Package ‘damidBind’

January 15, 2026
Type Package
Title Differential Binding and Expression Analysis for DamID-seq Data
Version 0.99.12

Description The damidBind package provides a straightforward formal analysis pipeline to anal-
yse and explore differential DamID binding, gene transcription or chromatin accessibility be-
tween two conditions. The package imports processed data from DamID-seq experiments, ei-
ther as external raw files in the form of binding bedGraphs and GFF/BED peak calls, or as inter-
nal lists of GRanges objects. After optionally normalising data, combining peaks across repli-
cates and determining per-replicate peak occupancy, the pack-
age links bound loci to nearby genes. For RNA Polymerase DamlID data, the package calcu-
lates occupancy over genes, and optionally calcualates the FDR of significantly-
enriched gene occupancy.
damidBind then uses either limma (for conventional log2 ratio DamID bind-
ing data) or NOIseq (for counts-based CATaDa chromatin accessibility data) to identify differen-
tially-enriched regions, or differentially epxressed genes, between two conditions.
The package provides a number of visualisation tools (volcano plots, Gene Ontology enrich-
ment plots via ClusterProfiler and proportional Venn diagrams via BioVenn for down-
stream data exploration and analysis. An powerful, interactive IGV genome browser inter-
face (powered by Shiny and igvShiny) allows users to rapidly and intuitively assess signifi-
cant differentially-bound regions in their genomic context.

License GPL-3
Encoding UTF-8

biocViews DifferentialExpression, GeneExpression, Transcription,
Epigenetics, Visualization, Sequencing, Software,
GeneRegulation

Depends R (>=4.4.0)

Imports ggplot2, ggrepel, dplyr, tibble, stringr, tools, rlang,
BiocParallel, AnnotationHub, DBI, ensembldb, GenomelnfoDb,
IRanges, GenomicRanges, S4 Vectors, rtracklayer, limma, NOISeq,
BioVenn, clusterProfiler, enrichplot, forcats, scales,
colorspace, ggnewscale, methods, stats, igvShiny, shiny, DT,
dbscan, circlize, ComplexHeatmap, patchwork, splines

Suggests testthat, curl, knitr, htmltools, rmarkdown, BiocStyle,
bookdown, org.Dm.eg.db

2 Contents

RoxygenNote 7.3.3
VignetteBuilder knitr

URL https://marshall-1lab.org/damidBind

BugReports https://github.com/marshall-lab/damidBind/issues
git_url https://git.bioconductor.org/packages/damidBind

git_branch devel

git_last commit b185a6d

git_last_commit_date 2026-01-06

Repository Bioconductor 3.23

Date/Publication 2026-01-15

Author Owen Marshall [aut, cre] (ORCID:
<https://orcid.org/0000-0003-1605-3871>)

Maintainer Owen Marshall <owen.marshall@utas.edu.au>

Contents
damidBind-package 3
analyse_go_enrichment 4
analysisTable 7
Drowse_1gv_Iegions v v v v e i e e e e e e e e e e e e e 8
calculate_and_add_occupancy_pvals 10
calculate_occupanCyo e e e 12
conditionNames e e 13
DamIDResults-class e 14
differential_accessibility L o 16
differential_binding 17
enrichedCondl e 20
enrichedCond2 e 21
expressed L e e e e 22
extract_unique_sample_idso 23
filter_genes_by_fdr 24
get_ensdb_genes e e 26
inputData e e e 27
load_data_genes L e 28
load_data_peaks 31
plot_input_diagnostics 33
plot_limma_diagnostics e e 34
PIOLLVENN e e e e e e 36
plot_volcano e e e 38
quantile_normalisation 41
reduce_regions e e 42
sample_labels_by_isolation 43

Index 46

https://marshall-lab.org/damidBind
https://github.com/marshall-lab/damidBind/issues
https://orcid.org/0000-0003-1605-3871

damidBind-package 3

damidBind-package damidBind: Differential Binding Analysis for DamlID-seq Data

Description

The damidBind package provides a streamlined workflow for determining differential protein bind-
ing, RNA polymerase occupancy, or chromatin accessibility from DamID-based sequencing exper-
iments. It handles data loading, processing, statistical analysis, and provides a suite of visualisation
tools for interpretation and exploration of the results.

Details
The package is designed for three main experimental types:

* Transcription Factor Binding: Analysis of conventional DamID or TaDa data to find differ-
ential binding sites for a protein of interest. Uses log-ratio data and the limma backend via
differential_binding.

* Gene Transcription: Analysis of RNA Polymerase II TaDa data to infer differential gene
expression, analysed over gene bodies with load_data_genes.

* Chromatin Accessibility: Analysis of CATaDa data to find differential accessibility. Uses
count-based data and the NOIseq backend via differential_accessibility.
Core Workflow:

1. Load Data: Use load_data_peaks for TF binding/accessibility or load_data_genes for
RNA Pol II occupancy. These functions read bedGraph and peak files, calculate occupancy
scores, and annotate regions with nearby genes.

2. Perform Differential Analysis: Use differential_binding for conventional DamID log-
ratio data (limma) or differential_accessibility for CATaDa count data (NOIseq). These
return a DamIDResults object.

3. Visualise and Explore: Use the plotting functions on the ‘DamIDResults‘ object: plot_volcano,
plot_vennand analyse_go_enrichment; and the interactive browse_igv_regions to browse
differentially-bound regions in an interactive IGV browser window..

For a complete walkthrough, please see the package vignette by running: ‘browseVignettes("damidBind")*

Author(s)

Maintainer: Owen Marshall <owen.marshall@utas.edu.au> (ORCID)

See Also
Primary Functions:

* load_data_peaks: Load binding data and associated peak regions.
* load_data_genes: Load binding data summarised over gene bodies.

e differential_binding: Perform differential analysis for log-ratio data.

https://orcid.org/0000-0003-1605-3871

4 analyse_go_enrichment

e differential_accessibility: Perform differential analysis for count-based data.
* DamIDResults: The main results object returned by analysis functions.

Useful links:

* The damidBind vignette: ‘browseVignettes("damidBind")

* Report bugs at https://github.com/marshall-lab/damidBind/issues

analyse_go_enrichment Perform Gene Ontology (GO) enrichment analysis for differentially
bound/expressed regions

Description

This function performs Gene Ontology (GO) enrichment analysis using ‘clusterProfiler* for either
the up-regulated or down-regulated regions/genes identified by ‘differential_binding()‘ or ‘differen-
tial_accessibility()‘. It automatically extracts the relevant gene IDs (gene_ids) and the background
universe from the input ‘DamIDResults‘ object.

Usage

analyse_go_enrichment(
diff_results,
direction = "cond1",
org_db = org.Dm.eg.db::org.Dm.eg.db,
ontology = "BP",
pvalue_cutoff = 0.05,
qvalue_cutoff = 0.2,
plot_title = NULL,
show_category = 12,
label_format_width = 50,
wrap_labels = FALSE,
fit_labels = FALSE,
abbrev_terms = FALSE,
abbrevs = c(regulation = "reg."),
theme_size = 14,
use_gse = FALSE,
save = NULL,
save_results_path = NULL,
maxGSSize = 1000,
minGSSize = 10,
clean_gene_symbols = TRUE

https://github.com/marshall-lab/damidBind/issues

analyse_go_enrichment 5

Arguments

diff_results A ‘DamIDResults‘ object, as returned by ‘differential_binding()‘ or ‘differen-
tial_accessibility()‘.

direction Character string. Specifies which set of genes to analyse, either using condition
names, "cond1" or "cond2", or "all" (for all significantly enriched genes from
either direction). Default is "cond1".

org_db An OrgDDb object specifying the organism’s annotation database. For Drosophila,
use ‘org.Dm.eg.db::org.Dm.eg.db*.

ontology Character string. The GO ontology to use: "BP" (Biological Process), "MF"
(Molecular Function), or "CC" (Cellular Component). Default is "BP".

pvalue_cutoff Numeric. Adjusted p-value cutoff for significance. Default: 0.05.

gvalue_cutoff Numeric. Q-value cutoff for significance. Default: 0.2.

plot_title Character string. Title for the generated dot plot.

show_category Integer. Number of top enriched GO categories to display in the plot. Default:

12.
label_format_width

Integer. Max character length for GO term labels on the plot before wrapping.
Default: 50.

wrap_labels Logical. Whether to wrap label text (TRUE) or truncate (FALSE) if greater than
‘label_format_width‘ (Default: FALSE)

fit_labels Set ‘label_format_width* to the largest label width (Default: FALSE)

abbrev_terms Logical. Whether to abbreviate common GO term words. (Default: FALSE)

abbrevs Named vector of abbreviations to use for ‘abbrev_terms*. (Default: ‘c("regulation”
="reg.")’)

theme_size Integer. Base theme size to set. Default: 14.

use_gse Logical. Whether to use GSEA via ‘gseGO° rather than GO enrichment analysis
(via ‘enrichGO*). (Default: FALSE)

save List or ‘NULL®. Controls saving the plot to a file (dot plot). If ‘NULL",
‘FALSE‘, or ‘0, the plot is not saved. If a ‘list’, it specifies saving parame-
ters:

* filename (character): The path and base name for the output file. If not
specified, the default name "damidBind_GSEA_dotplot" is used.
» format (character): File format ("pdf", "svg", or "png"). Default is "pdf".
* width (numeric): Width of the plot in inches. Default is 6.
* height (numeric): Height of the plot in inches. Default is 6.
save_results_path
Character string or NULL. If a path is provided (e.g., "go_results.csv"), the en-
richment results table will be saved to this CSV file.
maxGSSize Integer. Maximum size of gene sets to consider. Default: 1000.

minGSSize Integer. Minimum size of gene sets to consider. Default: 10.
clean_gene_symbols
Logical. Removes snoRNAs and tRNAs (common sources of accidental bias be-
tween different NGS methods) from the gene lists prior to enrichment analysis.
Default: TRUE.

6 analyse_go_enrichment

Details

This function assumes that the ‘analysis‘ slot in the ‘diff_results‘ object contains a ‘gene_id* col-
umn. If this column is not present, or cannot be processed, the function will return NULL.

Value
A list containing:

enrich_go_object
‘enrichResult‘ object from ‘clusterProfiler*.

results_table Data frame of enrichment results.

dot_plot ‘ggplot’ object of the dot plot.

NULL if no significant enrichment is found or if input validation fails.

Examples

This example requires the 'org.Dm.eg.db' package
if (requireNamespace("org.Dm.eg.db"”, quietly = TRUE)) {
Helper function to create a sample DamIDResults object
.generate_example_results <- function() {
Define a mock gene object. Note: Real, mappable FlyBase IDs are
used for the 'gene_id' column to ensure the example runs.
mock_genes_gr <- GenomicRanges: :GRanges(
segnames = S4Vectors::Rle("2L", 7),
ranges = IRanges: :IRanges(
start = c(1000, 2000, 3000, 5000, 6000, 7000, 8000),
end = c(1500, 2500, 3500, 5500, 6500, 7500, 20000000)

)!

gene_id = c(
"FBgn@034439", "FBgn@@31267", "FBgn@@51138", "FBgn@031265",
"FBgn@004655", "FBgnd000251", "FBgnd000252"

)!

gene_name = c("ap”, "dpr1"”, "side"”, "dpr2", "eg", "bi", "br")
)
data_dir <- system.file("extdata”, package = "damidBind")
loaded_data <- load_data_peaks(

binding_profiles_path = data_dir,

peaks_path = data_dir,

ensdb_genes = mock_genes_gr,

quantile_norm = TRUE
)
diff_results <- differential_binding(

loaded_data,

cond = c(”"L4 Neurons"” = "L4",

"L5 Neurons” = "L5")

)
return(diff_results)

}

diff_results <- .generate_example_results()

analysisTable

Run GO Enrichment for genes enriched in the first condition ("L4")
Note: with tiny sample data, this may not find significant terms.
go_results <- analyse_go_enrichment(

diff_results,

direction = "L4",

org_db = org.Dm.eg.db::org.Dm.eg.db
)

Print the results table if any enrichment was found

if (!'is.null(go_results)) {
print(go_results$results_table)

}

analysisTable Access the differential binding analysis results

Description

This function returns the full differential analysis table from the DamIDResults object.

Usage

analysisTable(object)

Arguments

object A DamIDResults object.

Value

A data. frame with the full analysis results.

See Also

DamIDResults-class for an overview of the class and all its methods.

Examples

Helper function to create a sample DamIDResults object for examples
.generate_example_results <- function() {
analysis_df <- data.frame(
logFC = c(2, -2, 0.1), P.Value = c(0.01, 0.01, 0.9), B = c(4, 3, -1),
gene_name = c("GeneA", "GeneB", "GeneC"),
row.names = c("chr1:1-100", "chr1:101-200", "chr1:201-300")
)
new("DamIDResults”,
analysis = analysis_df,
upCond1 = analysis_df[1, , drop = FALSE],

8 browse_igv_regions

upCond2 = analysis_df[2, , drop = FALSE],
cond = c("Condition 1" = "C1", "Condition 2" = "C2"),
data = list(test_category = "bound")
)
3
mock_results <- .generate_example_results()
analysisTable(mock_results)

browse_igv_regions Interactive IGV visualisation (Shiny + igvShiny) of differential regions

Description

Launches a Shiny app with an embedded IGV browser and an interactive table listing differentially-
bound regions (from ‘differential_binding()‘ or ‘differential_accessibility() results). Clicking on
a region in the table will pan IGV to that locus. Sample coverage and region tracks are loaded as
quantitative/annotation tracks. A dedicated "Save as SVG" button is provided to export the current
IGV view.

Usage

browse_igv_regions(
diff_results,
samples = NULL,
use_unique_ids = TRUE,
colour_condl = "#ff6600",
colour_cond2 = "#2288dd",
use_genome = NULL,
padding_width = 20000,
trackHeight = 65,

peakColour = "darkgreen",
trackColour = "#6666ff",
host = "localhost”,
port = NULL
)
Arguments

diff_results A ‘DamIDResults object, as returned by ‘differential_binding()‘ or ‘differen-
tial_accessibility()‘.
samples Optional character vector of sample names to display (default: all in dataset).

use_unique_ids Logical. When ‘TRUE‘ (default), simplified unique sample names will be dis-
played. Set as ‘FALSE" to use the full sample file names from loading.
colour_cond1, colour_cond?2
Colours for differentially-enriched region tracks.

use_genome IGV genome name (inferred from peak annotations if not provided).

browse_igv_regions

padding_width
trackHeight
peakColour
trackColour
host

port

Value

Width to pad browser viewbox on either side of the peak (Default: 20000)
Height of bedGraph tracks (Default: 65)

Colour for significant peaks track (Default: "darkgreen")

Colour for bedGraph tracks (Default: "#6666ff")

Hostname for the server location (Default: "localhost").

Port for connection (if NULL (default) the port is assigned by Shiny).

Invisibly returns the Shiny app object created by ‘shinyApp()‘.

Examples

if (isTRUE(curl::has_internet()) && interactive()) {
This example launches an interactive Shiny app in a web browser

.generate_example_results <- function() {
mock_genes_gr <- GenomicRanges: :GRanges(
seqgnames = S4Vectors::Rle("2L", 7),
ranges = IRanges: :IRanges(

start

= c(1000, 2000, 3000, 5000, 6000, 7000, 8000),

end = c(1500, 2500, 3500, 5500, 6500, 7500, 20000000)

)’

gene_id = c("FBgnoo1", "FBgn0@2", "FBgno@3", "FBgnoo4", "FBgn@@5", "FBgndo6", "FBgnood7"),
gene_name = c("geneA"”, "geneB", "geneC"”, "geneD"”, "geneE", "geneF", "LargeTestGene")

)

data_dir <- system.file("extdata”, package = "damidBind")
loaded_data <- load_data_peaks(

binding_profiles_path = data_dir,

peaks_path = data_dir,

ensdb_genes = mock_genes_gr,

quantile_norm = TRUE

)

diff_results <- differential_binding(
loaded_data,
cond = c("L4 Neurons” = "L4",

)

"L5 Neurons” = "L5")

return(diff_results)

3

diff_results <- .generate_example_results()

Launch the interactive browser
browse_igv_regions(diff_results)

}

10 calculate_and_add_occupancy_pvals

calculate_and_add_occupancy_pvals
Calculate and add gene occupancy FDR

Description

This function calculates a p-value for gene occupancy scores. When adjusted for multiple-hypothesis
testing, the resulting FDR may used as a proxy for determining whether a gene is actively expressed
in RNA Polymerase TaDa experiments. The function applies a permutation-based null model to
each sample’s binding profile to determine empirical p-values, and returns these as new columns in
the input occupancy dataframe.

These p-values are then aggregated and

Usage

calculate_and_add_occupancy_pvals(
binding_data,
occupancy_df,
null_model_iterations = 1e+05,
return_per_replicate_fdr = FALSE,
plot_diagnostics = FALSE,
BPPARAM = BiocParallel: :bpparam(),
seed = NULL

Arguments

binding_data A ‘GRanges‘ object of binding profiles, where metadata columns represent sam-
ples. This is typically the ‘binding_profiles_data‘ element from the list returned
by ‘load_data_genes*.

occupancy_df A data frame of gene occupancies, typically the ‘occupancy‘ element from the
list returned by ‘load_data_genes‘. It must contain sample columns and a ‘nfrags
column.

null_model_iterations
Integer. The number of sampling iterations to build the FDR null model. Higher
values are more accurate but slower. Default is 100000.

return_per_replicate_fdr
Logical. Returns individual FDR scores by applying BH adjustment on each in-
dividual sample. Use this option if not intending to apply downstream condition-
level p-value aggregation via ‘differential_binding()‘. (Default: FALSE)

3

plot_diagnostics
Logical. If TRUE, will plot the Tier 2 regression fits for the p-value prediction
slope, intercept and mean squared error (MSE). (Default: FALSE)

BPPARAM A ‘BiocParallelParam* instance specifying the parallel backend to use for com-
putation. See ‘BiocParallel::bpparam()‘.

calculate_and_add_occupancy_pvals 11

seed An optional integer. If provided, it is used to set the random seed before the sam-
pling process begins, ensuring that the FDR calculations are fully reproducible.
If ‘NULL (default), results may vary between runs.

Details

The algorithm used here is substantially revised and adapted from the method described in Southall
et al. (2013), Dev Cell, 26(1), 101-12. The broad principle is as follows:

1. For each sample, a null distribution of mean occupancy scores is simulated by repeatedly
sampling random fragments from the genome-wide binding profile. This is done for various
numbers of fragments.

2. Atwo-tiered regression model is fitted to the simulation results. This creates a statistical model
that can predict the empirical p-value for any given occupancy score and fragment count.

3. This predictive model is then applied to the actual observed mean occupancy and fragment
count for each gene in the ‘occupancy_df*.
4. The final set of p-values is adjusted using BH correction to generate FDR scores for each gene.

5. The FDR value for each gene in each sample is appended to the ‘occupancy_df‘ in a new
column.

Key differences from the original Southall et al. algorithm include fitting natural spline models,
using WLS to account for heterscedasticity of models, and sampling with replacement to generate
the underlying null distribution.

This function is typically not called directly by the user, but is instead invoked via ‘load_data_genes(calculate_occupancy_pva
=TRUE)".

Value

An updated version of the input ‘occupancy_df* data frame, with new columns appended. For each
sample column (e.g., ‘SampleA*), a corresponding p-value column (e.g., ‘SampleA_pval‘) is added.

See Also

[load_data_genes()] which uses this function internally.

Examples

Prepare sample binding data (GRanges object)

Here, we'll load one of the sample files included with the package

(this is a TF binding profile, which would not normally be used for

occupancy calculations)

data_dir <- system.file("extdata”, package = "damidBind")

bgraph_file <- file.path(data_dir, "Bsh_Dam_L4_r1-ext300-vs-Dam.kde-norm.gatc.2L.bedgraph.gz")

The internal function ~import_bedgraph_as_df" is used here for convenience.
The column name 'score' will be replaced with the sample name.
binding_df <- damidBind:::import_bedgraph_as_df(bgraph_file, colname = "Sample_1")

binding_gr <- GenomicRanges: :GRanges(
segnames = binding_df$chr,

12 calculate_occupancy

ranges = IRanges::IRanges(start = binding_df$start, end = binding_df$end),
Sample_1 = binding_df$Sample_1
)

Create a mock occupancy data frame.
In a real analysis, this would be generated by ~calculate_occupancy()~.
mock_occupancy <- data.frame(

name = c("geneA", "geneB"”, "geneC"),

nfrags = c(5, 10, 2),

Sample_1 = c(1.5, 0.8, -0.2),

row.names = c("geneA"”, "geneB", "geneC")

)

Calculate pvals.
We use a low null_model_iterations for speed, and a seed for reproducibility.
occupancy_with_pvals <- calculate_and_add_occupancy_pvals(
binding_data = binding_gr,
occupancy_df = mock_occupancy,
null_model_iterations = 100,
BPPARAM = BiocParallel::SerialParam(),
seed = 42
)

View the result, which now includes a _pval column for Sample_1.
print(occupancy_with_pvals)

calculate_occupancy Compute occupancy for genomic regions

Description

For each interval in the ‘regions‘ GRanges object, this function finds all overlapping fragments
in ‘binding_data‘ and computes a weighted mean of their signal values. Any metadata columns
present in the input ‘regions‘ object are preserved in the output data.frame.

Usage

calculate_occupancy(
binding_data,
regions,
buffer = 0,
BPPARAM = BiocParallel: :bpparam()

Arguments

binding_data A data.frame as produced by ‘build_dataframes()‘. It must contain columns
“chr’, *start’, ’end’, followed by numeric sample columns.

conditionNames 13

regions A GRanges object of genomic intervals (e.g., genes or reduced peaks) over
which to calculate occupancy.

buffer Optional integer. Number of base pairs to expand each interval in ‘regions‘ on
both sides before calculating occupancy. Default is 0.

BPPARAM A BiocParallel parameter object for parallel computation. Default is ‘BiocPar-
allel::bpparam()°.

Value

A data.frame with one row per region from the input ‘regions‘ object. The output includes the
weighted mean occupancy for each sample, ‘nfrags‘ (number of overlapping fragments), and all
original metadata columns from ‘regions‘. Rownames are generated from region coordinates to
ensure uniqueness.

Examples

Create a set of regions with metadata

regions_gr <- GenomicRanges: :GRanges(
"chrX", IRanges::IRanges(start = c(100, 500), width = 100),
gene_name = c("MyGenel”, "MyGene2"), score = c(10, 20)

)

Create a mock binding data GRanges object
binding_gr <- GenomicRanges: :GRanges(
segnames = "chrXx”,
ranges = IRanges: :IRanges(
start = c(90, 150, 480, 550),
end = c(110, 170, 520, 580)

)!
sampleA = c(1.2, 0.8, 2.5, 3.0),
sampleB = c(1.0, 0.9, 2.8, 2.9)

)

Calculate occupancy over the regions
Use BiocParallel::SerialParam() for deterministic execution in examples
if (requireNamespace("BiocParallel”, quietly = TRUE)) {
occupancy_data <- calculate_occupancy(binding_gr, regions_gr,
BPPARAM = BiocParallel::SerialParam()

)
print(occupancy_data)
3
conditionNames Access condition name mapping
Description

This function returns the mapping of user-friendly display names to internal condition identifiers.

14 DamlIDResults-class

Usage

conditionNames(object)

Arguments

object A DamIDResults object.

Value

A named character vector.

See Also

DamIDResults-class

Examples

Helper function to create a sample DamIDResults object for examples
.generate_example_results <- function() {
analysis_df <- data.frame(
logFC = c(2, -2, 0.1), P.Value = c(0.01, 0.01, 0.9), B = c(4, 3, -1),
gene_name = c("GeneA", "GeneB", "GeneC"),
row.names = c("chr1:1-100", "chr1:101-200", "chr1:201-300")
)
new("DamIDResults”,
analysis = analysis_df,
upCond1 = analysis_df[1, , drop = FALSE],
upCond2 = analysis_df[2, , drop = FALSE],
cond = c("Condition 1" = "C1", "Condition 2" = "C2"),
data = list(test_category = "bound")

}

mock_results <- .generate_example_results()
conditionNames(mock_results)

DamIDResults-class The DamIDResults Class

Description

An S4 class to store the results of a differential analysis, as generated by differential_binding or
differential_accessibility. It contains the full analysis table, subsets of significantly changed
regions, and associated metadata.

DamlIDResults-class 15

Slots

analysis A ‘data.frame‘ containing the full differential analysis table from ‘limma‘ or ‘NOISeq"*.
upCond1 A ‘data.frame’ of regions significantly enriched in the first condition.
upCond2 A ‘data.frame’ of regions significantly enriched in the second condition.

cond A named ‘character® vector mapping user-friendly display names (the names) to the internal
condition identifiers (the values) used in the analysis.

data A ‘list‘ containing the initial input data used for the analysis, including the occupancy ‘data.frame*
and other metadata.

Accessor Methods
The following accessor functions are available for a DamIDResults object.

* analysisTable(object): Returns the full differential analysis table (a data. frame).

* enrichedCond1(object): Returns a data. frame of regions significantly enriched in the first
condition.

* enrichedCond2(object): Returns a data. frame of regions significantly enriched in the sec-
ond condition.

* conditionNames(object): Returns a named character vector mapping display names to
internal identifiers.

* inputData(object): Returns a 1ist containing the original input data used for the analysis.

¢ expressed(object, condition, fdr =0.05, which ="any"): Returns a data.frame of
genes considered expressed in ‘condition, based on an FDR threshold of significantly en-
riched occupancy. Only available for analyses with FDR calculations, generated via load_data_genes(calculate_oc
= TRUE).

Generic Methods

The generic plot() function is also S4-enabled for this class. Calling plot(object) is equivalent
to calling plot_volcano(diff_results = object).

See Also

For more powerful and specific plotting functions, see plot_volcano, plot_venn, and analyse_go_enrichment.

To explore the differential analysis results in an interactive IGV browser window, see browse_igv_regions

Examples

Helper function to create a sample DamIDResults object for examples
.generate_example_results <- function() {
analysis_df <- data.frame(
logFC = c(2, -2, 0.1), P.Value = c(0.01, 0.01, 0.9), B = c(4, 3, -1),
gene_name = c("GeneA", "GeneB", "GeneC"),
row.names = c("chr1:1-100", "chr1:101-200", "chr1:201-300")
)
new("DamIDResults”,
analysis = analysis_df,

16 differential_accessibility

upCond1 = analysis_df[1, , drop = FALSE],
upCond2 = analysis_df[2, , drop = FALSE],
cond = c("Condition 1" = "C1", "Condition 2" = "C2"),
data = list(test_category = "bound")
)
3

mock_results <- .generate_example_results()

Show the object summary
mock_results

Access different parts of the object
analysisTable(mock_results)
enrichedCond1(mock_results)
conditionNames(mock_results)

differential_accessibility
Differential accessibility analysis for CATaDa (‘NOISeq‘ based)

Description

Setup and differential analysis for CATaDa chromatin accessibility experiments using ‘NOISeq°.
Accepts output from ‘load_data_peaks®, prepares a count matrix, performs ‘NOISeq‘ analysis, and
returns differentially-accessible loci.

Usage

differential_accessibility(data_list, cond, regex = FALSE, norm = "n", q = 0.8)

Arguments

data_list List. Output from load_data_peaks.

cond A named or unnamed character vector of length two. The values are strings or
regular expressions used to identify samples for each condition. If the vector is
named, the names are used as user-friendly display names for the conditions in
plots and outputs. If unnamed, the match strings are used as display names. The
order determines the contrast, e.g., ‘cond[1]‘ vs ‘cond[2]".

regex Logical. If ‘TRUE’, the strings in ‘cond* are treated as regular expressions for
matching sample names. If ‘FALSE‘ (the default), fixed string matching is used.

norm Normalisation method passed to NOISeq. Defaults to "n" (no normalisation),

but "uqua" (upper quantile) or "tmm" (trimmed mean of M) are options if needed

q Numeric. Q-value threshold for NOISeq significance (default 0.8).

differential_binding 17

Value

A ‘DamIDResults‘ object containing the results. Access slots using accessors (e.g., ‘analysisTable(results)‘).
The object includes:

upCond1 data.frame of regions enriched in condition 1
upCond?2 data.frame of regions enriched in condition 2
analysis data.frame of full results for all tested regions
cond A named character vector mapping display names to internal condition names
data The original ‘data_list® input
Examples

NOTE: This example uses mock counts data, as the package's sample
data is in log2-ratio format.

Create a mock data_list with plausible count data
mock_occupancy_counts <- data.frame(
name = c("peak1”, "peak2", "peak3"),
gene_name = c("GeneA", "GeneB", "GeneC"),
gene_id = c("ID_A", "ID_B", "ID_C"),
GroupA_repl = c(100, 20, 50), GroupA_rep2 = c(110, 25, 45),
GroupB_repl1 = c(10, 200, 55), GroupB_rep2 c(15, 220, 60),
row.names = c("peakl”, "peak2", "peak3")

)

mock_data_list <- list(
occupancy = mock_occupancy_counts,
test_category = "accessible”

)

Run differential accessibility analysis
diff_access_results <- differential_accessibility(
mock_data_list,
cond = c("Group A" = "GroupA"”, "Group B" = "GroupB")
)

View the results summary
diff_access_results

differential_binding Differential binding/expression analysis (‘limma")

Description

Setup and differential analysis for occupancy/binding experiments using ‘limma‘. Accepts output
from ‘load_data_peaks‘ or ‘load_data_genes‘, prepares an experiment matrix, fits linear models,
and returns DE loci.

18 differential_binding

Usage

differential_binding(
data_list,
cond,
regex = FALSE,
fdr = 0.05,
eBayes_trend = TRUE,
eBayes_robust = TRUE,
plot_diagnostics = interactive(),
filter_occupancy = TRUE,
filter_threshold = 0,
filter_positive_enrichment = TRUE,

p_combine_method = c("stouffer”, "fisher")
)
Arguments

data_list List. Output from load_data_peaks or load_data_genes.

cond A named or unnamed character vector of length two. The values are strings or
regular expressions used to identify samples for each condition. If the vector is
named, the names are used as user-friendly display names for the conditions in
plots and outputs. If unnamed, the match strings are used as display names. The
order determines the contrast, e.g., ‘cond[1]° vs ‘cond[2]".

regex Logical. If “TRUE", the strings in ‘cond‘ are treated as regular expressions for
matching sample names. If ‘FALSE’ (the default), fixed string matching is used.

fdr Numeric. FDR threshold for significance (default 0.05).

eBayes_trend Logical. If ‘“TRUE, the analysis will account for data heteroscedasticity, which
is common in DamID-seq data. (default: TRUE)

eBayes_robust Logical. If “TRUE", the fitted trend should be robust to outliers. Only useful
when ‘eBayes_trend = TRUE‘. Recommended for DamID-seq data. (default:
TRUE)

plot_diagnostics
Logical. If “TRUE* (default for interactive sessions), plots limma diagnostics to
assess eBayes moderation, using ‘plot_limma_diagnostics®.

filter_occupancy
NULL or integer. Filters out any locus with occupancy > ‘filter_threshold® in
fewer than this number of samples of any single condition when set. If set to
TRUE, defaults to the minimum length of the two conditions. If FALSE or
NULL, no filtering is applied. (default: TRUE)

filter_threshold
Numeric. ‘filter_occupancy‘ uses this value for thresholding the input data. (de-
fault: 0)

filter_positive_enrichment
Logical. If “TRUE* (default), regions are only considered significantly enriched
if the mean score in the enriched condition is greater than zero. For example,
for a region to be in ‘upCond1°, its logFC must be positive and its mean score

differential_binding 19

in condition 1 must be > 0. Set to ‘FALSE" to include all statistically significant
changes.

p_combine_method
Method to combine p-values from replicates (default: "fisher")

Value
A ‘DamIDResults‘ object containing the results. Access slots using accessors:

enrichedCond1()
data.frame of regions enriched in condition 1
enrichedCond2()
data.frame of regions enriched in condition 2
analysisTable()
data.frame of full results for all tested regions
conditionNames()
A named character vector mapping display names to internal condition names

inputData() The original ‘data_list‘ input

Examples

Create a mock GRanges object for gene annotations
This object, based on the package's unit tests, avoids network access.
mock_genes_gr <- GenomicRanges: :GRanges(
seqnames = S4Vectors::Rle("2L", 7),
ranges = IRanges: :IRanges(
start = c(1000, 2000, 3000, 5000, 6000, 7000, 8000),
end = c(1500, 2500, 3500, 5500, 6500, 7500, 20000000)

)’

strand = S4Vectors::Rle(GenomicRanges: :strand(c("+", "=", "+", "+" U=r onoroomgpnyyyo
gene_id = c("FBgnoo1", "FBgn@2", "FBgno@3", "FBgnoo4", "FBgn0@5", "FBgndo6", "FBgnoo7"),
gene_name = c("geneA", "geneB", "geneC", "geneD", "geneE", "geneF", "LargeTestGene")

)

Get path to sample data files included with the package
data_dir <- system.file("extdata"”, package = "damidBind")

Load data

loaded_data <- load_data_peaks(
binding_profiles_path = data_dir,
peaks_path = data_dir,
ensdb_genes = mock_genes_gr,
quantile_norm = TRUE

)

Run differential binding analysis
diff_results <- differential_binding(
loaded_data,
cond = c("L4 Neurons” = "L4", "L5 Neurons” = "L5")

20 enrichedCond1

View the results summary
diff_results

enrichedCond1 Access Condition 1 enriched regions

Description

This function returns the subset of regions significantly enriched in the first condition.

Usage

enrichedCond1(object)

Arguments

object A DamIDResults object.

Value

A data.frame.

See Also

DamIDResults-class

Examples

Helper function to create a sample DamIDResults object for examples
.generate_example_results <- function() {
analysis_df <- data.frame(
logFC = c(2, -2, 0.1), P.Value = c(0.01, 0.01, 0.9), B = c(4, 3, -1),
gene_name = c("GeneA", "GeneB"”, "GeneC"),
row.names = c("chr1:1-100", "chr1:101-200", "chr1:201-300")
)
new("DamIDResults”,
analysis = analysis_df,
upCondl = analysis_df[1, , drop = FALSE],
upCond2 = analysis_df[2, , drop = FALSE],
cond = c("Condition 1" = "C1", "Condition 2" = "C2"),
data = list(test_category = "bound")
)
}
mock_results <- .generate_example_results()
enrichedCond1(mock_results)

enrichedCond2 21

enrichedCond?2 Access Condition 2 enriched regions

Description

This function returns the subset of regions significantly enriched in the second condition.

Usage

enrichedCond2(object)

Arguments

object A DamIDResults object.

Value

A data.frame.

See Also

DamIDResults-class

Examples

Helper function to create a sample DamIDResults object for examples
.generate_example_results <- function() {
analysis_df <- data.frame(
logFC = c(2, -2, 0.1), P.Value = c(0.01, 0.01, 0.9), B = c(4, 3, -1),
gene_name = c("GeneA", "GeneB", "GeneC"),
row.names = c("chr1:1-100", "chr1:101-200", "chr1:201-300")
)
new("DamIDResults”,
analysis = analysis_df,
upCond1 = analysis_df[1, , drop = FALSE],
upCond2 = analysis_df[2, , drop = FALSE],
cond = c("Condition 1" = "C1", "Condition 2" = "C2"),
data = list(test_category = "bound")

3
mock_results <- .generate_example_results()
enrichedCond2(mock_results)

22 expressed

expressed Get expressed genes/loci by FDR

Description

A method to filter genes or loci that are considered "expressed’ in a specific condition, based on a
False Discovery Rate (FDR) threshold. The method is a wrapper around the filter_genes_by_fdr
function.

Usage

expressed(object, condition, fdr = 0.05, which = "any")

Arguments
object A DamIDResults object. This object must have been generated from data loaded
with load_data_genes(calculate_occupancy_pvals = TRUE) for the under-
lying FDR columns to be present.
condition A character string identifying the experimental condition to filter. This can be
the internal identifier or the user-friendly display name.
fdr Numeric. The FDR cutoff. Defaults to 0.05.
which Character string, either "any’ or ’all’. Determines whether a gene must pass the
FDR threshold in any or all replicates of the condition. Defaults to any’.
Value

A data. frame containing the gene_name and gene_id of genes that pass the filter.

See Also

filter_genes_by_fdr, DamIDResults-class, load_data_genes

Examples

.generate_fdr_example_results <- function() {

occupancy_df <- data.frame(
gene_name = c("geneA", "geneB"”, "geneC"),
gene_id = c("FBgn@1"”, "FBgn@2", "FBgn@3"),
L4_repl = c(1.5, 0.2, 0.8),
L4_rep2 = c(1.7, 0.9, 0.1),
L5_repl = c(0.1, 0.1, 2.0),
L4_rep1_FDR = c(0.01, 0.10, 0.04),
L4_rep2_FDR = c(0.03, 0.02, 0.50),
L5_rep1_FDR = c(0.80, 0.90, 0.01),
row.names = c("geneA"”, "geneB", "geneC")

)

diff_results_base <- list(
occupancy = occupancy_df,

extract_unique_sample_ids 23

test_category = "expressed”,
matched_samples = list("L4" = c("L4_repl1”, "L4_rep2"), "L5" = "L5_repl")
)
new("DamIDResults”,
analysis = data.frame(row.names = rownames(occupancy_df)),
upCond1 = data.frame(),
upCond2 = data.frame(),
cond = c("L4 mock” = "L4", "L5 mock” = "L5"),
data = diff_results_base
)
3

mock_fdr_results <- .generate_fdr_example_results()

Get expressed in a condition (FDR <= 0.05)
expressed(mock_fdr_results, condition = "L4 mock")

Get genes expressed with a more stringent FDR (<= 0.01)
expressed(mock_fdr_results, condition = "L4", fdr = 0.01)

extract_unique_sample_ids
Extract unique sample names from complex labels

Description

This function takes a vector of complex sample labels and iteratively constructs a simplified, unique
name for each. It identifies all blocks of text that differ across the sample set and progressively adds
them to a base name until the combination of the base name and a replicate identifier is unique for
every sample.

Usage

extract_unique_sample_ids(
sample_names,
delimiter = "[-_\\.]",
replicate_pattern = "*(n|N|r|rep|replicate|sample)\\d+"

)

Arguments

sample_names A character vector of sample labels.
delimiter A regular expression used as a delimiter to split labels into blocks. (Default:
-2\
replicate_pattern
A regular expression used to identify the replicate block. (Default: ‘“*(nINlrlreplreplicatelsample)\d+°)

Value

A vector of simplified, unique names. If a unique name cannot be formed or essential information
is missing for a sample, the original label for that sample is returned as a fallback.

24 filter_genes_by_fdr

Examples

labels <- c(
"RNAPII_elav-GSE77860-n1-SRR3164378-2017-vs-Dam.scaled.kde-norm"”,
"RNAPII_elav-GSE77860-n2-SRR3164379-2017-vs-Dam.scaled.kde-norm",
"RNAPII_elav-GSE77860-n4-SRR3164380-2017-vs-Dam.scaled.kde-norm",
"RNAPII_Wor-GSE77860-n1-SRR3164346-2017-vs-Dam.scaled.kde-norm”,
"RNAPII_Wor-GSE77860-n2-SRR3164347-2017-vs-Dam.scaled.kde-norm”,
"RNAPII_Wor-GSE77860-sample1-SRR2038537-2017-vs-Dam.scaled.kde-norm”

)

extract_unique_sample_ids(labels)

filter_genes_by_fdr Filter genes by FDR within a specific condition

Description

Filters a list of genes to retain only those that meet a specified False Discovery Rate (FDR) thresh-
old. If the input is a ‘DamIDResults‘ object and a combined condition-level FDR has been calcu-
lated, that value is used. Otherwise, the function falls back to filtering against individual replicates.

Usage
filter_genes_by_fdr(data, fdr = @.05, condition, which = "any")

Arguments
data A ‘DamIDResults‘ object or the ‘list‘ returned by ‘load_data_genes()‘.
fdr A numeric value between 0 and 1 specifying the FDR cutoff. (Default: 0.05)
condition A character string identifying the experimental condition. This string should
uniquely match the relevant sample columns (e.g., "L4" will match "L4_rep1_FDR"
and "L4_rep2_FDR"). If ‘data‘ is a ‘DamIDResults‘ object, this can be either
the internal identifier or the display name for the condition.
which A character string, either “"any"* or “"all"‘. Only applicable when falling back
to individual replicate scores. (Default: “"any"*)
o If “"any"‘, a gene is kept if it meets the ‘fdr‘ threshold in at least one repli-
cate of the specified ‘condition‘.
o If “"all"*, a gene is kept only if it meets the ‘fdr threshold in all replicates
of the specified ‘condition‘.
Details

This function is primarily used in workflows involving RNA Polymerase TaDa data, where an FDR
is calculated for gene occupancy to determine if a gene is actively transcribed. It allows users to
identify genes in a single condition that can be considered to be expressed (i.e. RNA Pol occupancy
is significantly greater than background).

filter_genes_by_fdr 25

Note that while this is an effective proxy for gene expression, there are edge cases (e.g. paused
polymerase, short genes directly adjacent to an expressed gene TSS or TES) where a gene may
have significant occupancy but not, in fact, be transcribed.

The function locates the relevant FDR columns in the ‘occupancy’ table by searching for column
names that end with ‘_FDR‘ and also contain the ‘condition® string.

Value

A ‘data.frame‘ containing the ‘gene_name‘, ‘gene_id‘, ‘avg_occ‘, and the most significant FDR
value found.

Examples

Create a mock data object with an occupancy table containing FDR values,
similar to the output of ~load_data_genes(calculate_occupancy_pvals = TRUE)".
.generate_fdr_example_results <- function() {
occupancy_df <- data.frame(
gene_name = c("geneA", "geneB", "geneC"),
gene_id = c("FBgno1", "FBgn@2", "FBgne3"),

L4_repl = c(1.5, 0.2, 0.8),

L4_rep2 = c(1.7, 0.9, 0.1),

L5_repl = c(0.1, 0.1, 2.0),

L4_rep1_FDR = c(0.01, 0.10, 0.04),
L4_rep2_FDR = c(0.03, 0.02, 0.50),
L5_rep1_FDR = c(0.80, 0.90, 0.01),
row.names = c("geneA"”, "geneB", "geneC")

)
diff_results_base <- list(
occupancy = occupancy_df,
test_category = "expressed”,
matched_samples = list("L4" = c("L4_repl1”, "L4_rep2"), "L5" = "L5_repl")
)
new("DamIDResults”,
analysis = data.frame(row.names = rownames(occupancy_df)),
upCond1 = data.frame(),
upCond2 = data.frame(),
cond = c("L4 mock” = "L4", "L5 mock" = "L5"),
data = diff_results_base
)
3

mock_data <- .generate_fdr_example_results()

Example 1: Get genes with FDR <= 0.05 in ANY L4 replicate.
geneA (0.01, 0.03), geneB (0.02), and geneC (0.04) pass.
expressed_in_L4_any <- filter_genes_by_fdr(

mock_data,

fdr = 0.05,

condition = "L4",

which = "any”
)

print(expressed_in_L4_any)

26 get_ensdb_genes

Example 2: Get genes with FDR <= 0.05 in ALL L4 replicates.
Only geneA (0.01, 0.03) passes.
expressed_in_L4_all <- filter_genes_by_fdr(
mock_data,
fdr = 0.05,
condition = "L4",
which = "all”
)
print(expressed_in_L4_all)

Example 3: Get genes with FDR <= 0.05 in any L5 replicate.
geneC (0.01) and geneD (0.02) pass.
expressed_in_L5 <- filter_genes_by_fdr(
mock_data,
fdr = 0.05,
condition = "L5",
which = "any”
)

print(expressed_in_L5)

get_ensdb_genes Extract gene annotation from Ensembl via AnnotationHub EnsDb

Description

Retrieves gene information for a given organism from the most appropriate Ensembl database
hosted via Bioconductor’s AnnotationHub and ensembldb.

Usage

get_ensdb_genes(
organism_keyword = "drosophila melanogaster”,
genome_build = NULL,
ensembl_version = NULL,

exclude_biotypes = c("transposable_element”, "pseudogene"”),
include_gene_metadata = c("gene_id", "gene_name")
)
Arguments

organism_keyword
Character. Unique non-case-senstive string to search for the organism (e.g.,
"drosophila melanogaster").

genome_build Optional character. Genome build identifier to further restrict the EnsDb selec-
tion (e.g., "BDGP6").

ensembl_version

Optional integer. Specific Ensembl version to fetch. If NULL, the latest avail-
able version is used.

inputData 27

exclude_biotypes
Character vector. Gene biotypes to exclude from the result (default: c("transposable_element",
"pseudogene")).

include_gene_metadata
Character vector. Metadata columns to keep for each gene (default: c("gene_id",
"gene_name")).

Details

This function queries AnnotationHub for EnsDb objects matching a supplied organism keyword,
with optional filtering by genome build and Ensembl version. Genes matching excluded biotypes
are filtered out. Only user-selected metadata fields are retained in the genes output.

Value

List with:

genes A GRanges object of genes (metadata columns per argument).
ensembl_version
Character. The Ensembl version string.

genome_build Character. Genome build identifier.

species Character. Latin binomial species name.
common_name Character. Species common name.
Examples

if (isTRUE(curl::has_internet())) {
This example requires an internet connection and will download data.
dm_genes <- get_ensdb_genes(

organism_keyword = "drosophila melanogaster”,

ensembl_version = 110

)

View the fetched genes GRanges object
dm_genes$genes

}

inputData Access original input data and metadata

Description

This function returns the original list of input data used to generate the results.

Usage
inputData(object)

28 load_data_genes

Arguments

object A DamIDResults object.

Value

A list.

See Also

DamIDResults-class

Examples

Helper function to create a sample DamIDResults object for examples
.generate_example_results <- function() {
analysis_df <- data.frame(
logFC = c(2, -2, ©.1), P.Value = c(0.01, 0.01, 0.9), B = c(4, 3, -1),
gene_name = c("GeneA", "GeneB"”, "GeneC"),
row.names = c("chr1:1-100", "chr1:101-200", "chr1:201-300")
)
new("DamIDResults”,
analysis = analysis_df,
upCond1 = analysis_df[1, , drop = FALSE],
upCond2 = analysis_df[2, , drop = FALSE],
cond = c("Condition 1" = "C1", "Condition 2" = "C2"),
data = list(test_category = "bound")
)
}
mock_results <- .generate_example_results()
inputData(mock_results)

load_data_genes Load genome-wide binding data for gene expression (RNA polymerase
occupancy)

Description

Reads RNA Polymerase DamID binding profiles either from bedGraph files or directly from a
named list of GRanges objects. Calculates binding occupancy summarised over genes.

Usage

load_data_genes(
binding_profiles_path = NULL,
binding_profiles = NULL,
drop_samples = NULL,
quantile_norm = FALSE,
organism = "drosophila melanogaster”,

load_data_genes 29

calculate_occupancy_pvals = TRUE,
return_per_replicate_fdr = FALSE,
occupancy_plot_diagnostics = interactive(),
null_model_iterations = 1e+05,

ensdb_genes = NULL,

BPPARAM = BiocParallel: :bpparam(),
plot_diagnostics = interactive()

Arguments

binding_profiles_path
Character vector of directories or file globs containing log2 ratio binding tracks
in bedGraph format. Wildcards (’*’) supported.

binding_profiles
Named list of GRanges objects representing binding profiles.

drop_samples A character vector of sample names or patterns to remove. Matching samples
are removed from the analysis before normalisation and occupancy calculation.
This can be useful for excluding samples that fail initial quality checks. Default:
‘NULL* (no samples are dropped).

quantile_norm Logical (default: FALSE) quantile-normalise across all signal columns if TRUE.

organism Organism string (lower case) to obtain genome annotation from (if not providing
a custom ‘ensdb_genes‘ object) Defautls to "drosophila melanogaster".
calculate_occupancy_pvals
Calculate occupancy p-values as a proxy for gene expression status (see details).
Not used for differential expression analysis, but used when present for down-
stream analysis and plotting. (default: TRUE)
return_per_replicate_fdr
Legacy option of returning BH-adjusted RNA Polymerase occupancy FDR val-
ues per replicate. As of v0.99.12, unadjusted p-values are returned by defualt;
these are then aggregated at the condition level during ‘differential_binding()*
and the aggregate p-values adjusted to gain statistical power. This option exists
for legacy or unsual end-user applications. Use with caution. (default: FALSE)
occupancy_plot_diagnostics
Logical. If ‘TRUE (default in interactive sessions), diagnostic plots for the gene
expression null model will be displayed.
null_model_iterations
Number of iterations to use to determine null model for FDR (default: 100000)

ensdb_genes GRanges object: gene annotation. Automatically obtained from ‘organism® if
NULL.
BPPARAM BiocParallel function (defaults to BiocParallel::bpparam())

plot_diagnostics
Logical. If “TRUE® (the default in interactive sessions), diagnostic plots (PCA
and correlation heatmap) will be generated and displayed for both the raw bind-
ing data and the summarised occupancy data.

30 load_data_genes

Details

One of ‘binding_profiles_path* or ‘binding_profiles* must be provided.

When supplying GRanges lists, each GRanges should contain exactly one numeric metadata column
representing the signal, and ‘binding_profiles* must be a named list, with element names used as
sample names.

The algorithm for determining gene occupancy FDR (as a proxy for gene expression) is based
on ‘polii.gene.call‘, which in turn was based on that described in Southall et al. (2013). Dev Cell,
26(1), 101-12. doi:10.1016/j.devcel.2013.05.020. Briefly, the algorithm establishes a null model by
simulating the distribution of mean occupancy scores from random fragments. It fits a two-tiered
regression to predict the False Discovery Rate (FDR), based on fragment count and score. For
each gene, the true weighted mean occupancy and fragment count are calculated from the provided
binding profile. Finally, the pre-computed regression models are used to assign a specific FDR to
each gene based on its observed occupancy and fragment count.

Value

List with elements:

binding_profiles_data
data.frame of merged binding profiles, with chr, start, end, sample columns, and
_pval columns if ‘calculate_occupancy_pvals=TRUE*

occupancy data.frame of occupancy values summarised over genes.

test_category Character scalar; will be "expressed".

Examples

Create a mock GRanges object for gene annotations
This object, based on the package's unit tests, avoids network access
and includes a very long gene to ensure overlaps with sample data.
mock_genes_gr <- GenomicRanges: :GRanges(
segnames = S4Vectors::Rle("2L", 7),
ranges = IRanges::IRanges(
start = c(1000, 2000, 3000, 5000, 6000, 7000, 8000),
end = c(1500, 2500, 3500, 5500, 6500, 7500, 20000000)

)7

strand = S4Vectors::Rle(GenomicRanges::strand(c("+", "=", "+" "+" "=" 0 U=10 U+,
gene_id = c("FBgn@@1", "FBgn@02", "FBgn@@3", "FBgnoo4”, "FBgneo5", "FBgnoo6", "FBgnoo7"),
gene_name = c("geneA", "geneB", "geneC", "geneD", "geneE"”, "geneF", "LargeTestGene")

)

Get path to sample data files included with the package
data_dir <- system.file("extdata”, package = "damidBind")

Run loading function using sample files and mock gene annotations
This calculates occupancy over genes instead of peaks.
loaded_data_genes <- load_data_genes(

binding_profiles_path = data_dir,

ensdb_genes = mock_genes_gr,

quantile_norm = FALSE,

calculate_occupancy_pvals = FALSE

load_data_peaks 31

)

View the head of the occupancy table
head(loaded_data_genes$occupancy)

load_data_peaks Load genome-wide binding data and associated peak files or GRanges
objects

Description

Reads DamID-seq log2 ratio binding data either from bedGraph files or directly from a list of
GRanges objects, and associated peak regions either from GFF/bed files or from a list of GRanges
objects. This function is suitable for transcription factor binding analyses. For peak discovery, use
an external peak caller (e.g. *find_peaks’).

Usage

load_data_peaks(
binding_profiles_path = NULL,
peaks_path = NULL,
binding_profiles = NULL,
peaks = NULL,
drop_samples = NULL,
maxgap_loci = 1000,
quantile_norm = FALSE,
organism = "drosophila melanogaster”,
ensdb_genes = NULL,
BPPARAM = BiocParallel: :bpparam(),
plot_diagnostics = interactive()

Arguments

binding_profiles_path
Character vector. Path(s) to directories or file globs containing log2 ratio binding
tracks in bedGraph format. Wildcards ("*’) supported.

peaks_path Character vector. Path(s) to directories or file globs containing the peak calls in
GFF or BED format.

binding_profiles
List of GRanges objects with binding profiles, one per sample.

peaks List of GRanges objects representing peak regions.

drop_samples A character vector of sample names or patterns to remove. Matching samples
are removed from the analysis before normalisation and occupancy calculation.
This can be useful for excluding samples that fail initial quality checks. Default:
‘NULL* (no samples are dropped).

32 load_data_peaks

maxgap_loci Integer, the maximum bp distance between a peak boundary and a gene to asso-
ciate that peak with the gene. Default: 1000.

quantile_norm Logical (default: FALSE). If TRUE, quantile-normalise the signal columns across
all datasets.

organism Organism string (lower case) to obtain genome annotation from (if not providing
a custom ‘ensdb_genes‘ object) Default: "drosophila melanogaster”.

ensdb_genes GRanges object: gene annotation. Automatically obtained from ‘organism® if
NULL.

BPPARAM BiocParallel function (defaults to BiocParallel::bpparam())

plot_diagnostics
Logical. If “TRUE® (the default in interactive sessions), diagnostic plots (PCA
and correlation heatmap) will be generated and displayed for both the raw bind-
ing data and the summarised occupancy data.

Details

One of ‘binding_profiles_path‘ or ‘binding_profiles‘ must be provided. Similarly, one of ‘peaks_path*
or ‘peaks‘ must be provided.

When supplying GRanges lists, each GRanges should contain exactly one numeric metadata column
representing the binding signal, and all GRanges should be supplied as a named list, with element
names used as sample names.

Value

A list with components:

binding_profiles_data
data.frame: Signal matrix for all regions, with columns chr, start, end, sample

columns.

peaks list(GRanges): All loaded peak regions from input files or directly supplied.

pr GRanges: Reduced (union) peak regions across samples.

occupancy data.frame: Binding values summarised over reduced peaks, with overlap anno-
tations.

test_category Character scalar; will be "bound".

Examples

Create a mock GRanges object for gene annotation
This object, based on the package's unit tests, avoids network access
and includes a very long gene to ensure overlaps with sample data.
mock_genes_gr <- GenomicRanges: :GRanges(
segnames = S4Vectors::Rle("2L", 7),
ranges = IRanges::IRanges(
start = c(1000, 2000, 3000, 5000, 6000, 7000, 8000),
end = c(1500, 2500, 3500, 5500, 6500, 7500, 20000000)
),

strand = S4Vectors::Rle(GenomicRanges: :strand(c("+", "=", "+", "+" r=r on_roomgpnyyy.

plot_input_diagnostics 33

gene_id = c("FBgnoo1"”, "FBgn@2", "FBgn0@3", "FBgnoo4", "FBgnoo5", "FBgnoo6", "FBgnoo7"),
gene_name = c("geneA", "geneB", "geneC", "geneD", "geneE"”, "geneF", "LargeTestGene")

)

Get path to sample data files included with the package
data_dir <- system.file("extdata"”, package = "damidBind")

Run loading function using sample files and mock gene annotations
loaded_data <- load_data_peaks(

binding_profiles_path = data_dir,

peaks_path = data_dir,

ensdb_genes = mock_genes_gr,

quantile_norm = TRUE
)

View the structure of the output
str(loaded_data, max.level = 1)

plot_input_diagnostics
Display diagnostic plots for input data

Description

This function creates and displays diagnostic plots (PCA and correlation heatmap) for both occu-
pancy and raw binding data. It is called by ‘load_data_peaks‘ and ‘load_data_genes".

Usage

plot_input_diagnostics(loaded_data, drop_samples = NULL)

Arguments

loaded_data A list object, the output of ‘load_data_peaks* or ‘load_data_genes‘.

drop_samples An optional character vector of sample names or patterns to remove for this
diagnostic check. When used, the occupancy data is subsetted, not recalcu-
lated, providing an approximation of the effect of dropping samples. Default:
‘NULL".

Value

Returns the input ‘loaded_data‘ object invisibly

34 plot_limma_diagnostics

Examples

Mock ensdb data to avoid network access
mock_genes_gr <- GenomicRanges: :GRanges(
seqnames = S4Vectors::Rle("2L", 7),
ranges = IRanges::IRanges(
start = c(1000, 2000, 3000, 5000, 6000, 7000, 8000),
end = c(1500, 2500, 3500, 5500, 6500, 7500, 20000000)

)’
gene_id = c("FBgnoo1", "FBgn02", "FBgno@3", "FBgnoo4", "FBgn@5", "FBgnoo6", "FBgnoo7"),
gene_name = c("geneA", "geneB", "geneC", "geneD", "geneE"”, "geneF", "LargeTestGene")

)
data_dir <- system.file("extdata"”, package = "damidBind")

Load the example package data
loaded_data <- load_data_peaks(

binding_profiles_path = data_dir,

peaks_path = data_dir,

ensdb_genes = mock_genes_gr,

plot_diagnostics = FALSE # don't call the function here ...
)

Plot diagnostics
plot_input_diagnostics(loaded_data) # ... so that we can call it explicity :/

plot_limma_diagnostics
Verify Underlying Assumptions for ‘limma°‘ Analysis

Description

This diagnostic function is a wrapper around the internal ‘._plot_limma_diagnostics_internal()* fun-
tion, to help assess whether the assumptions of the ‘limma‘ empirical Bayes framework hold for a
given dataset. It generates a series of plots to check for normality of residuals, homoscedastic-
ity, and the mean-variance relationship, illustrating in particular the effect of ‘trend‘ and ‘robust’
parameters to ‘limma::eBayes"‘.

During ‘limma‘-based fits, the internal plot routine is called by default. This wrapper allows diag-
nostics to be displayed for any given log2 ratio-based ‘data_list‘ object from ‘load_data_peaks()*
or ‘load_data_genes()‘, and the effect of moderation parameters on the fit tested.

Usage

plot_limma_diagnostics(
data_list,
cond,
drop_samples = NULL,
filter_occupancy = TRUE,
filter_threshold = 0,

plot_limma_diagnostics 35

eBayes_trend = TRUE,
eBayes_robust = TRUE,
regex = FALSE

)
Arguments
data_list List. The output from ‘load_data_peaks* or ‘load_data_genes‘.
cond A named character vector of length two defining the conditions for comparison,

identical to the ‘cond‘ argument in ‘differential_binding*.

drop_samples An optional character vector of sample names or patterns to remove for this
diagnostic check. Default: ‘NULL".
filter_occupancy
NULL or integer. See ‘prep_data_for_differential_analysis‘. Defaultis “TRUE".
filter_threshold
Numeric. Threshold value for “filter_occupancy®. (default: 0)
eBayes_trend Logical. See ‘limma::eBayes‘. Default: “TRUE‘
eBayes_robust Logical. See ‘limma::eBayes‘. Default: “TRUE‘

regex Logical. Whether to use regular expressions for matching condition names. De-
fault is ‘FALSE".

Details

The function first prepares the data and fits a linear model using the ‘limma‘“ package. It then calls
an internal plotting routine to generate the following checks:

1. Homoscedasticity (Residuals vs. Fitted): A scatter plot of model residuals against fitted
values. A random cloud around y=0 supports the assumption of constant variance.

2. Effect of eBayes moderation: Histograms of t-statistics before and after empirical Bayes
moderation.

3. Mean-variance trend (‘plotSA¢): The primary diagnostic for the ‘eBayes‘ step, showing
the relationship between average log2 occupancy and variance. Points should be evenly dis-
tributed around the blue trendline; any outliers are highlighted in red.

The function uses the internal ‘prep_data_for_differential_analysis‘ function to ensure that the data
being tested is identical to that used in the main differential analysis.

Value

Invisibly returns ‘NULL‘. This function is called to generate diagnostic plots in the active graphics
device.

Examples

mock_genes_gr <- GenomicRanges: :GRanges(
segnames = S4Vectors::Rle("2L", 7),
ranges = IRanges::IRanges(
start = c(1000, 2000, 3000, 5000, 6000, 7000, 8000),

36 plot_venn

end = c(1500, 2500, 3500, 5500, 6500, 7500, 20000000)

)’
gene_id = c("FBgnoo1", "FBgn02", "FBgno@3", "FBgnoo4", "FBgn@5", "FBgnoo6", "FBgnoo7"),
gene_name = c("geneA", "geneB", "geneC", "geneD", "geneE"”, "geneF", "LargeTestGene")

)
data_dir <- system.file("extdata”, package = "damidBind")

loaded_data <- load_data_peaks(
binding_profiles_path = data_dir,
peaks_path = data_dir,
ensdb_genes = mock_genes_gr,
quantile_norm = TRUE,
plot_diagnostics = FALSE

)

conditions <- c("L4 Neurons” = "L4", "L5 Neurons” = "L5")

plot_limma_diagnostics(
data_list = loaded_data,
cond = conditions

plot_venn Draw proportional Venn diagrams for differential binding analysis

Description

Generates a two-set proportional Venn diagram summarising the results of the differential binding
analysis. The set union represents significant binding peaks that fail to show significant differences
in occupancy; the exclusive regions of each set represent regions with enriched differential binding
in that condition. Note that regions can be bound in both conditions, and still show differential
occupancy. For gene expression analysis, the set of analysed genes can optionally be filtered by
FDR such that the universe is restricted to only genes deemed expressed, as is typically expected
for DEG representations.

Usage

plot_venn(
diff_results,
title = NULL,
subtitle = "",
set_labels = NULL,
filename = NULL,
font = "sans”,
format = c("pdf”, "svg"),
region_colours = c("#FFA500", "#2288DD", "#CCCCCC"),
fdr_filter_threshold = NULL

plot_venn 37

Arguments

diff_results A ‘DamIDResults‘ object, as returned by ‘differential_binding()‘ or ‘differen-
tial_accessibility()‘.

title Plot title to use (default: generated from test condition context)

subtitle Subtitle to use (default is empty).

set_labels Character vector of length 2. Names for the two sets/circles (defaults to the
analysis condition names).

filename Character. Path at which to save the diagram, if not NULL.

font Font name to use (default is "sans")

format Character. Output plot format, "pdf" or "svg" (default "pdf").

region_colours Character vector of length 2 or 3. Fill colours for each set region (default:
c("#FFA500", "#2288DD", "#CCCCCC")).

fdr_filter_threshold
Numeric or NULL. If a value (e.g., 0.05) is provided, the universe of loci consid-
ered for the Venn diagram will be restricted to those that pass this FDR threshold
in at least one sample. Used for illustrating DEGs with RNA Pol TaDa. If NULL
(default), all tested loci are used.

Value

The function is called to generating a plot. It invisibly returns ‘NULL".

Examples

Helper function to create a sample DamIDResults object
.generate_example_results <- function() {
mock_genes_gr <- GenomicRanges: :GRanges(
segnames = S4Vectors::Rle("2L", 7),
ranges = IRanges: :IRanges(
start = c(1000, 2000, 3000, 5000, 6000, 7000, 8000),
end = c(1500, 2500, 3500, 5500, 6500, 7500, 20000000)
),
gene_id = c("FBgno@1", "FBgno@2", "FBgn@@3", "FBgned4", "FBgnoo5", "FBgndo6", "FBgnoo7"),
gene_name = c("geneA"”, "geneB", "geneC"”, "geneD"”, "geneE", "geneF", "LargeTestGene")
)
data_dir <- system.file("extdata”, package = "damidBind")
loaded_data <- load_data_peaks(
binding_profiles_path = data_dir,
peaks_path = data_dir,
ensdb_genes = mock_genes_gr,
quantile_norm = TRUE
)
diff_results <- differential_binding(
loaded_data,
cond = c("L4 Neurons"” = "L4",
"L5 Neurons” = "L5")
)

return(diff_results)

38 plot_volcano

}

diff_results <- .generate_example_results()

Generate the Venn diagram
plot_venn(diff_results)

plot_volcano Volcano plot of differentially bound/expressed loci

Description

Creates a volcano plot from the results of a differential analysis. The plot shows the log-fold change
against a measure of statistical significance. The function offers extensive customisation for point
appearance, gene labelling, and highlighting specific groups of loci.

Usage

plot_volcano(
diff_results,
fdr_filter_threshold = NULL,
plot_config = list(),
label_config = list(),
highlight = NULL,
highlight_config = list(),
label_display = 1list(),
save = NULL

Arguments

diff_results A ‘DamIDResults object, as returned by ‘differential_binding()‘ or ‘differen-
tial_accessibility()‘.
fdr_filter_threshold

Numeric or NULL. If a value (e.g., 0.05) is provided, the volcano plot will
only include loci that have an FDR value less than or equal to this threshold
in at least one replicate of the two conditions being plotted. This requires that
the data was loaded using ‘load_data_genes‘ with ‘calculate_occupancy_pvals
=TRUE", which generates the necessary ‘°_FDR‘ columns. If ‘NULL‘ (default),
no FDR-based filtering is performed.

plot_config List. Names to override plot details (title, axes, size, colours, etc); see details.

e title, xlab, ylab (character)

* ystat (character): The column name from ‘analysisTable(diff_results)* to
use for the y-axis (e.g., "minuslogp” or "B"). Default is "B".

* base_size (integer): ggplot theme base font size.
e sig_colour, nonsig_colour (colours)

plot_volcano 39

e sig_alpha, sig_size: alpha and size for significant points.
* nonsig_alpha, nonsig_size: alpha and size for non-significant points.

label_config List. Fine-grained label controls; if missing or ‘NULL*, no labels are added (see
details).

* genes: character vector to restrict labels to a subset (default: label all sig-
nificant).

¢ label_size: label size (numeric).

» clean_names: logical; if “TRUE®, applies regex filtering to labels.

* names_clean, names_clean_extra: regex to exclude from labels when
clean_names is ‘TRUE‘.

* max_overlaps: integer; maximum ggrepel overlaps. (default: 10)

highlight List. A simple list where each element is a character vector of genes/loci to
highlight. Each element of this list will correspond to a separate highlight group.
If ‘NULL', no highlight overlays are drawn.

highlight_config
List. Additional highlight configuration options, applied consistently across all
highlight groups. If missing or ‘NULL*, defaults are used.

* alpha: Numeric; transparency for highlight points (default: 1).

* size: Numeric; size for highlight points (default: 2).

* label: Logical; if ‘TRUE", labels are added for all highlight groups (de-
fault: ‘FALSE").

* colour: A list of colours, where each element corresponds to a highlight
group in the ‘highlight‘ list. If not specified or not enough colours are
provided, a default hue palette is used.

e label_size: Numeric; label size (default: 4).

* max_overlaps: Integer; maximum ggrepel overlaps for highlight labels
(default: 10).

* sig_labels_only: Logical; whether to only label significant loci in the set

* legend: Logical; whether to draw a plot legend for the highlight groups
(default: TRUE).

* legend_inside: Logical; whether to draw the plot legend for the highlight
groups inside the plot (default: TRUE).

e legend_inside_pos: String, either 'r’ (right) or ’I’ (left). Presets for inter-
nal legend position in the bottom right or left corners of the plot. (default:
9r’)

e legend_position_override: Numeric. Manual override for internal leg-
end positioning when not set to the default, NULL.

¢ legend_justification_override: Numeric. Manual override for inter-
nal legend justification when not set to the default, NULL.

e label_fill: logical; if ‘TRUE", uses ‘geom_label_repel‘, else ‘geom_text_repel*
(default: FALSE)

e text_col: logical; if “TRUE, text is coloured as per points, else black
(default: FALSE)

40 plot_volcano

e text_luminosity: Numeric (0-100). When using ‘text_col‘, setting a non-
zero value will darken the luminosity of the highlight colour on text labels
for increased contrast. 0 = no change; 100 = black. (default: 0)

label_display List. Additional label display options for sampling dense labels in all groups.
Uses KNN-based sampling to optimise display when not NULL.

* scale: Logical; if TRUE, labelled coordinate data are centred and scaled
(using scale(center = TRUE, scale = TRUE)) before sampling. Note: this
does not affect plotted values. (default: TRUE).

* r: Numeric or "auto”; the sampling exclusion radius. If "auto”, r is set to
the median distance to the k_for_r-th nearest neighbour across all points.
A smaller r keeps more points. (Default: 0.2).

* k_search: Integer; maximum number of neighbours to find in the initial
KNN search. Must be greater than or equal to both k and k_for_r (default:
30).

e k_priority: Integer; number of neighbours used to infer the isolation pri-
ority score. Must be less than or equal to k_search (default: 30).

e k_for_r: Integer; which neighbour to use for the "auto” r calculation
(default: 30).

save List or ‘NULL*. Controls saving the plot to a file. If ‘NULL*, ‘FALSE®, or ‘0°,
the plot is not saved. If a ‘list*, it specifies saving parameters:
e filename (character): The path and base name for the output file (e.g.,
"my_volcano_plot"). If not specified, a default is used.
» format (character): File format ("pdf", "svg", or "png"). Default is "pdf".
e width (numeric): Width of the plot in inches. Default is 5.
* height (numeric): Height of the plot in inches. Default is 4.

Value

A ‘ggplot‘ object

Examples

Helper function to create a sample DamIDResults object
.generate_example_results <- function() {
mock_genes_gr <- GenomicRanges: :GRanges(
segnames = S4Vectors::Rle("2L", 7),
ranges = IRanges::IRanges(
start = c(1000, 2000, 3000, 5000, 6000, 7000, 8000),
end = c(1500, 2500, 3500, 5500, 6500, 7500, 20000000)

),
gene_id = c("FBgn@@1", "FBgn@02", "FBgn0o3", "FBgnoo4", "FBgneo5", "FBgnoes", "FBgnoo7"),
gene_name = c("ap”, "dpr1”, "side"”, "mav", "geneE", "geneF", "LargeTestGene")

)
data_dir <- system.file("extdata”, package = "damidBind")

loaded_data <- load_data_peaks(
binding_profiles_path = data_dir,
peaks_path = data_dir,
ensdb_genes = mock_genes_gr,

quantile_normalisation 41

quantile_norm = TRUE
)
diff_results <- differential_binding(
loaded_data,
cond = c("L4 Neurons” = "L4",
"L5 Neurons” "L5")

)

return(diff_results)

}

diff_results <- .generate_example_results()

Generate a default volcano plot
plot_volcano(diff_results)

quantile_normalisation
Quantile normalisation (native R code version)

Description

Performs quantile normalisation of a numeric matrix in native R, matching the algorithm used by
‘preprocessCore* (including its tie-handling rule).

Usage

quantile_normalisation(x)

Arguments

X A numeric matrix; rows are features (e.g., genes), columns are samples/arrays.

Details

This function is a native R implementation of the standard quantile normalisation algorithm. It is
designed to be a drop-in replacement for, and produce identical results to, the function of the same
name in the ‘preprocessCore* package.

This native R version is provided within ‘damidBind‘ to avoid known issues where the ‘prepro-
cessCore* package can lead to errors or cause R to crash on some Linux systems due to conflicts
with OpenMP and/or BLAS/LAPACK library configurations. By providing this native R imple-
mentation, ‘damidBind‘ ensures it works reliably for all users without requiring them to recompile
dependencies or manage system environment variables.

This implementation exactly mirrors the behaviour of the ‘preprocessCore* library’s classic quantile
normalisation, including its specific handling of ties: average ranks are computed for ties, and if the
fractional part of a rank is greater than 0.4, the output value is the average of the two adjacent
quantile means; otherwise, only the lower (floored) quantile mean is used.

The function stops if any NA, Inf, or NaN values are present in x.

42 reduce_regions

Value

A numeric matrix of the same dimensions as x, quantile normalised.

Examples

set.seed(1)
x <= matrix(rnorm(9), nrow = 3)
quantile_normalisation(x)

reduce_regions Reduce a list of GRanges to unique, non-overlapping regions

Description
Takes a list of GRanges objects (e.g., peak sets from multiple samples), combines them, and merges
any overlapping or adjacent regions into a single, minimal set of genomic intervals.

Usage

reduce_regions(peaks)

Arguments

peaks A list of GRanges objects.

Value

A GRanges object containing the reduced (union) regions, with a ‘name‘ metadata column in the
format "chr:start-end".

Examples

Create a list of GRanges objects with overlapping regions

gr1 <- GenomicRanges::GRanges("”chr1"”, IRanges::IRanges(c(100, 200), width
gr2 <- GenomicRanges: :GRanges("chr1”, IRanges::IRanges(c(120, 300), width
gr_list <- list(grl, gr2)

50))
50))

Reduce the list to a single set of non-overlapping regions

reduced <- reduce_regions(gr_list)

print(reduced)

The result combines overlapping regions [100-149] and [120-169] into [100-169].

sample_labels_by_isolation 43

sample_labels_by_

isolation
Sample data points based on local isolation

Description

An issue with labelling points on dense plots (e.g., volcano plots) is that high point density prevents
clear labelling, even with tools like ‘ggrepel‘. This function addresses this by retaining isolated
points while sampling from points in higher-density regions. It takes a dataframe with Cartesian
coordinates and returns a logical vector identifying which points to select for labelling. The result is
a less cluttered plot where labels are present even in crowded areas, providing a better representation
of the underlying data.

Usage

sample_labels_by_isolation(

df,
x_col,
y_col,
r)

k_priority = 30,

scale = TRUE,

k_search = 30,

k_for_r =5

Arguments

df
x_col
y_col

r

k_priority

scale

k_search

k_for_r

A dataframe containing the point coordinates.
A character string with the name of the column containing x-coordinates.
A character string with the name of the column containing y-coordinates.

The exclusion radius. This can be a positive numeric value or the string "auto".
If "auto", the radius is calculated as the median distance to the ‘k_for_r‘-th near-
est neighbour across all points. A smaller ‘r* will result in more points being
kept. Note: The interpretation of ‘r* depends on whether ‘scale‘ is “TRUE".

An integer for calculating the isolation priority score. Must be less than or equal
to ‘k_search‘. Default: 30.

A logical value. If ‘TRUE‘, the coordinate data is centred and scaled (us-
ing ‘scale(center=TRUE, scale=TRUE)*) before distance calculations. Defaults:
‘TRUE".

The maximum number of neighbours to find in the initial KNN search. This

value must be greater than or equal to both ‘k_priority* and ‘k_for_r*. Default:
30.

An integer specifying which neighbour to use for the ’auto’ ‘r* calculation. De-
fault: 5.

44 sample_labels_by_isolation

Details

The algorithm in detail: 1. If ‘scale = TRUE®, the coordinate data is centred and scaled. 2. An exact
k-nearest neighbour (KNN) search for all points is conducted using the ‘dbscan::kNN*‘ function.
3. A priority score is calculated for each point, defined as the median distance to its ‘k_priority"
nearest neighbours, and the list of points sorted by this score. 4. The function iterates through the
sorted list of points in descending order: a. If a point has not yet been processed, it is marked as
’processed’ and ’kept’. b. A radius search is performed around this point using ‘dbscan::frNN‘.
All neighbours within the specified exclusion radius ‘r* are then marked as ’processed’ and will be
ignored in subsequent iterations. 5. A logical vector is returned, where ‘“TRUE® corresponds to a
point that should be kept for labelling.

Value

A logical vector of length ‘nrow(df)‘. “TRUE‘ indicates the point at that index should be kept for
labelling.

Examples

library(ggplot2)
library(ggrepel)

Generate sample data with a dense cluster
set.seed(42)
n_points <- 1000
cluster_data <- data.frame(
X = rnorm(n_points, mean = 5, sd = 1),
y = rnorm(n_points, mean = 5, sd = 1),
label = paste("Point”, 1:n_points)
)

Use the function to get a logical vector for filtering
kept_labels <- sample_labels_by_isolation(
df = cluster_data,

x_col = "x",
y_col = "y",
scale = FALSE,

r = "auto”,
k_priority = 30,
k_search = 30,
k_for_r =5

)

Create the label dataframe for ggplot
label_df <- cluster_datal[kept_labels,]

Plot the results
ggplot(cluster_data, aes(x = x, y = y)) +
geom_point(colour = "grey70", alpha = 0.7) +
geom_point(data = label_df, colour = "firebrick") +
geom_text_repel(
data = label_df,

sample_labels_by_isolation

aes(label = label),
min.segment.length = 0,
box.padding = 9.25,
max.overlaps = Inf
) +
coord_fixed() +
labs(
title = "Sampled Labels”,
subtitle = paste(sum(kept_labels), "of", nrow(cluster_data), "points labelled”),
caption = "Red points are selected for labelling.”
) +
theme_bw()

45

Index

* classes
DamIDResults-class, 14

* internal
damidBind-package, 3

analyse_go_enrichment, 3,4, 15
analysisTable, 7, 15
analysisTable,DamIDResults-method
(analysisTable), 7
analyze_go_enrichment
(analyse_go_enrichment), 4

browse_igv_regions, 3, 8, 15

calculate_and_add_occupancy_pvals, 10
calculate_occupancy, 12
conditionNames, 13, /5
conditionNames,DamIDResults-method
(conditionNames), 13

damidBind (damidBind-package), 3
damidBind-package, 3

DamIDResults, 3, 4

DamIDResults (DamIDResults-class), 14
DamIDResults-class, 14
differential_accessibility, 3, 4, 14, 16
differential_binding, 3, 14, 17

enrichedCond1, 715, 20
enrichedCond1,DamIDResults-method
(enrichedCond1), 20

enrichedCond2, 15, 21
enrichedCond2,DamIDResults-method
(enrichedCond2), 21

expressed, 15,22

expressed,DamIDResults-method
(expressed), 22

extract_unique_sample_ids, 23

filter_genes_by_fdr, 22, 24

46

get_ensdb_genes, 26

inputData, 15, 27
inputData,DamIDResults-method
(inputData), 27

load_data_genes, 3, 22, 28
load_data_peaks, 3, 31

plot_input_diagnostics, 33
plot_limma_diagnostics, 34
plot_venn, 3, 15, 36
plot_volcano, 3, 15, 38

quantile_normalisation, 41
quantile_normalization
(quantile_normalisation), 41

reduce_regions, 42

sample_labels_by_isolation, 43

	damidBind-package
	analyse_go_enrichment
	analysisTable
	browse_igv_regions
	calculate_and_add_occupancy_pvals
	calculate_occupancy
	conditionNames
	DamIDResults-class
	differential_accessibility
	differential_binding
	enrichedCond1
	enrichedCond2
	expressed
	extract_unique_sample_ids
	filter_genes_by_fdr
	get_ensdb_genes
	inputData
	load_data_genes
	load_data_peaks
	plot_input_diagnostics
	plot_limma_diagnostics
	plot_venn
	plot_volcano
	quantile_normalisation
	reduce_regions
	sample_labels_by_isolation
	Index

