Package ‘cellscape’

January 15, 2026

Title Explores single cell copy number profiles in the context of a
single cell tree

Version 1.35.0

Description CellScape facilitates interactive browsing of single cell
clonal evolution datasets. The tool requires two main inputs: (i) the
genomic content of each single cell in the form of either copy number
segments or targeted mutation values, and (ii) a single cell
phylogeny. Phylogenetic formats can vary from dendrogram-like
phylogenies with leaf nodes to evolutionary model-derived phylogenies
with observed or latent internal nodes. The CellScape phylogeny is
flexibly input as a table of source-target edges to support arbitrary
representations, where each node may or may not have associated
genomic data. The output of CellScape is an interactive interface
displaying a single cell phylogeny and a cell-by-locus genomic heatmap
representing the mutation status in each cell for each locus.

License GPL-3
Depends R (>=3.3)

Imports dplyr (>=0.4.3), gtools (>= 3.5.0), htmlwidgets (>=0.5),
jsonlite (>= 0.9.19), reshape2 (>= 1.4.1), stringr (>= 1.0.0)

Suggests knitr, rmarkdown
VignetteBuilder knitr

biocViews Visualization
Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/cellscape
git_branch devel
git_last_commit 2216fcl
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-01-15

2 cellscape

Author Shixiang Wang [aut, cre] (ORCID:
<https://orcid.org/0000-0001-9855-7357>),
Maia Smith [aut]

Maintainer Shixiang Wang <w_shixiang@163.com>

Contents
cellscape e e 2
dfs_tree e e 6
Index 12
cellscape CellScape
Description

cellscape explores single cell copy number profiles in the context of a single cell phylogeny.

Usage
cellscape(
cnv_data = NULL,
mut_data = NULL,

mut_data_matrix = NULL,
mut_order = NULL,
tree_edges,
gtype_tree_edges = NULL,
sc_annot = NULL,

clone_colours = "NA",
timepoint_title = "Timepoint”,
clone_title = "Clone”,

xaxis_title = "Time Point"”,
yaxis_title = "Clonal Prevalence”,

phylogeny_title = "Clonal Phylogeny”,
value_type = NULL,

node_type = "Cell"”,

display_node_ids = FALSE,
prop_of_clone_threshold = 9.2,
vaf_threshold = 0.05,

show_warnings = TRUE,

width = 900,

height = 800

https://orcid.org/0000-0001-9855-7357

cellscape 3

Arguments

cnv_data data.frame (Required if not providing mut_data nor mut_data_matrix) Single
cell copy number segments data. Note that every single cell id must be present
in the tree_edges data frame. Required columns are:
single_cell_id: character() single cell id.
chr: character () chromosome number.
start: numeric() start position.
end: numeric() end position.
copy_number: numeric() copy number state.

mut_data data.frame (Required if not providing cnv_data nor mut_data_matrix) Single
cell targeted mutation data frame. Note that every single cell id must be present
in the tree_edges data frame. Required columns are:
single_cell_id: character () single cell id.
chr: character() chromosome number.
coord: numeric() genomic coordinate.
VAF: numeric() variant allele frequency [0, 1].

mut_data_matrix
matrix (Required if not providing cnv_data nor mut_data) Single cell targeted
mutation matrix. Rows are single cell IDs, columns are mutations. Rows and
columns must be named, column names in the format "<chromosome>:<coordinate>".
Note that the order of these rows and columns will not be preserved, unless mu-
tation order is the same as that specified in the mut_order parameter. Also note
that every single cell id must be present in the tree_edges data frame.

mut_order vector (Optional) Mutation order for targeted mutation heatmap (each muta-
tion should consist of a string in the form "chrom:coord"). Default will use a
clustering function to determine mutation order.

tree_edges data.frame Edges for the single cell phylogenetic tree. Required columns are:
source: character() edge source (single cell id).
target: character() edge target (single cell id).
Optional columns are:
dist: numeric() edge distance.
gtype_tree_edges
data.frame (Required for TimeScape) Genotype tree edges of a rooted tree.
Required columns are:
source: character () source node id.
target: character() target node id.
sc_annot data.frame (Required for TimeScape) Annotations (genotype and sample id)
for each single cell. Required columns are:
single_cell_id: character() single cell id.
genotype: character() genotype assignment.
Optional columns are:

timepoint: character() id of the sampled time point. Note: time points will
be ordered alphabetically.

clone_colours

timepoint_title

clone_title
xaxis_title

yaxis_title

phylogeny_title

value_type

node_type

cellscape

data.frame (Optional) Clone ids and their corresponding colours (in hex for-
mat). Required columns are:

clone_id: character() clone id.
colour: character() the corresponding Hex colour for each clone id.

character() (Optional) Legend title for timepoint groups. Default is "Time-
point".

character () (Optional) Legend title for clones. Default is "Clone".
character () (Optional) For TimeScape - x-axis title. Default is "Time Point".

character () (Optional) For TimeScape - y-axis title. Default is "Clonal Preva-
lence".

character() (Optional) For TimeScape - legend phylogeny title. Default is
"Clonal Phylogeny".

character () (Optional) The type of value plotted in heatmap - will affect leg-
end and heatmap tooltips. Default is "VAF" for mutation data, and "CNV" for
copy number data.

character () (Optional) The type of node plotted in single cell phylogeny - will
affect phylogeny tooltips. Default is "Cell".

display_node_ids

logical() (Optional) Whether or not to display the single cell ID within the
tree nodes. Default is FALSE.

prop_of_clone_threshold

vaf_threshold

show_warnings
width
height

Details

numeric() (Optional) Used for the ordering of targeted mutations. The mini-
mum proportion of a clone to have a mutation in order to consider the mutation
as present within that clone. Default is 0.2.

numeric() (Optional) Used for the ordering of targeted mutations. The mini-
mum variant allele frequency for a mutation to be considered as present within
a single cell. Default is 0.05.

logical() (Optional) Whether or not to show any warnings. Default is TRUE.
numeric() (Optional) Width of the plot.
numeric() (Optional) Height of the plot.

Interactive components:

1. Mouseover any single cell in the phylogeny to view its corresponding genomic profile in the
heatmap, and vice versa.

2. Mouseover any part of the heatmap to view the CNV or VAF value for that copy number
segment or mutation site, respectively.

3. Mouseover any branch of the phylogeny to view downstream single cells, both in the phy-
logeny and heatmap.

4. Mouseover any clone to view its corresponding single cells in the phylogeny and heatmap.

cellscape

5.
6.

9.
10.
11.

12.

13.

Note:

Click any node in the phylogeny to flip the order of its descendant branches.

Use the selection tool in the tool bar to select single cell genomic profiles and view their
corresponding single cells in the phylogeny.

. Use the tree trimming tool in the tool bar to remove any branch of the phylogeny by clicking

it.

. Use the switch view tool in the tool bar to change the phylogeny view from force-directed to

unidirectional, and vice versa.
Use the re-root phylogeny tool to root the phylogeny at a clicked node.
Use the flip branch tool to vertically rotate any branch by clicking its root node.

If present, use the scale tree/graph tool in the tool bar to scale the phylogeny by the provided
edge distances.

If time-series information is present such that the TimeScape is displayed below the CellScape,
clones and time points are interactively linked in both views on mouseover.

Click the download buttons to download a PNG or SVG of the view.

See TimeScape repo (https://bitbucket.org/MO_BCCRC/timescape) for more information about
TimeScape.

Examples

library("cellscape”)

EXAMPLE 1 - TARGETED MUTATION DATA

single cell tree edges
tree_edges <- read.csv(system.file("extdata”, "targeted_tree_edges.csv",
package = "cellscape”

)

targeted mutations
targeted_data <- read.csv(system.file("extdata”, "targeted_muts.csv”,
package = "cellscape”

))

genotype tree edges

gtype_tree_edges <- data.frame("source” = c(
"Ancestral”, "Ancestral”, "B",
HCH’ IIDH

), "target” = c("A", "B", "C", "D", "E"))

annotations
sc_annot <- read.csv(system.file("extdata”, "targeted_annots.csv”,
package = "cellscape”

)

mutation order

6 dfs_tree

mut_order <- scan(system.file("extdata”, "targeted_mut_order.txt",
package = "cellscape”
), what = character())

run cellscape
cellscape(
mut_data = targeted_data, tree_edges = tree_edges, sc_annot =
sc_annot, gtype_tree_edges = gtype_tree_edges, mut_order = mut_order

EXAMPLE 2 - COPY NUMBER DATA

single cell tree edges
tree_edges <- read.csv(system.file("extdata”, "cnv_tree_edges.csv",
package = "cellscape”

)

cnv segments data
cnv_data <- read.csv(system.file("extdata”, "cnv_data.csv”,
package =
"cellscape”

)

annotations
sc_annot <- read.csv(system.file("extdata”, "cnv_annots.tsv",
package =
"cellscape”
), sep = "\t")

custom clone colours
clone_colours <- data.frame(

clone_id = c("1”, "2", "3"),

colour = c("7fc97f", "beaed4"”, "fdc086")
)

run cellscape

cellscape(
cnv_data = cnv_data, tree_edges = tree_edges, sc_annot = sc_annot,
width = 800, height = 475, show_warnings = FALSE,
clone_colours = clone_colours

dfs_tree Get depth first search of a tree

Description

Get depth first search of a tree

Widget output function for use in Shiny

dfs_tree 7

Widget render function for use in Shiny

Function to get data frame of pixels

function to get min and max values for each chromosome
function to get chromosome box pixel info

function to get the genome length

function to get the number of base pairs per pixel
function to get information (chr, start, end, mode_cnv) for each pixel
function to get mutation order for targeted data

function to get targeted heatmap information

function to find the mode of a vector

Function to process the user data

Function to check minimum dimensions

Function to check required inputs are present

check alpha value input is correct

check clonal_prev parameter data

check tree_edges parameter data

check genotype_position parameter

check clone_colours parameter

check perturbations parameter

get mutation data

function to replace spaces with underscores in all data frames & keep maps of original names to
space-replaced names

Usage

dfs_tree(edges, cur_root, dfs_arr)

cellscapeQutput(outputId, width = "100%", height = "400px")

renderCnvTree(expr, env = parent.frame(), quoted = FALSE)
getEmptyGrid(hm_sc_ids_ordered, ncols)
getChromBounds(chroms, cnv_data)
getChromBoxInfo(chrom_bounds, n_bp_per_pixel)
getGenomeLength(chrom_bounds)

getNBPPerPixel (ncols, chrom_bounds, genome_length)

getCNVHeatmapForEachSC(cnv_data, chrom_bounds, n_bp_per_pixel)

dfs_tree

getMutOrder (mut_data)
getTargetedHeatmapForEachSC(mut_data, mut_order, heatmapWidth)
findMode (x)

processUserData(
clonal_prev,
tree_edges,
mutations,
clone_colours,
xaxis_title,
yaxis_title,
phylogeny_title,
alpha,
genotype_position,
perturbations,
sort,
show_warnings,
width,
height

)

checkMinDims(mutations, height, width)
checkRequiredInputs(clonal_prev, tree_edges)
checkAlpha(alpha)
checkClonalPrev(clonal_prev)
checkTreeEdges(tree_edges)
checkGtypePositioning(genotype_position)
checkCloneColours(clone_colours)
checkPerts(perturbations)
getMutationsData(mutations, tree_edges, clonal_prev, show_warnings = TRUE)
replaceSpaces(

clonal_prev,

tree_edges,

clone_colours,

mutation_info,
mutations,

dfs_tree

mutation_prevalences

)

Arguments
edges —edges of tree
cur_root — current root of the tree
dfs_arr — array of depth first search results to be filled
outputId —id of output
width — width provided by user
height — height provided by user
expr — expression for Shiny
env — environment for Shiny
quoted — default is FALSE

hm_sc_ids_ordered
— array of single cell ids in order

ncols — integer of number of columns (pixels) to fill
chroms — vector of chromosome names

cnv_data — data frame of copy number variant segments data
chrom_bounds - data frame of chromosome boundaries

n_bp_per_pixel - integer of number of base pairs per pixel

genome_length —integer of length of the genome

mut_data — data frame of mutations data

mut_order — array of order of mutations for heatmap (chromosome:coordinate)
heatmapWidth — number for width of the heatmap (in pixels)

X — vector of numbers

clonal_prev — clonal_prev data from user

tree_edges — tree edges data from user

mutations — mutations data from user

clone_colours —clone_colours data from user

xaxis_title — String (Optional) of x-axis title. Default is "Time Point".
yaxis_title — String (Optional) of y-axis title. Default is "Clonal Prevalence".

phylogeny_title

— String (Optional) of Legend phylogeny title. Default is "Clonal Phylogeny".
alpha — alpha provided by user
genotype_position

— genotype_position provided by user

perturbations - perturbations provided by user

10

sort

dfs_tree

— Boolean (Optional) of whether (TRUE) or not (FALSE) to vertically sort the
genotypes by their emergence values (descending). Default is FALSE. Note
that genotype sorting will always retain the phylogenetic hierarchy, and this
parameter will only affect the ordering of siblings.

show_warnings —Boolean (Optional) of Whether or not to show any warnings. Default is TRUE.

mutation_info — processed mutation_info

mutation_prevalences
— mutation_prevalences data from user

Examples

dfs_tree(
data.frame(
source = c("1", "1™, "2", "2", "K' "g"),
target = c("2", "5", "3", "4", "6", "71")
), "1, Q)
)
cellscapeOutput(1, "100%", "300px")
cellscapeOQutput(1, "80%", "300px")
findMode(c(1, 1, 19, 1))

checkMinDims(data.frame(chr = c("11"), coord = c(104043), VAF = c(0.1)), "700px", "700px")

checkRequiredInputs(
data. frame(
timepoint = c(rep(”Diagnosis”, 6), rep("Relapse”, 1)),
clone_id = c("1", "2", "3", "4" "5" "6",6 "T7"),
clonal_prev = c("0.1", "0.22", "0.08", "0.53", "0.009", "0.061", "1")
),
data.frame(
source = c("1", "1™, "2", "2", "5" "g"),
target = c("2", "5", "3", "4", "6", "71")
)

)
checkRequiredInputs(

data.frame(
timepoint = c(rep("Diagnosis”, 6), rep("Relapse”, 1)),
clone_id = c("1", "2", "3", "4", "5" "e",6 "1"),
clonal_prev = c("0.12", "@.12", "0.18", "0.13", "0.009", "0.061", "1")
),
data.frame(
source = c("1", "1", "2", "2", "5", "6"),
target = c("2", "5", "3", "4", "e", "I")
)

)
checkAlpha(4)

checkAlpha(100)

checkClonalPrev(data.frame(timepoint = c(1), clone_id = c(2), clonal_prev = c(0.1)))

checkTreeEdges(
data. frame(
SOUFce = C(”‘]H’ II'III’ IIZH’ IIZII’ 11511, ”6")’
target = C(HZH’ Il5”, H3"y "4”’ ”6", 1I7“)
)

dfs_tree 11

)

checkGtypePositioning("centre”)
checkCloneColours(
data.frame(
clone_id = c("1", "2", "3", "4"),
colour = c("#beaed4”, "#fdc086", "#beaed4", "#beaed4")
)
)

checkPerts(data.frame(pert_name = c(”"New Drug"), prev_tp = c("Diagnosis"”)))
getMutationsData(
data.frame(
chrom = ¢c("11"), coord = c(104043), VAF = c(0.1),
clone_id = c(1), timepoint = c("Relapse"”)
),
data. frame(
source = c("1", "1", "2", "2",6 "5" "g"),
target = c("2", "5", "3", "4", "6", "71")
),
data.frame(
timepoint = c(rep(”Diagnosis”, 6), rep("Relapse”, 1)),
clone_id = c("1", "2", "3",6 "4" "5" "e" "T"),
clonal_prev = c("0.12", "0.12", "0.18", "0.13", "0.009", "0.061", "1")
)
)
replaceSpaces(
mutations = data.frame(
chrom = ¢("11"), coord = c(104043),
VAF = ¢(0.1), clone_id = c(1), timepoint = c("Relapse”)

),
tree_edges = data.frame(
source = c("1", "1", "2", "2", "5", "6"),
target = c("2", "5", "3", "4", "e", "1")
),
clonal_prev = data.frame(
timepoint = c(rep(”"Diagnosis”, 6), rep("Relapse”, 1)),
clone_id = c("1", "2", "3", "4" "5" "e",6 "T1"),
clonal_prev = c("0.12", "0.12", "0.18", "0.13", "0.009", "0.061", "1")
),
mutation_prevalences = list(
"X:6154028" = data.frame(timepoint = c("Diagnosis”), VAF = c(0.5557))
),
mutation_info = data.frame(clone_id = c(1)),
clone_colours = data.frame(
clone_id = c("1", "2", "3", "4"),
colour = c("#beaed4", "#fdc086", "i#beaed4", "#beaed4")
)
)

Index

cellscape, 2

cellscapeOutput (dfs_tree), 6
checkAlpha (dfs_tree), 6
checkClonalPrev (dfs_tree), 6
checkCloneColours (dfs_tree), 6
checkGtypePositioning (dfs_tree), 6
checkMinDims (dfs_tree), 6
checkPerts (dfs_tree), 6
checkRequiredInputs (dfs_tree), 6
checkTreeEdges (dfs_tree), 6

dfs_tree, 6
findMode (dfs_tree), 6

getChromBounds (dfs_tree), 6
getChromBoxInfo (dfs_tree), 6
getCNVHeatmapForEachSC (dfs_tree), 6
getEmptyGrid (dfs_tree), 6
getGenomelLength (dfs_tree), 6
getMutationsData (dfs_tree), 6
getMutOrder (dfs_tree), 6
getNBPPerPixel (dfs_tree), 6
getTargetedHeatmapForEachSC (dfs_tree),
6

processUserData (dfs_tree), 6

renderCnvTree (dfs_tree), 6
replaceSpaces (dfs_tree), 6

12

	cellscape
	dfs_tree
	Index

