used to specify the modules to display.

Passed to Heatmap. Set color boundaries and colors.

Integer. Number of cells with the highest and lowest probabilities for each mod-
ule to include in the heatmap. For example, if topCells = 50, the 50 cells with

the lowest probabilities and the 50 cells with the highest probabilities for each
featureModule will be included. If NULL, all cells will be plotted. Default 100.

moduleHeatmap 59

topFeatures Integer. Plot ‘topFeatures® features with the highest probabilities in the mod-
ule heatmap for each featureModule. If NULL, plot all features in the module.
Default NULL.

normalizedCounts

Integer matrix. Rows represent features and columns represent cells. If you
have a normalized matrix result from normalizeCounts, you can pass through
the result here to skip the normalization step in this function. Make sure the col-
names and rownames match the object in x. This matrix should correspond
to one generated from this count matrix assay(altExp(x, altExpName), i

= useAssay). If NA, normalization will be carried out in the following form
normalizeCounts(assay(altExp(x, altExpName), i = useAssay),normalize
="proportion”, transformationFun =sqrt). Use of this parameter is par-
ticularly useful for plotting many module heatmaps, where normalizing the counts
matrix repeatedly would be too time consuming. Default NA.

normalize Character. Passed to normalizeCounts if normalizedCounts is NA. Divides
counts by the library sizes for each cell. One of ’proportion’, ’cpm’, *median’,
or ‘'mean’. ’proportion’ uses the total counts for each cell as the library size.
’cpm’ divides the library size of each cell by one million to produce counts per
million. ’'median’ divides the library size of each cell by the median library size
across all cells. “mean’ divides the library size of each cell by the mean library
size across all cells. Default "proportion".

transformationFun
Function. Passed to normalizeCounts if normalizedCounts is NA. Applies a
transformation such as sqrt, log, log2, log10, or loglp. If NULL, no transforma-
tion will be applied. Occurs after normalization. Default sqrt.

scaleRow Function. Which function to use to scale each individual row. Set to NULL to
disable. Occurs after normalization and log transformation. For example, scale
will Z-score transform each row. Default scale.

showFeatureNames
Logical. Whether feature names should be displayed. Default TRUE.

displayName Character. The column name of rowData(altExp(x, altExpName)) that spec-
ifies the display names for the features. Default NULL, which displays the row
names. Only works if showFeaturenames is TRUE and x is a SingleCellExperi-
ment object.

trim Numeric vector. Vector of length two that specifies the lower and upper bounds
for plotting the data. This threshold is applied after row scaling. Set to NULL
to disable. Default c(-2,2).

rowFontSize Numeric. Font size for feature names. If NULL, then the size will automatically
be determined. Default NULL.
showHeatmapLegend

Passed to Heatmap. Show legend for expression levels.

showTopAnnotationLegend
Passed to HeatmapAnnotation. Show legend for cell annotation.

showTopAnnotationName
Passed to HeatmapAnnotation. Show heatmap top annotation name.

60

nonzero

topAnnotationHeight
Passed to HeatmapAnnotation. Column annotation height. rowAnnotation.
Show legend for module annotation.

showModulel abel
Show left side module labels.

modulelLabel The left side row titles for module heatmap. Must be vector of the same length
as featureModule. Default "auto", which automatically pulls module labels
from x.

modulelLabelSize

Passed to gpar. The size of text (in points).

byrow Passed to matrix. logical. If FALSE (the default) the figure panel is filled by
columns, otherwise the figure panel is filled by rows.

top Passed to marrangeGrob. The title for each page.

unit Passed to unit. Single character object defining the unit of all dimensions de-
fined.

ncol Integer. Number of columns of module heatmaps. If NULL, then this will be

automatically calculated so that the number of columns and rows will be ap-
proximately the same. Default NULL.

useRaster Boolean. Rasterizing will make the heatmap a single object and reduced the
memory of the plot and the size of a file. If NULL, then rasterization will be
automatically determined by the underlying Heatmap function. Default TRUE.

returnAsList Boolean. If TRUE, then a list of plots will be returned instead of a single multi-
panel figure. These plots can be displayed using the grid.draw function. Default
FALSE.

Additional parameters passed to Heatmap.

Value

A list object if plotting more than one module heatmaps. Otherwise a HeatmapList object is re-
turned.

Examples
data(sceCeldaCG)
moduleHeatmap(sceCeldaCG, displayName = "rownames")
nonzero get row and column indices of none zero elements in the matrix
Description

get row and column indices of none zero elements in the matrix

Usage

nonzero(R_counts)

normalizeCounts

Arguments

R_counts

Value

61

A matrix

An integer matrix where each row is a row, column indices pair

normalizeCounts

Normalization of count data

Description

Performs normalization, transformation, and/or scaling of a counts matrix

Usage

normalizeCounts(

counts,
normalize

scaleFactor

c("proportion”, "cpm"”, "median"”, "mean"),

NULL,

transformationFun = NULL,

scaleFun = NULL,
pseudocountNormalize
pseudocountTransform

0,
0

Arguments

counts

normalize

scaleFactor

Integer, Numeric or Sparse matrix. Rows represent features and columns repre-
sent cells.

Character. Divides counts by the library sizes for each cell. One of *proportion’,
’cpm’, 'median’, or “'mean’. ’proportion’ uses the total counts for each cell as
the library size. ’cpm’ divides the library size of each cell by one million to
produce counts per million. median’ divides the library size of each cell by the
median library size across all cells. 'mean’ divides the library size of each cell
by the mean library size across all cells.

Numeric. Sets the scale factor for cell-level normalization. This scale factor is
multiplied to each cell after the library size of each cell had been adjusted in
normalize. Default NULL which means no scale factor is applied.

transformationFun

scaleFun

Function. Applys a transformation such as sqrt, log, log2, logl0, or loglp. If
NULL, no transformation will be applied. Occurs after normalization. Default
NULL.

Function. Scales the rows of the normalized and transformed count matrix. For
example, ’scale’ can be used to z-score normalize the rows. Default NULL.

62 params

pseudocountNormalize

Numeric. Add a pseudocount to counts before normalization. Default 0.
pseudocountTransform

Numeric. Add a pseudocount to normalized counts before applying the trans-

formation function. Adding a pseudocount can be useful before applying a log
transformation. Default 0.

Value

Numeric Matrix. A normalized matrix.

Examples

data(celdaCGSim)
normalizedCounts <- normalizeCounts(celdaCGSim$counts, "proportion”,
pseudocountNormalize = 1)

params Get parameter values provided for celdaModel creation

Description

Retrieves the K/L, model priors (e.g. alpha, beta), and count matrix checksum parameters provided
during the creation of the provided celdaModel.

Usage

params (celdaMod)

S4 method for signature 'celdaModel'’

params(celdaMod)
Arguments

celdaMod celdaModel. Options available in celda: :availableModels.
Value

List. Contains the model-specific parameters for the provided celda model object depending on its
class.

Examples

data(celdaCGMod)
params (celdaCGMod)

perplexity 63

perplexity Calculate the perplexity of a celda model

Description

Perplexity is a statistical measure of how well a probability model can predict new data. Lower
perplexity indicates a better model.

Usage

perplexity(
X,
celdaMod,
useAssay = "counts”,
altExpName = "featureSubset”,
newCounts = NULL

)
S4 method for signature 'SingleCellExperiment,ANY'
perplexity(

X)

useAssay = "counts”,

altExpName = "featureSubset”,
newCounts = NULL

)

S4 method for signature 'ANY,celda_CG'
perplexity(x, celdaMod, newCounts = NULL)

S4 method for signature 'ANY,celda_C'
perplexity(x, celdaMod, newCounts = NULL)

S4 method for signature 'ANY,celda_G'
perplexity(x, celdaMod, newCounts = NULL)

Arguments
X Can be one of
* A SingleCellExperiment object returned by celda_C, celda_G or celda_CG,
with the matrix located in the useAssay assay slot. Rows represent features
and columns represent cells.
* Integer counts matrix. Rows represent features and columns represent cells.
This matrix should be the same as the one used to generate celdaMod.
celdaMod Celda model object. Only works if x is an integer counts matrix.
useAssay A string specifying which assay slot to use if x is a SingleCellExperiment object.

Default "counts".

64 plotCeldaViolin

altExpName The name for the altExp slot to use. Default "featureSubset".

newCounts A new counts matrix used to calculate perplexity. If NULL, perplexity will be
calculated for the matrix in useAssay slot in x. Default NULL.

Value

Numeric. The perplexity for the provided x (and celdaModel).

Examples

data(sceCeldaCG)

perplexity <- perplexity(sceCeldaCG)

data(celdaCGSim, celdaCGMod)

perplexity <- perplexity(celdaCGSim$counts, celdaCGMod)
data(celdaCSim, celdaCMod)

perplexity <- perplexity(celdaCSim$counts, celdaCMod)
data(celdaGSim, celdaGMod)

perplexity <- perplexity(celdaGSim$counts, celdaGMod)

plotCeldaViolin Feature Expression Violin Plot

Description

Outputs a violin plot for feature expression data.

Usage

plotCeldaViolin(
X,
celdaMod,
features,
displayName = NULL,
useAssay = "counts”,
altExpName = "featureSubset”,
exactMatch = TRUE,
plotDots = TRUE,
dotSize = 0.1

S4 method for signature 'SingleCellExperiment
plotCeldaViolin(

X,

features,

displayName = NULL,

useAssay = "counts”,

altExpName = "featureSubset”,

exactMatch = TRUE,

plotCeldaViolin

65

plotDots = TRUE,

dotSize = 0.1
)

S4 method for signature 'ANY'
plotCeldaViolin(

X’
celdaMod,
features,

exactMatch = TRUE,
plotDots = TRUE,

dotSize = 0.1

Arguments

X

celdaMod
features
displayName

useAssay

altExpName

exactMatch

plotDots

dotSize

Value

Numeric matrix or a SingleCellExperiment object with the matrix located in
the assay slot under useAssay. Rows represent features and columns represent
cells.

Celda object of class "celda_G" or "celda_CG". Used only if x is a matrix object.
Character vector. Uses these genes for plotting.

Character. The column name of rowData(x) that specifies the display names
for the features. Default NULL, which displays the row names. Only works if x
is a SingleCellExperiment object.

A string specifying which assay slot to use if x is a SingleCellExperiment object.
Default "counts".

The name for the altExp slot to use. Default "featureSubset".

Logical. Whether an exact match or a partial match using grep() is used to look
up the feature in the rownames of the counts matrix. Default TRUE.

Boolean. If TRUE, the expression of features will be plotted as points in addition
to the violin curve. Default TRUE.

Numeric. Size of points if plotDots = TRUE. Default @. 1.

Violin plot for each feature, grouped by celda cluster

Examples

data(sceCeldaCG)
plotCeldaViolin(x
data(celdaCGSim,
plotCeldaViolin(x

= sceCeldaCG, features = "Gene_1")
celdaCGMod)
= celdaCGSim$counts,

celdaMod = celdaCGMod,

features = "Ge

ne_1")

66 plotDecontXContamination

plotDecontXContamination
Plots contamination on UMAP coordinates

Description

A scatter plot of the UMAP dimensions generated by DecontX with cells colored by the estimated
percentation of contamation.

Usage
plotDecontXContamination(
X ’
batch = NULL,
colorScale = c("blue”, "green”, "yellow”, "orange", "red"),
size = 1
)
Arguments
X Either a SingleCellExperiment with decontX results stored in metadata(x) $decontX
or the result from running decontX on a count matrix.
batch Character. Batch of cells to plot. If NULL, then the first batch in the list will be
selected. Default NULL.
colorScale Character vector. Contains the color spectrum to be passed to scale_colour_gradientn
from package ’ggplot2’. Default c("blue","green","yellow","orange","red").
size Numeric. Size of points in the scatterplot. Default 1.
Value

Returns a ggplot object.

Author(s)

Shiyi Yang, Joshua Campbell

See Also

See decontX for a full example of how to estimate and plot contamination.

plotDecontXMarkerExpression 67

plotDecontXMarkerExpression

Plots expression of marker genes before and after decontamination

Description

Generates a violin plot that shows the counts of marker genes in cells across specific clusters or cell
types. Can be used to view the expression of marker genes in different cell types before and after
decontamination with decontX.

Usage
plotDecontXMarkerExpression(
X}
markers,
groupClusters = NULL,
assayName = c("counts”, "decontXcounts"),
z = NULL,

exactMatch = TRUE,
by = "rownames”,
loglp = FALSE,

ncol = NULL,

plotDots = FALSE,

dotSize = 0.1

Arguments

X

markers

groupClusters

assayName

Either a SingleCellExperiment or a matrix-like object of counts.

Character Vector or List. A character vector or list of character vectors with the
names of the marker genes of interest.

List. A named list that allows cell clusters labels coded in z to be regrouped and
renamed on the fly. For example, 1ist(Tcells=c(1, 2), Bcells=7) would
recode clusters 1 and 2 to "Tcells" and cluster 7 to "Bcells". Note that if this is
used, clusters in z not found in groupClusters will be excluded. Default NULL.

Character vector. Name(s) of the assay(s) to plot if x is a SingleCellExperiment.
If more than one assay is listed, then side-by-side violin plots will be generated.
Default c("counts”, "decontXcounts"”).

Character, Integer, or Vector. Indicates the cluster labels for each cell. If x is a
SingleCellExperiment and z = NULL, then the cluster labels from decontX will
be retreived from the colData of x (i.e. colData(x)$decontX_clusters). If z
is a single character or integer, then that column will be retrived from colData
of x. (i.e. colData(x)[,z]). If x is a counts matrix, then z will need to be a
vector the same length as the number of columns in x that indicate the cluster to
which each cell belongs. Default NULL.

68 plotDecontXMarkerPercentage

exactMatch Boolean. Whether to only identify exact matches for the markers or to iden-
tify partial matches using grep. See retrieveFeatureIndex for more details.
Default TRUE.

by Character. Where to search for the markers if x is a SingleCellExperiment. See

retrieveFeatureIndex for more details. If x is a matrix, then this must be set
to "rownames”. Default "rownames”.

loglp Boolean. Whether to apply the function log1p to the data before plotting. This
function will add a pseudocount of 1 and then log transform the expression val-
ues. Default FALSE.

ncol Integer. Number of columns to make in the plot. Default NULL.
plotDots Boolean. If TRUE, the expression of features will be plotted as points in addition
to the violin curve. Default FALSE.
dotSize Numeric. Size of points if plotDots = TRUE. Default 0. 1.
Value

Returns a ggplot object.

Author(s)

Shiyi Yang, Joshua Campbell

See Also

See decontX for a full example of how to estimate and plot contamination.

plotDecontXMarkerPercentage
Plots percentage of cells cell types expressing markers

Description

Generates a barplot that shows the percentage of cells within clusters or cell types that have de-
tectable levels of given marker genes. Can be used to view the expression of marker genes in
different cell types before and after decontamination with decontX.

Usage
plotDecontXMarkerPercentage(
X7
markers,
groupClusters = NULL,
assayName = c("counts”, "decontXcounts"),
z = NULL,

threshold = 1,
exactMatch = TRUE,

plotDecontXMarkerPercentage 69

by = "rownames”,
ncol = round(sgrt(length(markers))),

labelBars =
labelSize =

Arguments

X

markers

groupClusters

assayName

threshold

exactMatch

by

ncol
labelBars
labelSize

Value

TRUE,

Either a SingleCellExperiment or a matrix-like object of counts.

List. A named list indicating the marker genes for each cell type of interest. Mul-

tiple markers can be supplied for each cell type. For example, 1ist(Tcell_Markers=c("CD3E",
"CD3D"),Bcell_Markers=c("CD79A", "CD79B", "MS4A1") would specify mark-

ers for human T-cells and B-cells. A cell will be considered "positive" for a cell

type if it has a count greater than threshold for at least one of the marker genes

in the list.

List. A named list that allows cell clusters labels coded in z to be regrouped and
renamed on the fly. For example, 1ist(Tcells=c(1, 2), Bcells=7) would
recode clusters 1 and 2 to "Tcells" and cluster 7 to "Bcells". Note that if this
is used, clusters in z not found in groupClusters will be excluded from the
barplot. Default NULL.

Character vector. Name(s) of the assay(s) to plot if x is a SingleCellExperiment.
If more than one assay is listed, then side-by-side barplots will be generated.
Default c("counts”, "decontXcounts"”).

Character, Integer, or Vector. Indicates the cluster labels for each cell. If x is a
SingleCellExperiment and z = NULL, then the cluster labels from decontX will
be retived from the colData of x (i.e. colData(x)$decontX_clusters). If z
is a single character or integer, then that column will be retrived from colData
of x. (i.e. colData(x)[,z]). If x is a counts matrix, then z will need to be a
vector the same length as the number of columns in x that indicate the cluster to
which each cell belongs. Default NULL.

Numeric. Markers greater than or equal to this value will be considered detected
in a cell. Default 1.

Boolean. Whether to only identify exact matches for the markers or to iden-
tify partial matches using grep. See retrieveFeatureIndex for more details.
Default TRUE.

Character. Where to search for the markers if x is a SingleCellExperiment. See
retrieveFeatureIndex for more details. If x is a matrix, then this must be set
to "rownames”.Default "rownames”.

Integer. Number of columns to make in the plot. Default round(sqrt(length(markers)).
Boolean. Whether to display percentages above each bar Default TRUE.
Numeric. Size of the percentage labels in the barplot. Default 3.

Returns a ggplot object.

70 plotDendro

Author(s)

Shiyi Yang, Joshua Campbell

See Also

See decontX for a full example of how to estimate and plot contamination.

plotDendro Plots dendrogram of findMarkersTree output

Description

Generates a dendrogram of the rules and performance (optional) of the decision tree generated by
findMarkersTree().

Usage

plotDendro(
tree,
classlLabel = NULL,
addSensPrec = FALSE,
maxFeaturePrint = 4,
leafSize = 10,
boxSize = 2,
boxColor = "black”

)
Arguments
tree List object. The output of findMarkersTree()
classlLabel A character value. The name of a specific label to draw the path and rules. If
NULL (default), the tree for all clusters is shown.
addSensPrec Logical. Print training sensitivities and precisions for each cluster below leaf
label? Default is FALSE.
maxFeaturePrint
Numeric value. Maximum number of markers to print at a given split. Default
is 4.
leafSize Numeric value. Size of text below each leaf. Default is 24.
boxSize Numeric value. Size of rule labels. Default is 7.
boxColor Character value. Color of rule labels. Default is black.
Value

A ggplot2 object

plotDimReduceCluster 71

Examples

Generate simulated single-cell dataset using celda
sce <- celda::simulateCells(”"celda_CG", K = 4, L = 10, G = 100)

Select top features
sce <- selectFeatures(sce)

Celda clustering into 5 clusters & 10 modules
sce <- celda_CG(sce, K=5, L=10, verbose=FALSE)

Get features matrix and cluster assignments
factorizedCounts <- factorizeMatrix(sce, type = "counts")
featureMatrix <- factorizedCounts$counts$cell

classes <- as.integer(celdaClusters(sce))

Generate Decision Tree
DecTree <- findMarkersTree(featureMatrix, classes)

Plot dendrogram
plotDendro(DecTree)

plotDimReduceCluster Plotting the cell labels on a dimension reduction plot

Description

Create a scatterplot for each row of a normalized gene expression matrix where x and y axis are
from a data dimension reduction tool. The cells are colored by "celda_cell_cluster" column in
colData(altExp(x, altExpName)) if x is a SingleCellExperiment object, or x if x is a integer
vector of cell cluster labels.

Usage
plotDimReduceCluster(
X,
reducedDimName,
altExpName = "featureSubset”,
dim1 = NULL,
dim2 = NULL,
size = 0.5,
xlab = NULL,
ylab = NULL,

specificClusters = NULL,
labelClusters = FALSE,
groupBy = NULL,
labelSize = 3.5

72

S4 method for signature 'SingleCellExperiment

plotDimReduceCluster

plotDimReduceCluster(

X7

reducedDimName,
altExpName = "featureSubset”,

diml = 1,
dim2 = 2,
size = 0.5,
xlab = NULL,
ylab = NULL,

specificClusters = NULL,

labelClusters

= FALSE,

groupBy = NULL,

labelSize =

)

3.5

S4 method for signature 'vector'
plotDimReduceCluster(

X7

dim1,

dim2,

size = 0.5,

xlab = "Dimension_1",
ylab = "Dimension_2",
specificClusters = NULL,
labelClusters = FALSE,
groupBy = NULL,

labelSize =

Arguments
X

reducedDimName

altExpName
diml

dim2

size

3.5

Integer vector of cell cluster labels or a SingleCellExperiment object containing
cluster labels for each cell in "celda_cell_cluster” column in colData(x).

The name of the dimension reduction slot in reducedDimNames(x) if x is a
SingleCellExperiment object. Ignored if both dim1 and dim2 are set.

The name for the altExp slot to use. Default "featureSubset".

Integer or numeric vector. If reducedDimName is supplied, then, this will be
used as an index to determine which dimension will be plotted on the x-axis.
If reducedDimName is not supplied, then this should be a vector which will be
plotted on the x-axis. Default 1.

Integer or numeric vector. If reducedDimName is supplied, then, this will be
used as an index to determine which dimension will be plotted on the y-axis.
If reducedDimName is not supplied, then this should be a vector which will be
plotted on the y-axis. Default 2.

Numeric. Sets size of point on plot. Default @. 5.

plotDimReduceFeature 73

xlab Character vector. Label for the x-axis. Default NULL.
ylab Character vector. Label for the y-axis. Default NULL.
specificClusters

Numeric vector. Only color cells in the specified clusters. All other cells will be
grey. If NULL, all clusters will be colored. Default NULL.

labelClusters Logical. Whether the cluster labels are plotted. Default FALSE.

groupBy Character vector. Contains sample labels for each cell. If NULL, all samples
will be plotted together. Default NULL.
labelSize Numeric. Sets size of label if labelClusters is TRUE. Default 3.5.
Value

The plot as a ggplot object

Examples

data(sceCeldaCG)

sce <- celdaTsne(sceCeldaCG)

plotDimReduceCluster(x = sce,
reducedDimName = "celda_tSNE",
specificClusters = c(1, 2, 3))

library(SingleCellExperiment)

data(sceCeldaCG, celdaCGMod)

sce <- celdaTsne(sceCeldaCG)

plotDimReduceCluster(x = celdaClusters(celdaCGMod)$z,
diml = reducedDim(altExp(sce), "celda_tSNE")[, 11,
dim2 = reducedDim(altExp(sce), "celda_tSNE")[, 2],
specificClusters = c(1, 2, 3))

plotDimReduceFeature Plotting feature expression on a dimension reduction plot

Description

Create a scatterplot for each row of a normalized gene expression matrix where x and y axis are
from a data dimension reduction tool. The cells are colored by expression of the specified feature.

Usage

plotDimReduceFeature(
X7
features,
reducedDimName = NULL,
displayName = NULL,
diml = NULL,
dim2 = NULL,
headers = NULL,

74

plotDimReduceFeature

useAssay = "counts”,
altExpName = "featureSubset”,
normalize = FALSE,

zscore = TRUE,

exactMatch = TRUE,

trim = c(-2, 2),

limits = c(-2, 2),

size = 0.5,

xlab = NULL,
ylab = NULL,
colorLow = "blue4”,

colorMid = "grey90”,
colorHigh = "firebrick1”,
midpoint = 0,
ncol = NULL,
decreasing = FALSE

)

S4 method for signature 'SingleCellExperiment'
plotDimReduceFeature(

X,

features,

reducedDimName = NULL,

displayName = NULL,

diml =1,

dim2 = 2,

headers = NULL,
useAssay = "counts”,

altExpName = "featureSubset”,
normalize = FALSE,

zscore = TRUE,

exactMatch = TRUE,

trim = c(-2, 2),

limits = c(-2, 2),

size = 0.5,

xlab = NULL,
ylab = NULL,
colorLow = "blue4”,

colorMid = "grey90”,
colorHigh = "firebrick1”,
midpoint = 0,
ncol = NULL,
decreasing = FALSE

)

S4 method for signature 'ANY'
plotDimReduceFeature(
X,

plotDimReduceFeature

features,
dim1,
dim2,
headers

75

NULL,

normalize = FALSE,

zscore =

TRUE,

exactMatch = TRUE,

trim =
limits =
size = 0.5,
xlab =
ylab =

c(-2, 2),
c(-2, 2),

"Dimension_1",
"Dimension_2",

colorLow = "blue4”,
colorMid = "grey90",
colorHigh = "firebrick1",

midpoint = 0,
ncol = NULL,

decreasing = FALSE

Arguments

X

features

reducedDimName

displayName

dim1l

dim2

headers

useAssay

altExpName

Numeric matrix or a SingleCellExperiment object with the matrix located in
the assay slot under useAssay. Rows represent features and columns represent
cells.

Character vector. Features in the rownames of counts to plot.

The name of the dimension reduction slot in reducedDimNames(x) if x is a
SingleCellExperiment object. If NULL, then both dim1 and dim2 need to be set.
Default NULL.

Character. The column name of rowData(x) that specifies the display names
for the features. Default NULL, which displays the row names. Only works if x
is a SingleCellExperiment object. Overwrites headers.

Integer or numeric vector. If reducedDimName is supplied, then, this will be
used as an index to determine which dimension will be plotted on the x-axis.
If reducedDimName is not supplied, then this should be a vector which will be
plotted on the x-axis. Default 1.

Integer or numeric vector. If reducedDimName is supplied, then, this will be
used as an index to determine which dimension will be plotted on the y-axis.
If reducedDimName is not supplied, then this should be a vector which will be
plotted on the y-axis. Default 2.

Character vector. If NULL, the corresponding rownames are used as labels. Oth-
erwise, these headers are used to label the features. Only works if displayName
is NULL and exactMatch is FALSE.

A string specifying which assay slot to use if x is a SingleCellExperiment object.
Default "counts".

The name for the altExp slot to use. Default "featureSubset".

76

normalize

zZscore

exactMatch

trim

limits

size
xlab

ylab

colorLow

colorMid

colorHigh

midpoint

ncol

decreasing

Value

plotDimReduceFeature

Logical. Whether to normalize the columns of ‘counts‘. Default FALSE.

Logical. Whether to scale each feature to have a mean 0 and standard deviation
of 1. Default TRUE.

Logical. Whether an exact match or a partial match using grep() is used to look
up the feature in the rownames of the counts matrix. Default TRUE.

Numeric vector. Vector of length two that specifies the lower and upper bounds
for the data. This threshold is applied after row scaling. Set to NULL to disable.
Default c(-1,1).

Passed to scale_colour_gradient2. The range of color scale.
Numeric. Sets size of point on plot. Default 1.

Character vector. Label for the x-axis. If reducedDimName is used, then this
will be set to the column name of the first dimension of that object. Default
"Dimension_1".

Character vector. Label for the y-axis. If reducedDimName is used, then this
will be set to the column name of the second dimension of that object. Default
"Dimension_2".

Character. A color available from ‘colors()‘. The color will be used to signify
the lowest values on the scale.

Character. A color available from ‘colors()‘. The color will be used to signify
the midpoint on the scale.

Character. A color available from ‘colors()‘. The color will be used to signify
the highest values on the scale.

Numeric. The value indicating the midpoint of the diverging color scheme. If
NULL, defaults to the mean with 10 percent of values trimmed. Default 0.

Integer. Passed to facet_wrap. Specify the number of columns for facet wrap.

logical. Specifies the order of plotting the points. If FALSE, the points will be
plotted in increasing order where the points with largest values will be on top.
TRUE otherwise. If NULL, no sorting is performed. Points will be plotted in their
current order in x. Default FALSE.

The plot as a ggplot object

Examples

data(sceCeldaCG)

sce <- celdaTsne(sceCeldaCG)
plotDimReduceFeature(x = sce,

reducedDimName

= "celda_tSNE",

normalize = TRUE,

features = c("Gene_98", "Gene_99"),

exactMatch = TRUE)
library(SingleCellExperiment)

data(sceCeldaCG)

sce <- celdaTsne(sceCeldaCG)

plotDimReduceGrid

plotDimReduceFeature(x = counts(sce),
diml = reducedDim(altExp(sce), "celda_tSNE")[, 11,
dim2 = reducedDim(altExp(sce), "celda_tSNE")[, 2],

normalize = TRUE,

features = c("Gene_98", "Gene_99"),

exactMatch = TRUE)

77

plotDimReduceGrid

Mapping the dimension reduction plot

Description

Creates a scatterplot given two dimensions from a data dimension reduction tool (e.g tSNE) output.

Usage

plotDimReduceGrid(

)

S4 method for signature 'SingleCellExperiment’

X!

reducedDimName,

diml = NULL,

dim2 = NULL,
useAssay = "counts”,

altExpName = "featureSubset”,

size = 1,

xlab = "Dimension_1",
ylab = "Dimension_2",
limits = c(-2, 2),
colorLow = "blue4”,
colorMid = "grey90”,
colorHigh = "firebrick1",

midpoint = 0,
varLabel = NULL,
ncol = NULL,

headers = NULL,
decreasing = FALSE

plotDimReduceGrid(

X,

reducedDimName,

diml = NULL,

dim2 = NULL,
useAssay = "counts”,

altExpName = "featureSubset”,

size = 1,
xlab = "Dimension_1",

plotDimReduceGrid

78
ylab = "Dimension_2",
limits = c(-2, 2),
colorLow = "blue4”,

colorMid = "grey90",
colorHigh = "firebrick1",
midpoint = 0,

varLabel = NULL,

ncol = NULL,

headers = NULL,
decreasing = FALSE

)
S4 method for signature 'ANY'
plotDimReduceGrid(
X,
dim1,
dim2,
size = 1,
xlab = "Dimension_1",
ylab = "Dimension_2",
limits = c(-2, 2),
colorLow = "blue4”,

colorMid = "grey90”,
colorHigh = "firebrick1”,

midpoint = 0,

varLabel = NULL,

ncol = NULL,

headers = NULL,
decreasing = FALSE

Arguments

X

reducedDimName

diml
dim2

useAssay

altExpName
size
xlab
ylab

Numeric matrix or a SingleCellExperiment object with the matrix located in the
assay slot under useAssay. Each row of the matrix will be plotted as a separate
facet.

The name of the dimension reduction slot in reducedDimNames(x) if x is a
SingleCellExperiment object. Ignored if both dim1 and dim2 are set.

Numeric vector. Second dimension from data dimension reduction output.
Numeric vector. Second dimension from data dimension reduction output.

A string specifying which assay slot to use if x is a SingleCellExperiment object.
Default "counts".

The name for the altExp slot to use. Default "featureSubset".
Numeric. Sets size of point on plot. Default 1.
Character vector. Label for the x-axis. Default ’Dimension_1".

Character vector. Label for the y-axis. Default ’Dimension_2’.

plotDimReduceGrid

limits

colorLow

colorMid

colorHigh

midpoint

varlLabel
ncol

headers

decreasing

Value

79

Passed to scale_colour_gradient2. The range of color scale.

Character. A color available from ‘colors()‘. The color will be used to signify
the lowest values on the scale. Default "blue4".

Character. A color available from ‘colors()‘. The color will be used to signify
the midpoint on the scale. Default "grey90".

Character. A color available from ‘colors()‘. The color will be used to signify
the highest values on the scale. Default "firebrick1".

Numeric. The value indicating the midpoint of the diverging color scheme. If
NULL, defaults to the mean with 10 percent of values trimmed. Default 0.

Character vector. Title for the color legend.
Integer. Passed to facet_wrap. Specify the number of columns for facet wrap.

Character vector. If ‘NULL’, the corresponding rownames are used as labels.
Otherwise, these headers are used to label the genes.

logical. Specifies the order of plotting the points. If FALSE, the points will be
plotted in increasing order where the points with largest values will be on top.
TRUE otherwise. If NULL, no sorting is performed. Points will be plotted in their
current order in x. Default FALSE.

The plot as a ggplot object

Examples

data(sceCeldaCG)

sce <- celdaTsne(sceCeldaCG)
plotDimReduceGrid(x = sce,
reducedDimName = "celda_tSNE",
xlab = "Dimensionl”,
ylab = "Dimension2”,
varLabel = "tSNE")
library(SingleCellExperiment)

data(sceCeldaCG)

sce <- celdaTsne(sceCeldaCG)

plotDimReduceGrid(x = counts(sce),
diml = reducedDim(altExp(sce), "celda_tSNE")[, 117,
dim2 = reducedDim(altExp(sce), "celda_tSNE")[, 2],
xlab = "Dimension1”,
ylab = "Dimension2”,
varLabel = "tSNE")

80

plotDimReduceModule

plotDimReduceModule

Plotting Celda module probability on a dimension reduction plot

Description

Create a scatterplot for each row of a normalized gene expression matrix where x and y axis are
from a data dimension reduction tool. The cells are colored by the module probability.

Usage

plotDimReduceModule(

)

S4 method for signature 'SingleCellExperiment'’

X’
reducedDimName,
useAssay = "counts”,

altExpName = "featureSubset”,

celdaMod,

modules = NULL,

dim1 = NULL,

dim2 = NULL,

size = 0.5,

xlab = NULL,

ylab = NULL,

rescale = TRUE,
limits = c(0, 1),
colorLow = "grey90",
colorHigh = "firebrick1",
ncol = NULL,
decreasing = FALSE

plotDimReduceModule(

X’
reducedDimName,
useAssay = "counts”,

altExpName = "featureSubset”,

modules = NULL,

diml = 1,
dim2 = 2,
size = 0.5,
xlab = NULL,
ylab = NULL,

rescale = TRUE,

limits = c(0, 1),
colorLow = "grey90",
colorHigh = "firebrick1",
ncol = NULL,

plotDimReduceModule

decreasing = FALSE

)
S4 method for signature 'ANY'
plotDimReduceModule(
X,
celdaMod,
modules = NULL,
dim1,
dim2,
size = 0.5,
xlab = "Dimension_1",
ylab = "Dimension_2",

colorLow = "grey90”,
colorHigh = "firebrick1”,
ncol = NULL,
decreasing = FALSE
)
Arguments
X Numeric matrix or a SingleCellExperiment object with the matrix located in
the assay slot under useAssay. Rows represent features and columns represent
cells.
reducedDimName The name of the dimension reduction slot in reducedDimNames(x) if x is a
SingleCellExperiment object. Ignored if both dim1 and dim2 are set.
useAssay A string specifying which assay slot to use if x is a SingleCellExperiment object.
Default "counts".
altExpName The name for the altExp slot to use. Default "featureSubset".
celdaMod Celda object of class "celda_G" or "celda_CG". Used only if x is a matrix object.
modules Character vector. Module(s) from celda model to be plotted. e.g. c("1", "2").
dimi Integer or numeric vector. If reducedDimName is supplied, then, this will be
used as an index to determine which dimension will be plotted on the x-axis.
If reducedDimName is not supplied, then this should be a vector which will be
plotted on the x-axis. Default 1.
dim2 Integer or numeric vector. If reducedDimName is supplied, then, this will be
used as an index to determine which dimension will be plotted on the y-axis.
If reducedDimName is not supplied, then this should be a vector which will be
plotted on the y-axis. Default 2.
size Numeric. Sets size of point on plot. Default 0.5.
x1lab Character vector. Label for the x-axis. Default "Dimension_1".
ylab Character vector. Label for the y-axis. Default "Dimension_2".
rescale Logical. Whether rows of the matrix should be rescaled to [0, 1]. Default TRUE.

rescale = TRUE,
limits = c(0, 1),

81

82 plotGridSearchPerplexity

limits Passed to scale_colour_gradient. The range of color scale.

colorLow Character. A color available from ‘colors()‘. The color will be used to signify
the lowest values on the scale.

colorHigh Character. A color available from ‘colors()‘. The color will be used to signify
the highest values on the scale.

ncol Integer. Passed to facet_wrap. Specify the number of columns for facet wrap.

decreasing logical. Specifies the order of plotting the points. If FALSE, the points will be

plotted in increasing order where the points with largest values will be on top.
TRUE otherwise. If NULL, no sorting is performed. Points will be plotted in their
current order in x. Default FALSE.

Value

The plot as a ggplot object

Examples

data(sceCeldaCG)
sce <- celdaTsne(sceCeldaCG)
plotDimReduceModule(x = sce,
reducedDimName = "celda_tSNE",
modules = c("1", "2"))
library(SingleCellExperiment)
data(sceCeldaCG, celdaCGMod)
sce <- celdaTsne(sceCeldaCG)
plotDimReduceModule(x = counts(sce),
diml = reducedDim(altExp(sce), "celda_tSNE")[, 1],
dim2 = reducedDim(altExp(sce), "celda_tSNE")[, 21,
celdaMod = celdaCGMod,
modules = c("1", "2"))

plotGridSearchPerplexity
Visualize perplexity of a list of celda models

Description

Visualize perplexity of every model in a celdaList, by unique K/L combinations

Usage
plotGridSearchPerplexity(x, altExpName = "featureSubset”, sep = 5, alpha = 0.5)
S4 method for signature 'SingleCellExperiment’
plotGridSearchPerplexity(x, altExpName = "featureSubset”, sep = 5, alpha = 0.5)

S4 method for signature 'celdalist'
plotGridSearchPerplexity(x, sep = 5, alpha = 0.5)

plotHeatmap 83

Arguments
X Can be one of
* A SingleCellExperiment object returned from celdaGridSearch, recursiveSplitModule,
or recursiveSplitCell. Must contain a list named "celda_grid_search”
in metadata(x).
* celdaList object.
altExpName The name for the altExp slot to use. Default "featureSubset". Only works if x is
a SingleCellExperiment object.
sep Numeric. Breaks in the x axis of the resulting plot.
alpha Numeric. Passed to geom_jitter. Opacity of the points. Values of alpha range
from O to 1, with lower values corresponding to more transparent colors.
Value

A ggplot plot object showing perplexity as a function of clustering parameters.

Examples

data(sceCeldaCGGridSearch)
sce <- resamplePerplexity(sceCeldaCGGridSearch)
plotGridSearchPerplexity(sce)
data(celdaCGSim, celdaCGGridSearchRes)
Run various combinations of parameters with 'celdaGridSearch'
celdaCGGridSearchRes <- resamplePerplexity(

celdaCGSim$counts,

celdaCGGridSearchRes)
plotGridSearchPerplexity(celdaCGGridSearchRes)

plotHeatmap Plots heatmap based on Celda model

Description

Renders a heatmap based on a matrix of counts where rows are features and columns are cells.

Usage

plotHeatmap(
counts,
z = NULL,
y = NULL,
scaleRow = scale,
trim = c(-2, 2),
featureIx = NULL,
cellIx = NULL,
clusterFeature = TRUE,

84

clusterCell
colorScheme =

plotHeatmap

TRUE,
c("divergent”, "sequential”),

colorSchemeSymmetric = TRUE,
colorSchemeCenter = 0,

col = NULL,

annotationCell = NULL,
annotationFeature = NULL,
annotationColor = NULL,

breaks = NULL
legend = TRUE

’

’

annotationLegend = TRUE,
annotationNamesFeature = TRUE,
annotationNamesCell = TRUE,
showNamesFeature = FALSE,

showNamesCell
rowGroupOrder
colGroupOrder

= FALSE,
= NULL,
= NULL,

hclustMethod = "ward.D2",

treeheightFeature = ifelse(clusterFeature, 50, 0),
treeheightCell = ifelse(clusterCell, 50, 0),
silent = FALSE,

Arguments

counts

z

y
scaleRow

trim

featurelx
cellIx

clusterFeature
clusterCell
colorScheme

Numeric or sparse matrix. Normalized counts matrix where rows represent fea-
tures and columns represent cells. .

Numeric vector. Denotes cell population labels.
Numeric vector. Denotes feature module labels.
Function. A function to scale each individual row. Set to NULL to disable.

Occurs after normalization and log transformation. Defualt is ’scale’ and thus
will Z-score transform each row.

Numeric vector. Vector of length two that specifies the lower and upper bounds
for the data. This threshold is applied after row scaling. Set to NULL to disable.
Default c(-2,2).

Integer vector. Select features for display in heatmap. If NULL, no subsetting
will be performed. Default NULL.

Integer vector. Select cells for display in heatmap. If NULL, no subsetting will
be performed. Default NULL.

Logical. Determines whether rows should be clustered. Default TRUE.
Logical. Determines whether columns should be clustered. Default TRUE.
Character. One of "divergent” or "sequential”. A "divergent" scheme is best
for highlighting relative data (denoted by ’colorSchemeCenter’) such as gene
expression data that has been normalized and centered. A "sequential" scheme

is best for highlighting data that are ordered low to high such as raw counts or
probabilities. Default "divergent".

plotHeatmap 85

colorSchemeSymmetric
Logical. When the colorScheme is "divergent" and the data contains both pos-
itive and negative numbers, TRUE indicates that the color scheme should be
symmetric from [-max(abs(data)), max(abs(data))]. For example, if the
data ranges goes from -1.5 to 2, then setting this to TRUE will force the color
scheme to range from -2 to 2. Default TRUE.

colorSchemeCenter
Numeric. Indicates the center of a "divergent" colorScheme. Default 0.

col Color for the heatmap.

annotationCell Data frame. Additional annotations for each cell will be shown in the column
color bars. The format of the data frame should be one row for each cell and one
column for each annotation. Numeric variables will be displayed as continuous
color bars and factors will be displayed as discrete color bars. Default NULL.

annotationFeature
A data frame for the feature annotations (rows).

annotationColor
List. Contains color scheme for all annotations. See ‘?pheatmap‘ for more
details.

breaks Numeric vector. A sequence of numbers that covers the range of values in the

normalized ‘counts‘. Values in the normalized ‘matrix‘ are assigned to each bin

in ‘breaks‘. Each break is assigned to a unique color from ‘col‘. If NULL, then

breaks are calculated automatically. Default NULL.
legend Logical. Determines whether legend should be drawn. Default TRUE.
annotationlLegend

Logical. Whether legend for all annotations should be drawn. Default TRUE.
annotationNamesFeature

Logical. Whether the names for features should be shown. Default TRUE.
annotationNamesCell

Logical. Whether the names for cells should be shown. Default TRUE.
showNamesFeature

Logical. Specifies if feature names should be shown. Default TRUE.

showNamesCell Logical. Specifies if cell names should be shown. Default FALSE.

rowGroupOrder Vector. Specifies the order of feature clusters when semisupervised clustering is
performed on the y labels.

colGroupOrder Vector. Specifies the order of cell clusters when semisupervised clustering is
performed on the z labels.

hclustMethod Character. Specifies the method to use for the ’hclust’ function. See ‘?hclust*
for possible values. Default "ward.D2".

treeheightFeature
Numeric. Width of the feature dendrogram. Set to O to disable plotting of this
dendrogram. Default: if clusterFeature == TRUE, then treeheightFeature = 50,
else treeheightFeature = 0.

treeheightCell Numeric. Height of the cell dendrogram. Set to O to disable plotting of this
dendrogram. Default: if clusterCell == TRUE, then treeheightCell = 50, else
treeheightCell = 0.

86 plotMarkerHeatmap

silent Logical. Whether to plot the heatmap.

Other arguments to be passed to underlying pheatmap function.

Value

list A list containing dendrogram information and the heatmap grob

Examples

data(celdaCGSim, celdaCGMod)
plotHeatmap(celdaCGSim$counts,

z = celdaClusters(celdaCGMod)$z, y = celdaClusters(celdaCGMod)$y
)

plotMarkerHeatmap Generate heatmap for a marker decision tree

Description

Creates heatmap for a specified branch point in a marker tree.

Usage

plotMarkerHeatmap(
tree,
counts,
branchPoint,
featurelLabels,
topFeatures = 10,
silent = FALSE

)
Arguments
tree A decision tree from CELDA’s findMarkersTree function.
counts Numeric matrix. Gene-by-cell counts matrix.
branchPoint Character. Name of branch point to plot heatmap for. Name should match those

in tree$branchPoints.

featureLabels List of feature cluster assignments. Length should be equal to number of rows
in counts matrix, and formatting should match that used in findMarkersTree().
Required when using clusters of features and not previously provided to find-
MarkersTree()

topFeatures Integer. Number of genes to plot per marker module. Genes are sorted based on
their AUC for their respective cluster. Default is 10.

silent Logical. Whether to avoid plotting heatmap to screen. Default is FALSE.

plotRPC

Value

87

A heatmap visualizing the counts matrix for the cells and genes at the specified branch point.

Examples

sce <- celda::simulateCells("celda_CG", K =4, L = 10, G = 100)

Select top features
sce <- selectFeatures(sce)

Celda clustering into 5 clusters & 10 modules
sce <- celda_CG(sce, K=5, L=10, verbose=FALSE)

Get features matrix and cluster assignments
factorizedCounts <- factorizeMatrix(sce, type = "counts")
featureMatrix <- factorizedCounts$counts$cell

classes <- as.integer(celdaClusters(sce))

Generate Decision Tree
DecTree <- findMarkersTree(featureMatrix, classes)

Plot example heatmap
plotMarkerHeatmap(DecTree, featureMatrix, branchPoint = "top_level”,

featurelLabels

rownames(featureMatrix))

plotRPC

Visualize perplexity differences of a list of celda models

Description

Visualize perplexity differences of every model in a celdaList, by unique K/L combinations.

Usage

plotRPC(x, altExpName = "featureSubset”, sep = 5, alpha = 0.5)
S4 method for signature 'SingleCellExperiment'’
plotRPC(x, altExpName = "featureSubset”, sep = 5, alpha = 0.5)

S4 method for signature 'celdalist'
plotRPC(x, sep = 5, alpha = 0.5)

Arguments

X

Can be one of

* A SingleCellExperiment object returned from celdaGridSearch, recursiveSplitModule,
orrecursiveSplitCell. Must contain a list named "celda_grid_search”
in metadata(x).

88 recodeClusterY

* celdaList object.

altExpName The name for the altExp slot to use. Default "featureSubset".
sep Numeric. Breaks in the x axis of the resulting plot.
alpha Numeric. Passed to geom_jitter. Opacity of the points. Values of alpha range

from O to 1, with lower values corresponding to more transparent colors.

Value

A ggplot plot object showing perplexity differences as a function of clustering parameters.

Examples

data(sceCeldaCGGridSearch)
sce <- resamplePerplexity(sceCeldaCGGridSearch)
plotRPC(sce)
data(celdaCGSim, celdaCGGridSearchRes)
Run various combinations of parameters with 'celdaGridSearch'
celdaCGGridSearchRes <- resamplePerplexity(
celdaCGSim$counts,
celdaCGGridSearchRes)
plotRPC(celdaCGGridSearchRes)

recodeClusterY Recode feature module labels

Description

Recode feature module clusters using a mapping in the from and to arguments.

Usage
recodeClusterY(sce, from, to, altExpName = "featureSubset")
Arguments
sce SingleCellExperiment object returned from celda_G or celda_CG. Must contain
column celda_feature_module in rowData(altExp(sce, altExpName)).
from Numeric vector. Unique values in the range of seq(celdaModules(sce)) that
correspond to the original module labels in sce.
to Numeric vector. Unique values in the range of seq(celdaModules(sce)) that
correspond to the new module labels.
altExpName The name for the altExp slot to use. Default "featureSubset".
Value

@return SingleCellExperiment object with recoded feature module labels.

recodeClusterZ 89

Examples

data(sceCeldaCG)
sceReorderedY <- recodeClusterY(sceCeldaCG, c(1, 3), c(3, 1))

recodeClusterZ Recode cell cluster labels

Description

Recode cell subpopulaton clusters using a mapping in the from and to arguments.

Usage
recodeClusterZ(sce, from, to, altExpName = "featureSubset")
Arguments
sce SingleCellExperiment object returned from celda_C or celda_CG. Must contain
column celda_cell_cluster in colData(altExp(sce, altExpName)).
from Numeric vector. Unique values in the range of seq(max(as. integer(celdaClusters(sce,
altExpName = altExpName)))) that correspond to the original cluster labels in
sce.
to Numeric vector. Unique values in the range of seq(max(as.integer(celdaClusters(sce,
altExpName = altExpName)))) that correspond to the new cluster labels.
altExpName The name for the altExp slot to use. Default "featureSubset".
Value

SingleCellExperiment object with recoded cell cluster labels.

Examples

data(sceCeldaCG)
sceReorderedZ <- recodeClusterZ(sceCeldaCG, c(1, 3), c(3, 1))

90

recursiveSplitCell

recursiveSplitCell Recursive cell splitting

Description

Uses the celda_C model to cluster cells into population for range of possible K’s. The cell popu-
lation labels of the previous "K-1" model are used as the initial values in the current model with
K cell populations. The best split of an existing cell population is found to create the K-th cluster.
This procedure is much faster than randomly initializing each model with a different K. If module
labels for each feature are given in ’yInit’, the celda_CG model will be used to split cell populations
based on those modules instead of individual features. Module labels will also be updated during
sampling and thus may end up slightly different than yInit.

Usage
recursiveSplitCell(
X’
useAssay = "counts”,

)

altExpName = "featureSubset”,
samplelLabel = NULL,

initialK = 5,
maxK = 25,
tempL = NULL,
yInit = NULL,
alpha = 1,
beta = 1,
delta =1,
gamma = 1,
minCell = 3,
reorder = TRUE,
seed = 12345,

perplexity = TRUE,
doResampling = FALSE,
numResample = 5,
logfile = NULL,
verbose = TRUE

S4 method for signature 'SingleCellExperiment'’
recursiveSplitCell(

X,

useAssay = "counts”,
altExpName = "featureSubset”,
samplelLabel = NULL,

initialK = 5,

maxK = 25,

tempL = NULL,

recursiveSplitCell 91

yInit = NULL,
alpha = 1,

beta = 1,

delta = 1,
gamma = 1,
minCell = 3,
reorder = TRUE,
seed = 12345,

perplexity = TRUE,
doResampling = FALSE,
numResample = 5,
logfile = NULL,
verbose = TRUE

)

S4 method for signature 'matrix’
recursiveSplitCell(
X,
useAssay = "counts”,
altExpName = "featureSubset”,
samplelLabel = NULL,

initialK = 5,
maxK = 25,
tempL = NULL,
yInit = NULL,
alpha = 1,
beta = 1,
delta =1,
gamma = 1,
minCell = 3,
reorder = TRUE,
seed = 12345,

perplexity = TRUE,
doResampling = FALSE,
numResample = 5,
logfile = NULL,
verbose = TRUE

)
Arguments

X A numeric matrix of counts or a SingleCellExperiment with the matrix located in
the assay slot under useAssay. Rows represent features and columns represent
cells.

useAssay A string specifying the name of the assay slot to use. Default "counts".

altExpName The name for the altExp slot to use. Default "featureSubset".

samplelabel Vector or factor. Denotes the sample label for each cell (column) in the count

matrix.

92
initialK
maxK

tempL

yInit

alpha

beta

delta

gamma

minCell

reorder

seed

perplexity

doResampling

numResample

logfile

verbose

Value

recursiveSplitCell

Integer. Initial number of cell populations to try. Default 5.
Integer. Maximum number of cell populations to try. Default 25.

Integer. Number of temporary modules to identify and use in cell splitting.
Only used if yInit = NULL. Collapsing features to a relatively smaller number
of modules will increase the speed of clustering and tend to produce better cell
populations. This number should be larger than the number of true modules
expected in the dataset. Default NULL .

Integer vector. Module labels for features. Cells will be clustered using the
celda_CG model based on the modules specified in yInit rather than the counts
of individual features. While the features will be initialized to the module labels
in yInit, the labels will be allowed to move within each new model with a
different K.

Numeric. Concentration parameter for Theta. Adds a pseudocount to each cell
population in each sample. Default 1.

Numeric. Concentration parameter for Phi. Adds a pseudocount to each feature
in each cell (if yInit is NULL) or to each module in each cell population (if
yInit is set). Default 1.

Numeric. Concentration parameter for Psi. Adds a pseudocount to each feature
in each module. Only used if yInit is set. Default 1.

Numeric. Concentration parameter for Eta. Adds a pseudocount to the number
of features in each module. Only used if yInit is set. Default 1.

Integer. Only attempt to split cell populations with at least this many cells.

Logical. Whether to reorder cell populations using hierarchical clustering after
each model has been created. If FALSE, cell populations numbers will corre-
spond to the split which created the cell populations (i.e. K15’ was created at
split 15, ’K16’ was created at split 16, etc.). Default TRUE.

Integer. Passed to with_seed. For reproducibility, a default value of 12345 is
used. If NULL, no calls to with_seed are made.

Logical. Whether to calculate perplexity for each model. If FALSE, then per-
plexity can be calculated later with resamplePerplexity. Default TRUE.

Boolean. If TRUE, then each cell in the counts matrix will be resampled accord-
ing to a multinomial distribution to introduce noise before calculating perplexity.
Default FALSE.

Integer. The number of times to resample the counts matrix for evaluating per-
plexity if doResampling is set to TRUE. Default 5.

Character. Messages will be redirected to a file named "logfile". If NULL,
messages will be printed to stdout. Default NULL.

Logical. Whether to print log messages. Default TRUE.

A SingleCellExperiment object. Function parameter settings and celda model results are stored in
the metadata "celda_grid_search” slot. The models in the list will be of class celda_C if yInit
=NULL or celda_CGif zInit is set.

recursiveSplitModule 93

See Also

recursiveSplitModule for recursive splitting of feature modules.

Examples

data(sceCeldaCG)

Create models that range from K = 3 to K = 7 by recursively splitting

cell populations into two to produce \link{celda_C} cell clustering models
sce <- recursiveSplitCell(sceCeldaCG, initialK = 3, maxK = 7)

Alternatively, first identify features modules using

\link{recursiveSplitModule}

moduleSplit <- recursiveSplitModule(sceCeldaCG, initialL = 3, maxL = 15)
plotGridSearchPerplexity(moduleSplit)

moduleSplitSelect <- subsetCeldaList(moduleSplit, list(L = 10))

Then use module labels for initialization in \link{recursiveSplitCell} to
produce \link{celda_CG} bi-clustering models
cellSplit <- recursiveSplitCell(sceCeldaCgG,

initialK = 3, maxK = 7, yInit = celdaModules(moduleSplitSelect))
plotGridSearchPerplexity(cellSplit)
sce <- subsetCeldalList(cellSplit, list(K =5, L = 10))
data(celdaCGSim, celdaCSim)
Create models that range from K = 3 to K = 7 by recursively splitting
cell populations into two to produce \link{celda_C} cell clustering models
sce <- recursiveSplitCell(celdaCSim$counts, initialK = 3, maxK = 7)

Alternatively, first identify features modules using
\link{recursiveSplitModule}
moduleSplit <- recursiveSplitModule(celdaCGSim$counts,
initiallL = 3, maxL = 15)
plotGridSearchPerplexity(moduleSplit)
moduleSplitSelect <- subsetCeldaList(moduleSplit, list(L = 10))

Then use module labels for initialization in \link{recursiveSplitCell} to
produce \link{celda_CG} bi-clustering models
cellSplit <- recursiveSplitCell(celdaCGSim$counts,

initialK = 3, maxK = 7, yInit = celdaModules(moduleSplitSelect))
plotGridSearchPerplexity(cellSplit)
sce <- subsetCeldalList(cellSplit, list(K =5, L = 10))

recursiveSplitModule Recursive module splitting

Description

Uses the celda_G model to cluster features into modules for a range of possible L’s. The module
labels of the previous "L-1" model are used as the initial values in the current model with L modules.
The best split of an existing module is found to create the L-th module. This procedure is much
faster than randomly initializing each model with a different L.

94

Usage

recursiveSplitModule(
X’
useAssay = "counts”,

altExpName = "featureSubset”,

initiallL = 19,

maxL = 100,

tempK = 100,

zInit = NULL,
samplelLabel = NULL,
alpha = 1,

beta = 1,

delta = 1,

gamma = 1,

minFeature = 3,
reorder = TRUE,
seed = 12345,
perplexity = TRUE,
doResampling = FALSE,
numResample = 5,
verbose = TRUE,
logfile = NULL

)

S4 method for signature 'SingleCellExperiment'’

recursiveSplitModule(
X,
useAssay = "counts”,

altExpName = "featureSubset”,

initiallL = 10,

maxL = 100,

tempK = 100,

zInit = NULL,
samplelLabel = NULL,
alpha = 1,

beta = 1,

delta = 1,

gamma = 1,

minFeature = 3,
reorder = TRUE,

seed = 12345,
perplexity = TRUE,
doResampling = FALSE,
numResample = 5,
verbose = TRUE,
logfile = NULL

recursiveSplitModule

recursiveSplitModule

S4 method for signature 'matrix’
recursiveSplitModule(

X,

useAssay = "counts”,
altExpName = "featureSubset”,
initiallL = 10,

maxL = 100,

tempK = 100,

zInit = NULL,
samplelLabel = NULL,
alpha = 1,

beta = 1,

delta = 1,

gamma = 1,

minFeature = 3,
reorder = TRUE,
seed = 12345,

95

perplexity = TRUE,
doResampling = FALSE,

numResample
verbose =
logfile =

Arguments

X

useAssay
altExpName
initiall
maxL

tempK

zInit

samplelabel

alpha

5’

TRUE,
NULL

A numeric matrix of counts or a SingleCellExperiment with the matrix located in
the assay slot under useAssay. Rows represent features and columns represent
cells.

A string specifying which assay slot to use if x is a SingleCellExperiment object.
Default "counts".

The name for the altExp slot to use. Default "featureSubset".
Integer. Initial number of modules.
Integer. Maximum number of modules.

Integer. Number of temporary cell populations to identify and use in module
splitting. Only used if zInit = NULL Collapsing cells to a relatively smaller
number of cell popluations will increase the speed of module clustering and
tend to produce better modules. This number should be larger than the number
of true cell populations expected in the dataset. Default 100.

Integer vector. Collapse cells to cell populations based on labels in zInit and
then perform module splitting. If NULL, no collapsing will be performed unless
tempK is specified. Default NULL.

Vector or factor. Denotes the sample label for each cell (column) in the count
matrix. Default NULL.

Numeric. Concentration parameter for Theta. Adds a pseudocount to each cell
population in each sample. Only used if zInit is set. Default 1.

96

beta

delta

gamma

minFeature

reorder

seed

perplexity

doResampling

numResample

verbose

logfile

Value

recursiveSplitModule

Numeric. Concentration parameter for Phi. Adds a pseudocount to each feature
module in each cell. Default 1.

Numeric. Concentration parameter for Psi. Adds a pseudocount to each feature
in each module. Default 1.

Numeric. Concentration parameter for Eta. Adds a pseudocount to the number
of features in each module. Default 1.

Integer. Only attempt to split modules with at least this many features.

Logical. Whether to reorder modules using hierarchical clustering after each
model has been created. If FALSE, module numbers will correspond to the split
which created the module (i.e. ’L15” was created at split 15, ’L.16” was created
at split 16, etc.). Default TRUE.

Integer. Passed to with_seed. For reproducibility, a default value of 12345 is
used. If NULL, no calls to with_seed are made.

Logical. Whether to calculate perplexity for each model. If FALSE, then per-
plexity can be calculated later with resamplePerplexity. Default TRUE.

Boolean. If TRUE, then each cell in the counts matrix will be resampled accord-
ing to a multinomial distribution to introduce noise before calculating perplexity.
Default FALSE.

Integer. The number of times to resample the counts matrix for evaluating per-
plexity if doResampling is set to TRUE. Default 5.

Logical. Whether to print log messages. Default TRUE.

Character. Messages will be redirected to a file named "logfile". If NULL,
messages will be printed to stdout. Default NULL.

A SingleCellExperiment object. Function parameter settings and celda model results are stored in
the metadata "celda_grid_search” slot. The models in the list will be of class celda_G if zInit
= NULL or celda_CG if zInit is set.

See Also

recursiveSplitCell for recursive splitting of cell populations.

Examples

data(sceCeldaCG)

Create models that range from L=3 to L=20 by recursively splitting modules

into two

moduleSplit <- recursiveSplitModule(sceCeldaCG, initiallL = 3, maxL = 20)

Example results with perplexity
plotGridSearchPerplexity(moduleSplit)

Select model for downstream analysis

celdaMod <- subsetCeldalList(moduleSplit, list(L
data(celdaCGSim)

10))

reorderCelda 97

Create models that range from L=3 to L=20 by recursively splitting modules
into two
moduleSplit <- recursiveSplitModule(celdaCGSim$counts,

initiallL = 3, maxL = 20)

Example results with perplexity
plotGridSearchPerplexity(moduleSplit)

Select model for downstream analysis
celdaMod <- subsetCeldalist(moduleSplit, list(L = 10))

reorderCelda Reorder cells populations and/or features modules using hierarchical
clustering

Description

Apply hierarchical clustering to reorder the cell populations and/or feature modules and group sim-
ilar ones together based on the cosine distance of the factorized matrix from factorizeMatrix.

Usage

reorderCelda(
X7
celdaMod,
useAssay = "counts”,
altExpName = "featureSubset”,
method = "complete”

)

S4 method for signature 'SingleCellExperiment, ANY'

reorderCelda(
X,
useAssay = "counts”,
altExpName = "featureSubset”,
method = "complete”

)

S4 method for signature 'matrix,celda_CG'
reorderCelda(x, celdaMod, method = "complete")

S4 method for signature 'matrix,celda_C'
reorderCelda(x, celdaMod, method = "complete”)

S4 method for signature 'matrix,celda_G'
reorderCelda(x, celdaMod, method = "complete")

98 reportceldaCG
Arguments
X Can be one of
* A SingleCellExperiment object returned by celda_C, celda_G or celda_CG,
with the matrix located in the useAssay assay slotin altExp(x, altExpName).
Rows represent features and columns represent cells.
* Integer count matrix. Rows represent features and columns represent cells.
This matrix should be the same as the one used to generate celdaMod.
celdaMod Celda model object. Only works if x is an integer counts matrix. Ignored if x is
a SingleCellExperiment object.
useAssay A string specifying which assay slot to use if x is a SingleCellExperiment object.
Default "counts".
altExpName The name for the altExp slot. Default "featureSubset".
method Passed to hclust. The agglomeration method to be used to be used. Default
"complete".
Value
A SingleCellExperiment object (or Celda model object) with updated cell cluster and/or feature
module labels.
Examples
data(sceCeldaCG)
reordersce <- reorderCelda(sceCeldaCG)
data(celdaCGSim, celdaCGMod)
reorderCeldaCG <- reorderCelda(celdaCGSim$counts, celdaCGMod)
data(celdaCSim, celdaCMod)
reorderCeldaC <- reorderCelda(celdaCSim$counts, celdaCMod)
data(celdaGSim, celdaGMod)
reorderCeldaG <- reorderCelda(celdaGSim$counts, celdaGMod)
reportceldaCG Generate an HTML report for celda_CG
Description

reportCeldaCGRun will run recursiveSplitModule and recursiveSplitCell to find the number of
modules (L) and the number of cell populations (K). A final celda_CG model will be selected from
recursiveSplitCell. After a celda_CG model has been fit, reportCeldaCGPlotResults can be used
to create an HTML report for visualization and exploration of the celda_CG model results. Some
of the plotting and feature selection functions require the installation of the Bioconductor package
singleCellTK.

reportceldaCG

Usage

99

reportCeldaCGRun(

sce,
L,
K,

samplelLabel = NULL,
altExpName = "featureSubset”,
useAssay = "counts”,

initiallL = 10,

maxL = 150,
initialK = 5,
maxK = 50,
minCell = 3,
minCount = 3,
maxFeatures = 5000,
output_file = "CeldaCG_RunReport”,
output_sce_prefix = "celda_cg”,
output_dir = ".",
pdf = FALSE,
showSession = TRUE
)
reportCeldaCGPlotResults(
sce,
reducedDimName,
features = NULL,
displayName = NULL,
altExpName = "featureSubset”,
useAssay = "counts”,
cellAnnot = NULL,

cellAnnotLabel = NULL,

exactMatch = TRUE,

moduleFilePrefix = "module_features”,
output_file = "CeldaCG_ResultReport”,

output_dir =
pdf = FALSE,

n o n

’

showSetup = TRUE,
showSession = TRUE

Arguments

sce

L
K
samplelabel

A SingleCellExperiment with the matrix located in the assay slot under useAssay.
Rows represent features and columns represent cells.

Integer. Final number of feature modules. See celda_CG for more information.
Integer. Final number of cell populations. See celda_CG for more information.

Vector or factor. Denotes the sample label for each cell (column) in the count
matrix.

100 reportceldaCG

altExpName The name for the altExp slot to use. Default "featureSubset”.

useAssay A string specifying which assay slot to use. Default "counts”.

initiall Integer. Minimum number of modules to try. See recursiveSplitModule for more
information. Defailt 10.

maxL Integer. Maximum number of modules to try. See recursiveSplitModule for
more information. Default 150.

initialK Integer. Initial number of cell populations to try.

maxK Integer. Maximum number of cell populations to try.

minCell Integer. Minimum number of cells required for feature selection. See selectFea-

tures for more information. Default 3.

minCount Integer. Minimum number of counts required for feature selection. See select-
Features for more information. Default 3.
maxFeatures Integer. Maximum number of features to include. If the number of features after
filtering for minCell and minCount are greater than maxFeature, then Seurat’s
VST function is used to select the top variable features. Default 5000.
output_file Character. Prefix of the html file. Default "CeldaCG_ResultReport”.
output_sce_prefix
Character. The sce object with celda_CG results will be saved to an .rds file
starting with this prefix. Default celda_cg.

output_dir Character. Path to save the html file. Default ..

pdf Boolean. Whether to create PDF versions of each plot in addition to PNGs.
Default FALSE.

showSession Boolean. Whether to show the session information at the end. Default TRUE.

reducedDimName Character. Name of the reduced dimensional object to be used in 2-D scatter
plots throughout the report. Default celda_UMAP.

features Character vector. Expression of these features will be displayed on a reduced
dimensional plot defined by reducedDimName. If NULL, then no plotting of fea-
tures on a reduced dimensinoal plot will be performed. Default NULL.

displayName Character. The name to use for display in scatter plots and heatmaps. If NULL,
then the rownames of the sce object will be used. This can also be set to the
name of a column in the row data of sce or altExp(sce, altExpName). Default
NULL.

cellAnnot Character vector. The cell-level annotations to display on the reduced dimen-
sional plot. These variables should be present in the column data of the sce
object. Default NULL.

cellAnnotLabel Character vector. Additional cell-level annotations to display on the reduced
dimensional plot. Variables will be treated as categorial and labels for each
group will be placed on the plot. These variables should be present in the column
data of the sce object. Default NULL.

exactMatch Boolean. Whether to only identify exact matches or to identify partial matches
using grep. Default FALSE.
moduleFilePrefix

Character. The features in each module will be written to a a csv file starting with
this name. If NULL, then no file will be written. Default "module_features”.

showSetup Boolean. Whether to show the setup code at the beginning. Default TRUE.

resamplePerplexity 101

Value

.html file

Examples

data(sceCeldaCG)

Not run:

library(SingleCellExperiment)

sceCeldaCG$sum <- colSums(counts(sceCeldaCG))

rowData(sceCeldaCG)$rownames <- rownames(sceCeldaCG)

sceCeldaCG <- reportCeldaCGRun(sceCeldaCgG,
initialL = 5, maxL = 20, initialK = 5,
maxk = 20, L = 10, K = 5)

reportCeldaCGPlotResults(sce = sceCeldaCgG,
reducedDimName = "celda_UMAP",
features = c("Gene_1", "Gene_100"),
displayName = "rownames”,
cellAnnot="sum")

End(Not run)

resamplePerplexity Calculate and visualize perplexity of all models in a celdaList

Description

Calculates the perplexity of each model’s cluster assignments given the provided countMatrix, as
well as resamplings of that count matrix, providing a distribution of perplexities and a better sense
of the quality of a given K/L choice.

Usage
resamplePerplexity(
X’
celdalist,
useAssay = "counts”,

altExpName = "featureSubset”,
doResampling = FALSE,
numResample = 5,

seed = 12345

S4 method for signature 'SingleCellExperiment'’
resamplePerplexity(

X,

useAssay = "counts”,

altExpName = "featureSubset”,

doResampling = FALSE,

102 resamplePerplexity

numResample = 5,
seed = 12345

S4 method for signature 'ANY'
resamplePerplexity(
X,
celdalList,
doResampling = FALSE,
numResample = 5,

seed = 12345
)
Arguments

X A numeric matrix of counts or a SingleCellExperiment returned from celdaGrid-
Search with the matrix located in the assay slot under useAssay. Rows represent
features and columns represent cells. Must contain "celda_grid_search" slot in
metadata(x) if x is a SingleCellExperiment object.

celdalist Object of class ’celdaList’. Used only if x is a matrix object.

useAssay A string specifying which assay slot to use if x is a SingleCellExperiment object.
Default "counts".

altExpName The name for the altExp slot to use. Default "featureSubset".

doResampling Boolean. If TRUE, then each cell in the counts matrix will be resampled accord-
ing to a multinomial distribution to introduce noise before calculating perplexity.
Default FALSE.

numResample Integer. The number of times to resample the counts matrix for evaluating per-
plexity if doResampling is set to TRUE. Default 5.

seed Integer. Passed to with_seed. For reproducibility, a default value of 12345 is
used. If NULL, no calls to with_seed are made.

Value

A SingleCellExperiment object or celdalList object with a perplexity property, detailing the
perplexity of all K/L combinations that appeared in the celdaList’s models.

Examples

data(sceCeldaCGGridSearch)
sce <- resamplePerplexity(sceCeldaCGGridSearch)
plotGridSearchPerplexity(sce)
data(celdaCGSim, celdaCGGridSearchRes)
celdaCGGridSearchRes <- resamplePerplexity(
celdaCGSim$counts,
celdaCGGridSearchRes
)
plotGridSearchPerplexity(celdaCGGridSearchRes)

resList 103

resList Get final celdaModels from a celda model SCE or celdaList object

Description

Returns all celda models generated during a celdaGridSearch run.

Usage

resList(x, altExpName = "featureSubset”)

S4 method for signature 'SingleCellExperiment'’
resList(x, altExpName = "featureSubset")

S4 method for signature 'celdalist'

resList(x)
Arguments
X An object of class SingleCellExperiment or celdalList.
altExpName The name for the altExp slot to use. Default "featureSubset".
Value

List. Contains one celdaModel object for each of the parameters specified in runParams(x).

Examples

data(sceCeldaCGGridSearch)

celdaCGGridModels <- reslList(sceCeldaCGGridSearch)
data(celdaCGGridSearchRes)

celdaCGGridModels <- reslList(celdaCGGridSearchRes)

retrieveFeatureIndex Retrieve row index for a set of features

Description

This will return indices of features among the rownames or rowData of a data.frame, matrix, or a

SummarizedExperiment object including a SingleCellExperiment. Partial matching (i.e. grepping)
can be used by setting exactMatch = FALSE.

104

Usage

retrieveFeatureIndex

retrieveFeatureIndex(

features,

X,

by = "rownames”,
exactMatch = TRUE,
removeNA = FALSE

Arguments

features

X

by

exactMatch

removeNA

Value

Character vector of feature names to find in the rows of x.
A data.frame, matrix, or SingleCellExperiment object to search.

Character. Where to search for features in x. If set to "rownames” then the
features will be searched for among rownames(x). If x inherits from class
SummarizedExperiment, then by can be one of the fields in the row annotation
data.frame (i.e. one of colnames(rowData(x))).

Boolean. Whether to only identify exact matches or to identify partial matches
using grep.

Boolean. If set to FALSE, features not found in x will be given NA and the returned
vector will be the same length as features. If set to TRUE, then the NA values
will be removed from the returned vector. Default FALSE.

A vector of row indices for the matching features in x.

Author(s)

Yusuke Koga, Joshua Campbell

See Also

‘retrieveFeatureInfo’ from package 'scater' and link{regex} for how to use regular expressions
when exactMatch = FALSE.

Examples
data(celdaCGSim)
retrieveFeatureIndex(c("Gene_1", "Gene_5"), celdaCGSim$counts)
retrieveFeatureIndex(c("Gene_1", "Gene_5"), celdaCGSim$counts,

exactMatch = FALSE)

runParams 105

runParams Get run parameters from a celda model SingleCellExperiment or
celdalist object

Description

Returns details on the clustering parameters and model priors from the celdaList object when it was
created.

Usage

runParams(x, altExpName = "featureSubset")

S4 method for signature 'SingleCellExperiment'’
runParams(x, altExpName = "featureSubset")

S4 method for signature 'celdalist'

runParams(x)
Arguments
X An object of class SingleCellExperiment or class celdalList.
altExpName The name for the altExp slot to use. Default "featureSubset".
Value

Data Frame. Contains details on the various K/L parameters, chain parameters, seed, and final
log-likelihoods derived for each model in the provided celdaL.ist.

Examples

data(sceCeldaCGGridSearch)
runParams (sceCeldaCGGridSearch)
data(celdaCGGridSearchRes)
runParams (celdaCGGridSearchRes)

sampleCells sampleCells

Description

A matrix of simulated gene counts.

Usage

sampleCells

106 sampleLabel

Format

A matrix of simulated gene counts with 10 rows (genes) and 10 columns (cells).

Details

A toy count matrix for use with celda.

Generated by Josh Campbell.

Source

http://github.com/campbio/celda

samplelabel Get or set sample labels from a celda SingleCellExperiment object

Description

Return or set the sample labels for the cells in sce.
Usage
sampleLabel (x, altExpName = "featureSubset")

S4 method for signature 'SingleCellExperiment'’
sampleLabel (x, altExpName = "featureSubset")

samplelLabel(x, altExpName = "featureSubset") <- value

S4 replacement method for signature 'SingleCellExperiment'
sampleLabel(x, altExpName = "featureSubset”) <- value

S4 method for signature 'celdaModel'

samplelLabel (x)
Arguments
X Can be one of
* A SingleCellExperiment object returned by celda_C, celda_G, or celda_CG,
with the matrix located in the useAssay assay slot. Rows represent features
and columns represent cells.
* A celda model object.
altExpName The name for the altExp slot to use. Default "featureSubset".
value Character vector of sample labels for replacements. Works only is x is a Single-

CellExperiment object.

http://github.com/campbio/celda

sceCeldaC 107

Value

Character vector. Contains the sample labels provided at model creation, or those automatically
generated by celda.

Examples

data(sceCeldaCG)
samplelLabel (sceCeldaCG)
data(celdaCGMod)
samplelLabel (celdaCGMod)

sceCeldaC sceCeldaC

Description

A SingleCellExperiment object containing the results of running selectFeatures and celda_C on
celdaCSim.

Usage
sceCeldaC

Format

A SingleCellExperiment object

Examples

data(celdaCSim)
sceCeldaC <- selectFeatures(celdaCSim$counts)
sceCeldaC <- celda_C(sceCeldaC,
K = celdaCSim$K,
sampleLabel = celdaCSim$samplelLabel,
nchains = 1)

sceCeldaCG sceCeldaCG

Description
A SingleCellExperiment object containing the results of running selectFeatures and celda_CG on
celdaCGSim.

Usage
sceCeldaCG

108 sceCeldaCGGridSearch

Format

A SingleCellExperiment object

Examples

data(celdaCGSim)
sceCeldaCG <- selectFeatures(celdaCGSim$counts)
sceCeldaCG <- celda_CG(sceCeldaCG,
K = celdaCGSim$K,
L = celdaCGSim$L,
sampleLabel = celdaCGSim$samplelLabel,
nchains = 1)

sceCeldaCGGridSearch sceCeldaCGGridSearch

Description

A SingleCellExperiment object containing the results of running selectFeatures and celdaGrid-
Search on celdaCGSim.

Usage

sceCeldaCGGridSearch

Format

A SingleCellExperiment object

Examples

data(celdaCGSim)
sce <- selectFeatures(celdaCGSim$counts)
sceCeldaCGGridSearch <- celdaGridSearch(sce,
model = "celda_CG",
paramsTest = list(K = seq(4, 6), L = seq(9, 11)),
paramsFixed = list(sampleLabel = celdaCGSim$samplelLabel),
bestOnly = TRUE,
nchains = 1,
cores = 1,

verbose = FALSE)

sceCeldaG 109

sceCeldaG sceCeldaG

Description

A SingleCellExperiment object containing the results of running selectFeatures and celda_G on
celdaGSim.

Usage

sceCeldaG

Format

A SingleCellExperiment object

Examples

data(celdaGSim)
sceCeldaG <- selectFeatures(celdaGSim$counts)
sceCeldaG <- celda_G(sceCeldaG, L = celdaGSim$L, nchains = 1)

selectBestModel Select best chain within each combination of parameters

Description

Select the chain with the best log likelihood for each combination of tested parameters from a SCE
object gererated by celdaGridSearch or from a celdalList object.

Usage

selectBestModel(x, asList = FALSE, altExpName = "featureSubset")

S4 method for signature 'SingleCellExperiment’
selectBestModel(x, asList = FALSE, altExpName = "featureSubset")

S4 method for signature 'celdalist'
selectBestModel(x, asList = FALSE)

110 selectFeatures

Arguments
X Can be one of
* A SingleCellExperiment object returned from celdaGridSearch, recursiveSplitModule,
or recursiveSplitCell. Must contain a list named "celda_grid_search”
in metadata(x).
* celdaList object.
asList TRUE or FALSE. Whether to return the best model as a celdalList object or not.
If FALSE, return the best model as a corresponding celda model object.
altExpName The name for the altExp slot to use. Default "featureSubset".
Value
One of

* A new SingleCellExperiment object containing one model with the best log-likelihood for
each set of parameters in metadata(x). If there is only one set of parameters, a new Single-
CellExperiment object with the matching model stored in the metadata "celda_parameters”
slot will be returned. Otherwise, a new SingleCellExperiment object with the subset models
stored in the metadata "celda_grid_search” slot will be returned.

* A new celdalist object containing one model with the best log-likelihood for each set of
parameters. If only one set of parameters is in the celdalList, the best model will be returned
directly instead of a celdalList object.

See Also

celdaGridSearch subsetCeldaList

Examples

data(sceCeldaCGGridSearch)

Returns same result as running celdaGridSearch with "bestOnly = TRUE"
sce <- selectBestModel (sceCeldaCGGridSearch)

data(celdaCGGridSearchRes)

Returns same result as running celdaGridSearch with "bestOnly = TRUE"
cgsBest <- selectBestModel (celdaCGGridSearchRes)

selectFeatures Simple feature selection by feature counts

Description

A simple heuristic feature selection procedure. Select features with at least minCount counts in at
least minCell cells. A SingleCellExperiment object with subset features will be stored in the altExp
slot with name altExpName. The name of the assay slot in altExp will be the same as useAssay.

selectFeatures 111

Usage
selectFeatures(
X)
minCount = 3,
minCell = 3,
useAssay = "counts”,
altExpName = "featureSubset”
)
S4 method for signature 'SingleCellExperiment'’
selectFeatures(
X ’
minCount = 3,
minCell = 3,
useAssay = "counts”,
altExpName = "featureSubset”
)
S4 method for signature 'matrix'
selectFeatures(
X,
minCount = 3,
minCell = 3,
useAssay = "counts”,
altExpName = "featureSubset”
)
Arguments
X A numeric matrix of counts or a SingleCellExperiment with the matrix located in
the assay slot under useAssay. Rows represent features and columns represent
cells.
minCount Minimum number of counts required for feature selection.
minCell Minimum number of cells required for feature selection.
useAssay A string specifying the name of the assay slot to use. Default "counts".
altExpName The name for the altExp slot to use. Default "featureSubset".
Value

A SingleCellExperiment object with a altExpName altExp slot. Function parameter settings are
stored in the metadata "select_features” slot.

Examples

data(sceCeldaCG)

sce <- selectFeatures(sceCeldaCG)
data(celdaCGSim)

sce <- selectFeatures(celdaCGSim$counts)

112 semiPheatmap

semiPheatmap A function to draw clustered heatmaps.

Description

A function to draw clustered heatmaps where one has better control over some graphical parameters
such as cell size, etc.

The function also allows to aggregate the rows using kmeans clustering. This is advisable if number
of rows is so big that R cannot handle their hierarchical clustering anymore, roughly more than 1000.
Instead of showing all the rows separately one can cluster the rows in advance and show only the
cluster centers. The number of clusters can be tuned with parameter kmeansK.

Usage

semiPheatmap(
mat,
color = colorRampPalette(rev(brewer.pal(n = 7, name = "RdY1Bu")))(100),
kmeansk = NA,
breaks = NA,
borderColor = "grey60",
cellWidth = NA,
cellHeight = NA,

scale = "none”,

clusterRows = TRUE,

clusterCols = TRUE,
clusteringDistanceRows = "euclidean”,
clusteringDistanceCols = "euclidean”,
clusteringMethod = "complete”,

clusteringCallback = .identity2,

cutreeRows = NA,

cutreeCols = NA,

treeHeightRow = ifelse(clusterRows, 50, 0),
treeHeightCol = ifelse(clusterCols, 50, 0),
legend = TRUE,

legendBreaks = NA,

legendLabels = NA,

annotationRow = NA,

annotationCol = NA,

annotation = NA,

annotationColors = NA,

annotationLegend = TRUE,

annotationNamesRow = TRUE,
annotationNamesCol = TRUE,

dropLevels = TRUE,

showRownames = TRUE,

showColnames = TRUE,

semiPheatmap 113

main = NA,

fontSize = 10,
fontSizeRow = fontSize,
fontSizeCol = fontSize,
displayNumbers = FALSE,
numberFormat = "%.2f",
numberColor = "grey30"”,
fontSizeNumber = 0.8 * fontSize,
gapsRow = NULL,

gapsCol = NULL,
labelsRow = NULL,

labelsCol = NULL,
fileName = NA,
width = NA,
height = NA,
silent = FALSE,
rowLabel,
collLabel,
rowGroupOrder = NULL,
colGroupOrder = NULL,
)
Arguments
mat numeric matrix of the values to be plotted.
color vector of colors used in heatmap.
kmeansK the number of kmeans clusters to make, if we want to agggregate the rows before
drawing heatmap. If NA then the rows are not aggregated.
breaks Numeric vector. A sequence of numbers that covers the range of values in the
normalized ‘counts‘. Values in the normalized ‘matrix‘ are assigned to each bin
in ‘breaks‘. Each break is assigned to a unique color from ‘col‘. If NULL, then
breaks are calculated automatically. Default NULL.
borderColor color of cell borders on heatmap, use NA if no border should be drawn.
cellwidth individual cell width in points. If left as NA, then the values depend on the size
of plotting window.
cellHeight individual cell height in points. If left as NA, then the values depend on the size
of plotting window.
scale character indicating if the values should be centered and scaled in either the row
direction or the column direction, or none. Corresponding values are "row”,
"column” and "none”.
clusterRows boolean values determining if rows should be clustered or hclust object,
clusterCols boolean values determining if columns should be clustered or hclust object.

clusteringDistanceRows
distance measure used in clustering rows. Possible values are "correlation”
for Pearson correlation and all the distances supported by dist, such as "euclidean”

semiPheatmap

etc. If the value is none of the above it is assumed that a distance matrix is pro-
vided.

clusteringDistanceCols

distance measure used in clustering columns. Possible values the same as for
clusteringDistanceRows.

clusteringMethod

clustering method used. Accepts the same values as hclust.

clusteringCallback

callback function to modify the clustering. Is called with two parameters: orig-
inal hclust object and the matrix used for clustering. Must return a hclust
object.

cutreeRows number of clusters the rows are divided into, based on the hierarchical clustering
(using cutree), if rows are not clustered, the argument is ignored
cutreeCols similar to cutreeRows, but for columns
treeHeightRow the height of a tree for rows, if these are clustered. Default value 50 points.
treeHeightCol the height of a tree for columns, if these are clustered. Default value 50 points.
legend logical to determine if legend should be drawn or not.
legendBreaks vector of breakpoints for the legend.
legendLabels vector of labels for the legendBreaks.
annotationRow data frame that specifies the annotations shown on left side of the heatmap.
Each row defines the features for a specific row. The rows in the data and in
the annotation are matched using corresponding row names. Note that color
schemes takes into account if variable is continuous or discrete.
annotationCol similar to annotationRow, but for columns.
annotation deprecated parameter that currently sets the annotationCol if it is missing.
annotationColors
list for specifying annotationRow and annotationCol track colors manually. It is
possible to define the colors for only some of the features. Check examples for
details.
annotationlLegend
boolean value showing if the legend for annotation tracks should be drawn.
annotationNamesRow
boolean value showing if the names for row annotation tracks should be drawn.
annotationNamesCol
boolean value showing if the names for column annotation tracks should be
drawn.
dropLevels logical to determine if unused levels are also shown in the legend.
showRownames boolean specifying if column names are be shown.
showColnames boolean specifying if column names are be shown.
main the title of the plot
fontSize base fontsize for the plot
fontSizeRow fontsize for rownames (Default: fontsize)

semiPheatmap

fontSizeCol

displayNumbers

numberFormat

numberColor
fontSizeNumber

gapsRow

gapsCol
labelsRow
labelsCol

fileName

width
height
silent
rowLabel
colLabel

rowGroupOrder

colGroupOrder

Value

115

fontsize for colnames (Default: fontsize)

logical determining if the numeric values are also printed to the cells. If this is a
matrix (with same dimensions as original matrix), the contents of the matrix are
shown instead of original values.

format strings (C printf style) of the numbers shown in cells. For example
"%.2f" shows 2 decimal places and "%.71e" shows exponential notation (see
more in sprintf).

color of the text
fontsize of the numbers displayed in cells

vector of row indices that show shere to put gaps into heatmap. Used only if the
rows are not clustered. See cutreeRow to see how to introduce gaps to clustered
TOWS.

similar to gapsRow, but for columns.
custom labels for rows that are used instead of rownames.
similar to labelsRow, but for columns.

file path where to save the picture. Filetype is decided by the extension in the
path. Currently following formats are supported: png, pdf, tiff, bmp, jpeg. Even
if the plot does not fit into the plotting window, the file size is calculated so that
the plot would fit there, unless specified otherwise.

manual option for determining the output file width in inches.
manual option for determining the output file height in inches.
do not draw the plot (useful when using the gtable output)
row cluster labels for semi-clustering

column cluster labels for semi-clustering

Vector. Specifies the order of feature clusters when semisupervised clustering is
performed on the y labels.

Vector. Specifies the order of cell clusters when semisupervised clustering is
performed on the z labels.

graphical parameters for the text used in plot. Parameters passed to grid. text,
see gpar.

Invisibly a list of components

* treeRow the clustering of rows as hclust object

* treeCol the clustering of columns as hclust object

* kmeans the kmeans clustering of rows if parameter kmeansK was specified

116 semiPheatmap

Author(s)

Raivo Kolde <rkolde @ gmail.com> #@examples # Create test matrix test = matrix(rnorm(200), 20,
10) test[seq(10), seq(1, 10, 2)] = test[seq(10), seq(1, 10, 2)] + 3 test[seq(11, 20), seq(2, 10, 2)] =
test[seq(11, 20), seq(2, 10, 2)] + 2 test[seq(15, 20), seq(2, 10, 2)] = test[seq(15, 20), seq(2, 10, 2)]
+ 4 colnames(test) = paste("Test", seq(10), sep = "") rownames(test) = paste("Gene", seq(20), sep

— nn)

Draw heatmaps pheatmap(test) pheatmap(test, kmeansK = 2) pheatmap(test, scale = "row", clus-

teringDistanceRows = "correlation") pheatmap(test, color = colorRampPalette(c("navy", "white",
"firebrick3"))(50)) pheatmap(test, cluster_row = FALSE) pheatmap(test, legend = FALSE)

Show text within cells pheatmap(test, displayNumbers = TRUE) pheatmap(test, displayNumbers
= TRUE, numberFormat = "%.1e") pheatmap(test, displayNumbers = matrix(ifelse(test > 5, "*",
""), nrow(test))) pheatmap(test, cluster_row = FALSE, legendBreaks = seq(-1, 4), legendLabels =
c("0", "le-4", "1e-3", "le-2", "le-1","1"))

Fix cell sizes and save to file with correct size pheatmap(test, cellWidth = 15, cellHeight = 12,
main = "Example heatmap") pheatmap(test, cellWidth = 15, cellHeight = 12, fontSize = 8, fileName
= "test.pdf")

Generate annotations for rows and columns annotationCol = data.frame(Cell Type = factor(rep(c("CT1",
"CT2"), 5)), Time = seq(5)) rownames(annotationCol) = paste("Test", seq(10), sep ="")

annotationRow = data.frame(GeneClass = factor(rep(c("Path1", "Path2", "Path3"), c(10, 4, 6))))
rownames(annotationRow) = paste("Gene", seq(20), sep ="")

Display row and color annotations pheatmap(test, annotationCol = annotationCol) pheatmap(test,
annotationCol = annotationCol, annotationLegend = FALSE) pheatmap(test, annotationCol = an-
notationCol, annotationRow = annotationRow)

Specify colors ann_colors = list(Time = c¢("white", "firebrick"), CellType = ¢(CT1 = "#1B9E77",
CT2 ="#D95F02"), GeneClass = c(Pathl = "#7570B3", Path2 = "#E7298A", Path3 = "#66A61E"))

pheatmap(test, annotationCol = annotationCol, annotationColors = ann_colors, main = "Title")
pheatmap(test, annotationCol = annotationCol, annotationRow = annotationRow, annotationColors
= ann_colors) pheatmap(test, annotationCol = annotationCol, annotationColors = ann_colors[2])

Gaps in heatmaps pheatmap(test, annotationCol = annotationCol, clusterRows = FALSE, gap-
sRow = ¢(10, 14)) pheatmap(test, annotationCol = annotationCol, clusterRows = FALSE, gapsRow
=¢(10, 14), cutreeCol = 2)

LR TR T T L TR T LA TN LR TR T K LR IR TR TK TR TR]

Show custom strings as row/col names labelsRow = c("", "", "", "", """, e e e o
llll’ |Y||, ll“, llll’ HIllOll’ 111115"’ ||Illb”)

pheatmap(test, annotationCol = annotationCol, labelsRow = labelsRow)

Specifying clustering from distance matrix drows = stats::dist(test, method = "minkowski") dcols
= stats::dist(t(test), method = "minkowski") pheatmap(test, clusteringDistanceRows = drows, clus-
teringDistanceCols = dcols)

simulateCells 117

simulateCells Simulate count data from the celda generative models.

Description

n

This function generates a SingleCellExperiment containing a simulated counts matrix in the "counts
assay slot, as well as various parameters used in the simulation which can be useful for running
celda and are stored in metadata slot. The user must provide the desired model (one of celda_C,
celda_G, celda_CG) as well as any desired tuning parameters for those model’s simulation functions
as detailed below.

Usage
simulateCells(
model = c("celda_CG", "celda_C", "celda_G"),
S =5,
CRange = c(50, 100),
NRange = c(500, 1000),
C =100,
G = 100,
K =5,
L = 10,
alpha = 1,
beta = 1,
gamma = 5,
delta =1,
seed = 12345
)
Arguments

model Character. Options available in celda::availableModels. Can be one of
"celda_CG", "celda_C", or "celda_G". Default "celda_CG".

S Integer. Number of samples to simulate. Default 5. Only used if model is one
of "celda_CG" or "celda_C".

CRange Integer vector. A vector of length 2 that specifies the lower and upper bounds
of the number of cells to be generated in each sample. Default ¢(50, 100). Only
used if model is one of "celda_CG" or "celda_C".

NRange Integer vector. A vector of length 2 that specifies the lower and upper bounds of
the number of counts generated for each cell. Default ¢(500, 1000).

C Integer. Number of cells to simulate. Default 100. Only used if model is
"celda_G".

G Integer. The total number of features to be simulated. Default 100.

K Integer. Number of cell populations. Default 5. Only used if model is one of

"celda_CG" or "celda_C".

118 simulateContamination

L Integer. Number of feature modules. Default 10. Only used if model is one of
"celda_CG" or "celda_G".

alpha Numeric. Concentration parameter for Theta. Adds a pseudocount to each cell
population in each sample. Default 1. Only used if model is one of "celda_CG"
or "celda_C".

beta Numeric. Concentration parameter for Phi. Adds a pseudocount to each feature
module in each cell population. Default 1.

gamma Numeric. Concentration parameter for Eta. Adds a pseudocount to the number
of features in each module. Default 5. Only used if model is one of "celda_CG"
or "celda_G".

delta Numeric. Concentration parameter for Psi. Adds a pseudocount to each fea-
ture in each module. Default 1. Only used if model is one of "celda_CG" or
"celda_G".

seed Integer. Passed to with_seed. For reproducibility, a default value of 12345 is
used. If NULL, no calls to with_seed are made.

Value

A SingleCellExperiment object with simulated count matrix stored in the "counts" assay slot. Func-

tion parameter settings are stored in the metadata slot. For "celda_CG"” and "celda_C" models,
columns celda_sample_label and celda_cell_cluster in colData contain simulated sample la-

bels and cell population clusters. For "celda_CG" and "celda_G" models, column celda_feature_module
in rowData contains simulated gene modules.

Examples

sce <- simulateCells()

simulateContamination Simulate contaminated count matrix

Description

This function generates a list containing two count matrices — one for real expression, the other
one for contamination, as well as other parameters used in the simulation which can be useful for
running decontamination.

Usage
simulateContamination(
C = 300,
G = 100,
K =3,
NRange = c(500, 1000),
beta = 0.1,

delta = c(1, 10),

splitModule 119

numMarkers = 3,

seed = 12345
)
Arguments
C Integer. Number of cells to be simulated. Default 300.
G Integer. Number of genes to be simulated. Default 100.
K Integer. Number of cell populations to be simulated. Default 3.
NRange Integer vector. A vector of length 2 that specifies the lower and upper bounds of
the number of counts generated for each cell. Default c (500, 1000).
beta Numeric. Concentration parameter for Phi. Default 0. 1.
delta Numeric or Numeric vector. Concentration parameter for Theta. If input as
a single numeric value, symmetric values for beta distribution are specified; if
input as a vector of lenght 2, the two values will be the shapel and shape2
paramters of the beta distribution respectively. Default c(1, 5).
numMarkers Integer. Number of markers for each cell population. Default 3.
seed Integer. Passed to with_seed. For reproducibility, a default value of 12345 is
used. If NULL, no calls to with_seed are made.
Value

A list containing the nativeMatirx (real expression), observedMatrix (real expression + contam-
ination), as well as other parameters used in the simulation.

Author(s)

Shiyi Yang, Yuan Yin, Joshua Campbell

Examples

contaminationSim <- simulateContamination(K = 3, delta = c(1, 10))

splitModule Split celda feature module

Description

Manually select a celda feature module to split into 2 or more modules. Useful for splitting up
modules that show divergent expression of features in multiple cell clusters.

120 splitModule

Usage
splitModule(
X ’
module,
useAssay = "counts”,
altExpName = "featureSubset”,
n=2,
seed = 12345
)
S4 method for signature 'SingleCellExperiment'’
splitModule(
X,
module,
useAssay = "counts”,
altExpName = "featureSubset”,
n=2,
seed = 12345
)
Arguments
X A SingleCellExperiment object with the matrix located in the assay slot under
useAssay. Rows represent features and columns represent cells.
module Integer. The module to be split.
useAssay A string specifying which assay slot to use for x. Default "counts".
altExpName The name for the altExp slot to use. Default "featureSubset”.
n Integer. How many modules should module be split into. Default 2.
seed Integer. Passed to with_seed. For reproducibility, a default value of 12345 is
used. If NULL, no calls to with_seed are made.
Value

A updated SingleCellExperiment object with new feature modules stored in column celda_feature_module
in rowData(x).

Examples

data(sceCeldaCG)
Split module 5 into 2 new modules.
sce <- splitModule(sceCeldaCG, module = 5)

subsetCeldalList 121

subsetCeldalList Subset celda model from SCE object returned from celdaGridSearch

Description
Select a subset of models from a SingleCellExperiment object generated by celdaGridSearch that
match the criteria in the argument params.

Usage

subsetCeldalList(x, params, altExpName = "featureSubset")

S4 method for signature 'SingleCellExperiment'’
subsetCeldaList(x, params, altExpName = "featureSubset")

S4 method for signature 'celdalist'
subsetCeldaList(x, params)

Arguments
X Can be one of
* A SingleCellExperiment object returned from celdaGridSearch, recursiveSplitModule,
or recursiveSplitCell. Must contain a list named "celda_grid_search”
in metadata(x).
* celdaList object.
params List. List of parameters used to subset the matching celda models in list "celda_grid_search”
in metadata(x).
altExpName The name for the altExp slot to use. Default "featureSubset".
Value
One of

* A new SingleCellExperiment object containing all models matching the provided criteria in
params. If only one celda model result in the "celda_grid_search” slot in metadata(x)
matches the given criteria, a new SingleCellExperiment object with the matching model stored
in the metadata "celda_parameters” slot will be returned. Otherwise, a new SingleCellEx-
periment object with the subset models stored in the metadata "celda_grid_search” slot
will be returned.

* A new celdalList object containing all models matching the provided criteria in params.
If only one item in the celdalist matches the given criteria, the matching model will be
returned directly instead of a celdalList object.

See Also

celdaGridSearch can run Celda with multiple parameters and chains in parallel. selectBestModel
can get the best model for each combination of parameters.

122 topRank

Examples

data(sceCeldaCGGridSearch)

sceK5L10 <- subsetCeldalList(sceCeldaCGGridSearch,
params = list(K =5, L = 10))

data(celdaCGGridSearchRes)

resk5L10 <- subsetCeldalList(celdaCGGridSearchRes,
params = list(K =5, L = 10))

topRank Identify features with the highest influence on clustering.

Description
topRank() can quickly identify the top ‘n‘ rows for each column of a matrix. For example, this can
be useful for identifying the top ‘n‘ features per cell.

Usage

topRank(matrix, n = 25, margin = 2, threshold = @, decreasing = TRUE)

Arguments
matrix Numeric matrix.
n Integer. Maximum number of items above ‘threshold‘ returned for each ranked
row or column.
margin Integer. Dimension of ‘matrix‘ to rank, with 1 for rows, 2 for columns. Default
2.
threshold Numeric. Only return ranked rows or columns in the matrix that are above this
threshold. If NULL, then no threshold will be applied. Default 0.
decreasing Logical. Specifies if the rank should be decreasing. Default TRUE.
Value

List. The ‘index variable provides the top ‘n‘ row (feature) indices contributing the most to each
column (cell). The ‘names* variable provides the rownames corresponding to these indexes.

Examples

data(sampleCells)
topRanksPerCell <- topRank(sampleCells, n = 5)
topFeatureNamesForCell <- topRanksPerCell$names[1]

Index

+ datasets
availableModels, 5
celdaCGGridSearchRes, 6
celdaCGMod, 7
celdaCGSim, 7
celdaCMod, 9
celdaCSim, 9
celdaGMod, 9
celdaGSim, 12
contaminationSim, 37
sampleCells, 105
sceCeldaC, 107
sceCeldaCG, 107
sceCeldaCGGridSearch, 108
sceCeldaG, 109

altExp, 5,8, 11, 13-15, 18, 20, 21, 23, 25, 26,
28, 30, 31, 33, 35,45,48, 49, 53, 55,
58, 64, 65,72,75,78,81, 83,88, 89,
91, 95, 98, 100, 102, 103, 105, 106,
110,111,120, 121

appendCeldalist, 4

assay, 11, 13,18, 20, 21, 23, 25, 26, 28, 30,
31, 33,35,42,45,49, 53, 55, 58, 63,
65,75,78,81,91, 95, 98, 100, 102,
111,120

availableModels, 5, 10, 11

bestLoglLikelihood, 5
bestLoglikelihood, celdaModel-method
(bestLoglLikelihood), 5

bestlLoglLikelihood, SingleCellExperiment-method

(bestLoglLikelihood), 5

celda, 6

celda_(C, 5,7, 8,12-14,18, 19, 21, 23, 25, 31,
34, 35,45, 55, 63, 89, 90, 98, 106,
107

celda_C,ANY-method (celda_C), 25

123

celda_C,SingleCellExperiment-method
(celda_C), 25

celda_CG, 5,7, 8,11-15,18, 19, 21, 23, 27,
28, 34, 35,45, 48, 49, 55, 63, 88-90,
92, 96, 98, 106, 107

celda_CG,ANY-method (celda_CG), 28

celda_CG,SingleCellExperiment-method
(celda_CG), 28

celda_G, 5, 12-15, 18, 21, 23, 27, 31, 31, 35,
45,48, 49, 55, 63, 88, 93, 96, 98,
106, 109

celda_G,ANY-method (celda_G), 31

celda_G,SingleCellExperiment-method
(celda_G), 31

celdaCGGridSearchRes, 6

celdaCGMod, 7

celdaCGSim, 7, 107, 108

celdaClusters, 7

celdaClusters, celdaModel-method
(celdaClusters), 7

celdaClusters,SingleCellExperiment-method
(celdaClusters), 7

celdaClusters<- (celdaClusters), 7

celdaClusters<-,SingleCellExperiment-method
(celdaClusters), 7

celdaCMod, 9

celdaCSim, 9, 107

celdaGMod, 9

celdaGridSearch, 10, 27, 31, 34, 102, 103,
108-110, 121

celdaGridSearch,matrix-method
(celdaGridSearch), 10

celdaGridSearch,SingleCellExperiment-method
(celdaGridSearch), 10

celdaGSim, 12, 109

celdaHeatmap, 13

celdaHeatmap, SingleCellExperiment-method
(celdaHeatmap), 13

celdaModel, 14

124

celdaModel,SingleCellExperiment-method
(celdaModel), 14

celdaModules, 15

celdaModules,SingleCellExperiment-method
(celdaModules), 15

celdaModules<- (celdaModules), 15

celdaModules<-,SingleCellExperiment-method
(celdaModules), 15

celdaPerplexity, 16

celdaPerplexity,celdalList-method, 16

celdaProbabilityMap, 17

INDEX

decontXcounts<- (decontXcounts), 42

decontXcounts<-,SingleCellExperiment-method
(decontXcounts), 42

dist, 113

distinctColors, 42

eigenMatMultInt, 43
eigenMatMultNumeric, 44
enrichr, 52

facet_wrap, 76, 79, 82

celdaProbabilityMap,SingleCellExperiment-methbactorizeMatrix, 44, 97

(celdaProbabilityMap), 17
celdatosce, 19
celdatosce,celda_C-method (celdatosce),

19
celdatosce, celda_CG-method

(celdatosce), 19
celdatosce,celda_G-method (celdatosce),

19
celdatosce,celdalist-method

(celdatosce), 19
celdaTsne, 20
celdaTsne,SingleCellExperiment-method

(celdaTsne), 20
celdaUmap, 22
celdaUmap, SingleCellExperiment-method

(celdaUmap), 22
clusterProbability, 34

factorizeMatrix,ANY,celda_C-method
(factorizeMatrix), 44

factorizeMatrix,ANY,celda_CG-method
(factorizeMatrix), 44

factorizeMatrix,ANY, celda_G-method
(factorizeMatrix), 44

factorizeMatrix,SingleCellExperiment, ANY-method

(factorizeMatrix), 44
fastNormProp, 46
fastNormProplLog, 46
fastNormPropSqrt, 47
featureModulelookup, 47

featureModulelLookup,SingleCellExperiment-method

(featureModulelLookup), 47
featureModuleTable, 49
findMarkersTree, 50
fit_dirichlet, 40

clusterProbability,SingleCellExperiment-method

(clusterProbability), 34
colData, 20, 27, 31,89, 118
compareCountMatrix, 20, 36
compareCountMatrix, ANY, celdalList-method

(compareCountMatrix), 36
compareCountMatrix, ANY, celdaModel-method

(compareCountMatrix), 36
contaminationSim, 37
countChecksum, 37
countChecksum, celdaList-method, 38

dbscan, 39, 40

decontX, 38, 66—70

decontX, ANY-method (decontX), 38

decontX,SingleCellExperiment-method
(decontX), 38

decontXcounts, 42

decontXcounts,SingleCellExperiment-method
(decontXcounts), 42

geneSetEnrich, 52

geneSetEnrich,matrix-method
(geneSetEnrich), 52

geneSetEnrich,SingleCellExperiment-method
(geneSetEnrich), 52

geom_jitter, 83, 88

getDecisions, 54

gpar, 60, 115

grep, 68, 69, 100, 104

grid.draw, 60

grid.text, 115

hclust, 98, 114, 115
Heatmap, 18, 58-60
Heatmap-class, 18
HeatmapAnnotation, 59, 60
HeatmapList, /8, 60

listEnrichrDbs, 53

INDEX

log, 59, 61

logl0, 59, 61

loglp, 59, 61

log2, 59,61

loglLikelihood, 54

loglLikelihood,matrix,celda_C-method
(loglLikelihood), 54

loglikelihood,matrix,celda_CG-method
(loglLikelihood), 54

loglikelihood,matrix,celda_G-method
(loglLikelihood), 54

125

plotCeldaViolin,SingleCellExperiment-method
(plotCeldaViolin), 64
plotDecontXContamination, 66
plotDecontXMarkerExpression, 67
plotDecontXMarkerPercentage, 68
plotDendro, 70
plotDimReduceCluster, 71
plotDimReduceCluster,SingleCellExperiment-method
(plotDimReduceCluster), 71
plotDimReduceCluster,vector-method
(plotDimReduceCluster), 71

loglLikelihood, SingleCellExperiment, ANY-methodplotDimReduceFeature, 73

(logLikelihood), 54
loglLikelihoodHistory, 55
loglLikelihoodHistory, celdaModel-method

(logLikelihoodHistory), 55

plotDimReduceFeature, ANY-method
(plotDimReduceFeature), 73

plotDimReduceFeature,SingleCellExperiment-method
(plotDimReduceFeature), 73

loglikelihoodHistory,SingleCellExperiment-methpgtpimReduceGrid, 77

(logLikelihoodHistory), 55

marrangeGrob, 60

Matrix, 39

matrix, 11, 20, 53, 58, 60, 91, 95, 102, 111

matrixNames, 56

matrixNames, celdaModel-method
(matrixNames), 56

metadata, 12, 20, 27, 31, 34, 92, 96, 110, 111,
118,121

modelGeneVar, 40

moduleHeatmap, 57

moduleHeatmap, SingleCellExperiment-method
(moduleHeatmap), 57

nonzero, 60
normalizeCounts, 22, 24, 59, 61

params, 62

params, celdaModel-method (params), 62

perplexity, 63

perplexity,ANY,celda_C-method
(perplexity), 63

perplexity,ANY,celda_CG-method
(perplexity), 63

perplexity,ANY, celda_G-method
(perplexity), 63

perplexity,SingleCellExperiment, ANY-method
(perplexity), 63

plotCeldaViolin, 64

plotCeldaViolin, ANY-method
(plotCeldaViolin), 64

plotDimReduceGrid, ANY-method
(plotDimReduceGrid), 77

plotDimReduceGrid,SingleCellExperiment-method
(plotDimReduceGrid), 77

plotDimReduceModule, 80

plotDimReduceModule, ANY-method
(plotDimReduceModule), 80

plotDimReduceModule,SingleCellExperiment-method
(plotDimReduceModule), 80

plotGridSearchPerplexity, 82

plotGridSearchPerplexity,celdalist-method
(plotGridSearchPerplexity), 82

plotGridSearchPerplexity,SingleCellExperiment-method
(plotGridSearchPerplexity), 82

plotHeatmap, 13, 83

plotMarkerHeatmap, 86

plotRPC, 87

plotRPC, celdalList-method (plotRPC), 87

plotRPC,SingleCellExperiment-method
(plotRPC), 87

recodeClusteryY, 88

recodeClusterz, 89

recursiveSplitCell, 90, 98

recursiveSplitCell,matrix-method
(recursiveSplitCell), 90

recursiveSplitCell,SingleCellExperiment-method
(recursiveSplitCell), 90

recursiveSplitModule, 93, 93, 98, 100

recursiveSplitModule,matrix-method
(recursiveSplitModule), 93

126

INDEX

recursiveSplitModule,SingleCellExperiment-metboeCeldaCG, 107

(recursiveSplitModule), 93
reducedDim, 22, 24
reorderCelda, 97
reorderCelda,matrix,celda_C-method
(reorderCelda), 97
reorderCelda,matrix, celda_CG-method
(reorderCelda), 97
reorderCelda,matrix,celda_G-method
(reorderCelda), 97
reorderCelda,SingleCellExperiment, ANY-method
(reorderCelda), 97
reportceldaCgG, 98
reportCeldaCGPlotResults
(reportceldaCG), 98
reportCeldaCGRun (reportceldaCG), 98
resamplePerplexity, 11, 92, 96, 101
resamplePerplexity,ANY-method
(resamplePerplexity), 101

resamplePerplexity,SingleCellExperiment-method

(resamplePerplexity), 101
resList, 103
resList,celdalList-method (resList), 103
resList,SingleCellExperiment-method

(resList), 103
retrieveFeaturelndex, 68, 69, 103
retrieveFeaturelInfo, 104
rowAnnotation, 60
rowData, 20, 31, 34,88, 118, 120
Rtsne, 20
runParams, 105
runParams, celdalList-method (runParams),

105
runParams, SingleCellExperiment-method

(runParams), 105

sampleCells, 105

samplelLabel, 106

samplelLabel, celdaModel-method
(samplelabel), 106

samplelabel,SingleCellExperiment-method
(samplelLabel), 106

samplelLabel<- (samplelLabel), 106

samplelLabel<-,SingleCellExperiment-method
(samplelLabel), 106

scale, 59

scale_colour_gradient, 82

scale_colour_gradient2, 76, 79

sceCeldaC, 107

sceCeldaCGGridSearch, 108
sceCeldaG, 109
selectBestModel, 712, 109, 121
selectBestModel,celdalList-method
(selectBestModel), 109
selectBestModel,SingleCellExperiment-method
(selectBestModel), 109
selectFeatures, 100, 107-109, 110
selectFeatures,matrix-method
(selectFeatures), 110
selectFeatures,SingleCellExperiment-method
(selectFeatures), 110
semiPheatmap, 112
simulateCells, 117
simulateContamination, 37, 118
SingleCellExperiment, 5,7, 8, 11-15,
18-21,23,25-28, 30, 31, 33-35,
39-42,45,48, 49, 52, 53, 55, 58, 59,
63,65-69,71,72,75,78,81, 83,
87-89, 91, 92, 95, 96, 98, 99,
102-111,117, 118, 120, 121
splitModule, 119
splitModule,SingleCellExperiment-method
(splitModule), 119
sprintf, 115
sgrt, 59, 61
subsetCeldalist, /12, 110, 121
subsetCeldalList,celdalList-method
(subsetCeldalist), 121
subsetCeldalList,SingleCellExperiment-method
(subsetCeldalist), 121
SummarizedExperiment, 103, 104

topRank, 122

umap, 22, 24, 39
unit, 60

with_seed, 11, 22, 24, 27, 30, 34, 40, 92, 96,
102, 118-120

	appendCeldaList
	availableModels
	bestLogLikelihood
	celda
	celdaCGGridSearchRes
	celdaCGMod
	celdaCGSim
	celdaClusters
	celdaCMod
	celdaCSim
	celdaGMod
	celdaGridSearch
	celdaGSim
	celdaHeatmap
	celdaModel
	celdaModules
	celdaPerplexity
	celdaPerplexity,celdaList-method
	celdaProbabilityMap
	celdatosce
	celdaTsne
	celdaUmap
	celda_C
	celda_CG
	celda_G
	clusterProbability
	compareCountMatrix
	contaminationSim
	countChecksum
	countChecksum,celdaList-method
	decontX
	decontXcounts
	distinctColors
	eigenMatMultInt
	eigenMatMultNumeric
	factorizeMatrix
	fastNormProp
	fastNormPropLog
	fastNormPropSqrt
	featureModuleLookup
	featureModuleTable
	findMarkersTree
	geneSetEnrich
	getDecisions
	logLikelihood
	logLikelihoodHistory
	matrixNames
	moduleHeatmap
	nonzero
	normalizeCounts
	params
	perplexity
	plotCeldaViolin
	plotDecontXContamination
	plotDecontXMarkerExpression
	plotDecontXMarkerPercentage
	plotDendro
	plotDimReduceCluster
	plotDimReduceFeature
	plotDimReduceGrid
	plotDimReduceModule
	plotGridSearchPerplexity
	plotHeatmap
	plotMarkerHeatmap
	plotRPC
	recodeClusterY
	recodeClusterZ
	recursiveSplitCell
	recursiveSplitModule
	reorderCelda
	reportceldaCG
	resamplePerplexity
	resList
	retrieveFeatureIndex
	runParams
	sampleCells
	sampleLabel
	sceCeldaC
	sceCeldaCG
	sceCeldaCGGridSearch
	sceCeldaG
	selectBestModel
	selectFeatures
	semiPheatmap
	simulateCells
	simulateContamination
	splitModule
	subsetCeldaList
	topRank
	Index

