Package ‘gdsfmt’

January 15, 2026
Type Package
Title R Interface to CoreArray Genomic Data Structure (GDS) Files
Version 1.47.0
Date 2025-09-09
Depends R (>=2.15.0), methods

Suggests parallel, digest, Matrix, crayon, RUnit, knitr, markdown,
rmarkdown, BiocGenerics

Author Xiuwen Zheng [aut, cre] (<https://orcid.org/0000-0002-1390-0708>),
Stephanie Gogarten [ctb],
Jean-loup Gailly and Mark Adler [ctb] (for the included zlib sources),
Yann Collet [ctb] (for the included LZ4 sources),
xz contributors [ctb] (for the included liblzma sources)

Maintainer Xiuwen Zheng <zhengx@u.washington.edu>

Description Provides a high-level R interface to CoreArray Genomic Data
Structure (GDS) data files. GDS is portable across platforms with
hierarchical structure to store multiple scalable array-oriented data
sets with metadata information. It is suited for large-scale datasets,
especially for data which are much larger than the available
random-access memory. The gdsfmt package offers the efficient operations
specifically designed for integers of less than 8 bits, since a diploid
genotype, like single-nucleotide polymorphism (SNP), usually occupies
fewer bits than a byte. Data compression and decompression are available
with relatively efficient random access. It is also allowed to read a
GDS file in parallel with multiple R processes supported by the package
parallel.

License LGPL-3

Copyright This package includes the sources of CoreArray C++ library
written by Xiuwen Zheng (LGPL-3), zlib written by Jean-loup
Gailly and Mark Adler (zlib license), LZ4 written by Yann
Collet (simplified BSD), and liblzma written by Lasse Collin
and other xz contributors (public domain).

VignetteBuilder knitr
ByteCompile TRUE

https://orcid.org/0000-0002-1390-0708

2 Contents

BugReports https://github.com/zhengxwen/gdsfmt/issues

URL https://github.com/zhengxwen/gdsfmt
biocViews Infrastructure, Datalmport

git_url https://git.bioconductor.org/packages/gdsfmt
git_branch devel

git_last_commit 650aa25

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-15

Contents
gdsfmt-package 3
add.gdsn L e 5
addfile.gdsn 9
addfolder.gdsn L 11
append.gdsn L e 13
apply.gdsno e 15
assign.gdsn L L e e e e e 19
cache.gdsn. e e 21
cleanup.gds e e e 22
closefn.gds e 23
clusterApply.gdsn L e 24
CNL.EASN e e e e e 27
COMPression.gdsn e e e e e e 28
COPYLO.EAdSn e e e e e 30
createfn.gds L e 31
delete.attr.gdsn L e e e e 32
delete.gdsn e 33
diagnosis.gds e e 34
digest.gdsn e e 36
exXist.gdsn e 38
gds.class 39
gdsn.classo 40
getattr.gdsn L 40
getfile.gdsn 41
getfolder.gdsn L e 42
Index.gdsn e e 43
iselement.gdsn L 45
is.sparse.gdsn e 46
lasterr.gds 47
Is.gdsn L e e 47
moveto.gdsn L e 48
name.gdsn L. L e e e e e 50

objdesp.gdsn 51

https://github.com/zhengxwen/gdsfmt/issues
https://github.com/zhengxwen/gdsfmt

gdsfmt-package 3

openfn.gds e e e 53
permdim.gdsn L e e e e 54
print.gds.class e 56
putattr.gdsn e e e e e 57
read.gdsn oL L L 58
readex.gdsn 60
readmode.gdsn L e e e 62
rename.gdsn L e 63
setdim.gdsn L e 64
showfile.gds 65
summarize.gdsn oL e e 66
SYNC.ZAS . . . o e e e e e e 67
SYStem.gdso e e e e e 69
unload.gdsn 70
Write.gdsSno 71
Index 73
gdsfmt-package R Interface to CoreArray Genomic Data Structure (GDS) files
Description

This package provides a high-level R interface to CoreArray Genomic Data Structure (GDS) data
files, which are portable across platforms and include hierarchical structure to store multiple scal-
able array-oriented data sets with metadata information. It is suited for large-scale datasets, es-
pecially for data which are much larger than the available random-access memory. The gdsfmt
package offers the efficient operations specifically designed for integers with less than 8 bits, since
a single genetic/genomic variant, such like single-nucleotide polymorphism, usually occupies fewer
bits than a byte. It is also allowed to read a GDS file in parallel with multiple R processes supported
by the parallel package.

Details

Package: gdsfmt
Type: R/Bioconductor Package
License: LGPL version 3

R interface of CoreArray GDS is based on the CoreArray project initiated and developed from 2007
(http://corearray.sourceforge.net). The CoreArray project is to develop portable, scalable,
bioinformatic data visualization and storage technologies.

R is the most popular statistical environment, but one not necessarily optimized for high perfor-
mance or parallel computing which ease the burden of large-scale calculations. To support efficient
data management in parallel for numerical genomic data, we developed the Genomic Data Structure
(GDS) file format. gdsfmt provides fundamental functions to support accessing data in parallel, and
allows future R packages to call these functions.

http://corearray.sourceforge.net

4 gdsfmt-package

Webpage: http://corearray.sourceforge.net, or https://github.com/zhengxwen/gdsfmt

Copyright notice: The package includes the sources of CoreArray C++ library written by Xiuwen
Zheng (LGPL-3), zlib written by Jean-loup Gailly and Mark Adler (zlib license), and LZ4 written
by Yann Collet (simplified BSD).

Author(s)

Xiuwen Zheng <zhengx@u.washington.edu>

References

http://corearray.sourceforge.net, https://github.com/zhengxwen/gdsfmt

Xiuwen Zheng, David Levine, Jess Shen, Stephanie M. Gogarten, Cathy Laurie, Bruce S. Weir. A
High-performance Computing Toolset for Relatedness and Principal Component Analysis of SNP
Data. Bioinformatics 2012; doi: 10.1093/bioinformatics/bts606.

Examples

cteate a GDS file
f <- createfn.gds("test.gds")
L <- -2500:2499

commom types

add.gdsn(f, "label"”, NULL)

add.gdsn(f, "int"”, val=1:10000, compress="ZIP", closezip=TRUE)

add.gdsn(f, "int.matrix"”, val=matrix(L, nrow=100, ncol=50))

add.gdsn(f, "mat”, val=matrix(1:(10*6), nrow=10))

add.gdsn(f, "double”, val=seq(1, 1000, 0.4))

add.gdsn(f, "character”, val=c("int", "double”, "logical”, "factor"))

add.gdsn(f, "logical”, val=rep(c(TRUE, FALSE, NA), 50))

add.gdsn(f, "factor”, val=as.factor(c(letters, NA, "AA", "CC")))

add.gdsn(f, "NA", val=rep(NA, 10))

add.gdsn(f, "NaN", val=c(rep(NaN, 20), 1:20))

add.gdsn(f, "bit2-matrix”, val=matrix(L[1:5000], nrow=50, ncol=100),
storage="bit2")

list and data.frame

add.gdsn(f, "list”, val=list(X=1:10, Y=seq(1, 10, 0.25)))

add.gdsn(f, "data.frame"”, val=data.frame(X=1:19, Y=seq(1, 10, 0.5)))

save a .RData object

obj <- list(X=1:10, Y=seq(1, 10, 0.1))

save(obj, file="tmp.RData")

addfile.gdsn(f, "tmp.RData”, filename="tmp.RData")

f

read.gdsn(index.gdsn(f, "list"))
read.gdsn(index.gdsn(f, "list/Y"))
read.gdsn(index.gdsn(f, "data.frame"))
read.gdsn(index.gdsn(f, "mat"))

http://corearray.sourceforge.net
https://github.com/zhengxwen/gdsfmt
http://corearray.sourceforge.net
https://github.com/zhengxwen/gdsfmt

add.gdsn

Apply functions over columns of matrix
tmp <- apply.gdsn(index.gdsn(f, "mat"), margin=2, FUN=function(x) print(x))
tmp <- apply.gdsn(index.gdsn(f, "mat"), margin=2,

selection

list(rep(c(TRUE, FALSE), 5), rep(c(TRUE, FALSE), 3)),

FUN=function(x) print(x))

close the GDS file

closefn.gds(f)

delete the temporary file
unlink("test.gds", force=TRUE)

add.gdsn

Add a new GDS node

Description

Add a new GDS node to the GDS file.

Usage

add.gdsn(node, name, val=NULL, storage=storage.mode(val), valdim=NULL,
compress=c(""”, "ZIP", "ZIP_RA", "LZMA", "LZMA_RA", "LZ4", "LZ4_RA"),
closezip=FALSE, check=TRUE, replace=FALSE, visible=TRUE, ...)

Arguments

node

name

val

storage

an object of class gdsn.class or gds.class: "gdsn.class” — the node of
hierarchical structure; "gds.class"” — the root of hieracrchical structure

the variable name; if it is not specified, a temporary name is assigned

the R value can be integers, real numbers, characters, factor, logical or raw vari-
able, 1ist and data. frame

to specify data type (not case-sensitive), signed integer: "int8", "int16", "int24",
"int32", "int64", "sbit2", "sbit3", ..., "sbit16", "sbit24", "sbit32", "sbit64", "vl_int"
(encoding variable-length signed integer); unsigned integer: "uint8", "uint16",
"uint24", "uint32", "uint64", "bitl", "bit2", "bit3", ..., "bit15", "bit16", "bit24",
"bit32", "bit64", "vl_uint" (encoding variable-length unsigned integer); floating-
point number ("float32", "float64"); packed real number ("packedreal8", "packe-
dreall6", "packedreal24", "packedreal32": pack a floating-point number to a
signed 8/16/24/32-bit integer with two attributes "offset" and "scale", repre-
senting “(signed int)*scale + offset”, where the minimum of the signed integer
is used to represent NaN; "packedreal8u", "packedreall6u”, "packedreal24u",
"packedreal32u": pack a floating-point number to an unsigned 8/16/24/32-bit in-
teger with two attributes "offset" and "scale", representing “(unsigned int)*scale
+ offset”, where the maximum of the unsigned integer is used to represent NaN);
sparse array ("sp.int"(="sp.int32"), "sp.int8", "sp.int16", "sp.int32", "sp.int64",

6 add.gdsn

"sp.uint8", "sp.uint16", "sp.uint32", "sp.uint64", "sp.real"(="sp.real64"), "sp.real32",
"sp.real64"); string (variable-length: "string", "string16", "string32"; C [null-
terminated] string: "cstring", "cstring16", "cstring32"; fixed-length: "fstring",
"fstring16", "fstring32"); Or "char" (="int8"), "int"/"integer" (="int32"), "sin-
gle" (="float32"), "float" (="float32"), "double" (="float64"), "character" (="string"),
"logical", "list", "factor”, "folder"; Or a gdsn.class object, the storage mode is

set to be the same as the object specified by storage.

valdim the dimension attribute for the array to be created, which is a vector of length
one or more giving the maximal indices in each dimension

compress the compression method can be "" (no compression), "ZIP", "ZIPfast", "ZIP.def",
"ZIP.max" or "ZIP.none" (original zlib); "ZIP_RA", "ZIP_RA .fast", "ZIP_RA.def",
"ZIP_RA.max" or "ZIP_RA.none" (zlib with efficient random access); "LZ4",
"LZA.none", "LZA4.fast", "LZ4.hc" or "LZ4.max" (LZ4 compression/decompression
library); "LZ4_RA", "LZ4_RA.none", "LZ4_RA fast", "LZ4_RA hc" or "LZ4_RA.max"
(with efficient random access); "LZMA", "LZMA fast", "LZMA.def", "LZMA .max",
"LZMA_RA", "LZMA_RA fast", "LZMA_RA . def", "LZMA_RA.max" (Izma
compression/decompression algorithm). See details

closezip if a compression method is specified, get into read mode after compression

check if TRUE, a warning will be given when val is character and there are missing
values in val. GDS format does not support missing characters NA, and any NA
will be converted to a blank string ""

replace if TRUE, replace the existing variable silently if possible
visible FALSE — invisible/hidden, except print(, al1=TRUE)

additional parameters for specific storage, see details

Details

val: if valis list or data. frame, the child node(s) will be added corresponding to objects in 1ist
or data.frame. If calling add.gdsn(node, name, val=NULL), then a label will be added which
does not have any other data except the name and attributes. If val is raw-type, it is interpreted as
8-bit signed integer.

storage: the default value is storage.mode(val), "int" denotes signed integer, "uint" denotes un-
signed integer, 8, 16, 24, 32 and 64 denote the number of bits. "bitl" to "bit32" denote the packed
data types for 1 to 32 bits which are packed on disk, and "sbit2" to "sbit32" denote the corresponding
signed integers. "float32" denotes single-precision number, and "float64" denotes double-precision
number. "string" represents strings of 8-bit characters, "string16" represents strings of 16-bit char-
acters following UTF16 industry standard, and "string32" represents a string of 32-bit characters
following UTF32 industry standard. "folder" is to create a folder.

valdim: the values in data are taken to be those in the array with the leftmost subscript moving
fastest. The last entry could be ZERO. If the total number of elements is zero, gdsfmt does not
allocate storage space. NA is treated as 0.

compress: Z compression algorithm (http://www.z1lib.net) can be used to deflate the data stored
in the GDS file. "ZIP" option is equivalent to "ZIP.def". "ZIP.fast", "ZIP.def" and "ZIP.max" corre-
spond to different compression levels.

To support efficient random access of Z stream, "ZIP_RA", "ZIP_RA .fast", "ZIP_RA.def" or "ZIP_RA.max"
should be specified. "ZIP_RA" option is equivalent to "ZIP_RA.def:256K". The block size can be

http://www.zlib.net

add.gdsn 7

specified by following colon, and "16K", "32K", "64K", "128K", "256K", "512K", "1IM", "2M",
"4M" and "8M" are allowed, like "ZIP_RA:64K". The compression algorithm tries to keep each
independent compressed data block to be about of the specified block size, like 64K.

LZ4 fast lossless compression algorithm is allowed when compress="LZ4" (https://github.
com/1z4/1z4). Three compression levels can be specified, "LZ4.fast" (LZ4 fast mode), "LZ4.hc"
(LZ4 high compression mode), "LZ4.max" (maximize the compression ratio). The block size can
be specified by following colon, and "64K", "256K", "IM" and "4M" are allowed according to LZ4
frame format. "LZ4" is equivalent to "LZ4.hc:256K".

To support efficient random access of LZ4 stream, "LZ4_RA", "LZ4_RA fast", "LZ4_RA.hc" or
"ZIP_RA.max" should be specified. "LZ4_RA" option is equivalent to "LZ4_RA .hc:256K". The
block size can be specified by following colon, and "16K", "32K", "64K", "128K", "256K", "512K",
"IM", "2M", "4M" and "8M" are allowed, like "LZ4_RA:64K". The compression algorithm tries
to keep each independent compressed data block to be about of the specified block size, like 64K.

LZMA compression algorithm (https://tukaani.org/xz/) is available since gdsfmt_v1.7.18,
which has a higher compression ratio than ZIP algorithm. "LZMA", "LZMA .fast", "LZMA .def"
and "LZMA .max" available. To support efficient random access of LZMA stream, "LZMA_RA",
"LZMA_RA .fast", "LZMA_RA.def" and "LZMA_RA.max" can be used. The block size can be
specified by following colon. "LZMA_RA" is equivalent to "LZMA_RA.def:256K".

To finish compressing, you should call readmode. gdsn to close the writing mode.
the parameter details with equivalent command lines can be found at compression.gdsn.

closezip: if compression option is specified, then enter a read mode after deflating the data. see
readmode. gdsn.

. if storage = "fstring”, "fstringl16"” or "fstring32"”, users can set the max length of
string in advance by maxlen=. If storage = "packedreal8”, "packedreal8u”, "packedreal16”,
"packedreall6u”, "packedreal32” or "packedreal32u”, users can define offset and scale
to represent real numbers by “val*scale + offset” where “val” is a 8/16/32-bit integer. By default,
offset=0, scale=0.01 for "packedreal8"” and "packedreal8u”, scale=0.0001 for "packedreal16”
and "packedreall16u”, scale=0.00001 for "packedreal24"” and "packedreal24u”, scale=0.000001
for "packedreal32” and "packedreal32u”. For example, packedreal8:scale=1/127,0ffset=0,
packedreal16:scale=1/32767,0ffset=0 for correlation [-1, 1]; packedreal8u:scale=1/254,0ffset=0,
packedreall6u:scale=1/65534, of fset=0 for a probability [0, 1].

Value

An object of class gdsn.class of the new node.

Author(s)
Xiuwen Zheng

References

http://zlib.net, https://github.com/1z4/1z4, https://tukaani.org/xz/

See Also

addfile.gdsn, addfolder.gdsn, compression.gdsn, index.gdsn, read.gdsn, readex.gdsn,
write.gdsn, append.gdsn

https://github.com/lz4/lz4
https://github.com/lz4/lz4
https://tukaani.org/xz/
http://zlib.net
https://github.com/lz4/lz4
https://tukaani.org/xz/

8 add.gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")
L <- -2500:2499

AR EHEHRHEHRHEHHHEHRAHE A
commom types

add.gdsn(f, "label”, NULL)

add.gdsn(f, "int", 1:10000, compress="ZIP", closezip=TRUE)

add.gdsn(f, "int.matrix"”, matrix(L, nrow=100, ncol=50))

add.gdsn(f, "double", seq(l, 1000, 0.4))

add.gdsn(f, "character”, c("int", "double”, "logical”, "factor"))

add.gdsn(f, "logical”, rep(c(TRUE, FALSE, NA), 50))

add.gdsn(f, "factor”, as.factor(c(letters, NA, "AA", "CC")))

add.gdsn(f, "NA", rep(NA, 10))

add.gdsn(f, "NaN", c(rep(NaN, 20), 1:20))

add.gdsn(f, "bit2-matrix”, matrix(L[1:5000], nrow=50, ncol=100),
storage="bit2")

list and data.frame

add.gdsn(f, "list"”, list(X=1:10, Y=seq(l, 10, 0.25)))

add.gdsn(f, "data.frame”, data.frame(X=1:19, Y=seq(1, 10, 0.5)))

HHHHHHHEHEE AR A
save a .RData object

obj <- list(X=1:10, Y=seq(l, 10, 0.1))
save(obj, file="tmp.RData")
addfile.gdsn(f, "tmp.RData"”, filename="tmp.RData")

f’

read.gdsn(index.gdsn(f, "list"))
read.gdsn(index.gdsn(f, "list/Y"))
read.gdsn(index.gdsn(f, "data.frame"))

HHHHHHARHEE A R A
allocate the disk spaces

n1 <- add.gdsn(f, "n1", 1:100, valdim=c(10, 20))
read.gdsn(index.gdsn(f, "n1"))

n2 <- add.gdsn(f, "n2", matrix(1:100, 10, 10), valdim=c(15, 20))
read.gdsn(index.gdsn(f, "n2"))
HHHHHHHEEEE AR AR AR

replace variables

f

addfile.gdsn 9

add.gdsn(f, "double”, 1:100, storage="float"”, replace=TRUE)
f
read.gdsn(index.gdsn(f, "double"))

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds", force=TRUE)

addfile.gdsn Add a GDS node with a file

Description

Add a file to a GDS file as a node.

Usage

addfile.gdsn(node, name, filename,
compress=c("ZIP", "ZIP_RA", "LZMA", "LZMA_RA", "LZ4", "LZ4_RA"),
replace=FALSE, visible=TRUE)

Arguments
node an object of class gdsn.class or gds.class
name the variable name; if it is not specified, a temporary name is assigned
filename the file name of input stream.
compress the compression method can be "" (no compression), "ZIP", "ZIP-fast", "ZIP.default",
"ZIP.max" or "ZIP.none" (original zlib); "ZIP_RA", "ZIP_RA fast", "ZIP_RA .default",
"ZIP_RA.max" or "ZIP_RA.none" (zlib with efficient random access); "LZ4",
"LZ4 .none", "LZ4 fast", "LZ4.hc" or "LZ4.max"; "LZ4_RA", "LZ4_RA .none",
"LZ4_RA fast", "LZ4_RA.hc" or "LZ4_RA.max" (with efficient random ac-
cess). See details
replace if TRUE, replace the existing variable silently if possible
visible FALSE — invisible/hidden, except print(, all=TRUE)
Details

compress: Z compression algorithm (http://www.zlib.net/) can be used to deflate the data
stored in the GDS file. "ZIP" option is equivalent to "ZIP.default". "ZIP.fast", "ZIP.default" and
"ZIP.max" correspond to different compression levels.

To support efficient random access of Z stream, "ZIP_RA", "ZIP_RA fast", "ZIP_RA .default",
"ZIP_RA.max" or "ZIP_RA.none" should be specified. "ZIP_RA" option is equivalent to "ZIP_RA.default:256K".

http://www.zlib.net/

10 addfile.gdsn

The block size can be specified by following colon, and "16K", "32K", "64K", "128K", "256K",
"512K", "IM", "2M", "4M" and "8M" are allowed, like "ZIP_RA:64K". The compression algo-
rithm tries to keep each independent compressed data block to be about of the specified block size,
like 64K.

LZA4 fast lossless compression algorithm is allowed when compress="LZ4" (https://github.
com/1z4/1z4). Three compression levels can be specified, "LZ4.fast" (LZ4 fast mode), "LZ4.hc"
(LZ4 high compression mode), "LZ4.max" (maximize the compression ratio). The block size can
be specified by following colon, and "64K", "256K", "IM" and "4M" are allowed according to LZ4
frame format. "LZ4" is equivalent to "LZ4.hc:256K".

To support efficient random access of LZ4 stream, "LZ4_RA", "LZ4_RA.fast", "LZ4_RA.hc",
"ZIP_RA.max" or "LZ4_RA.none" should be specified. "LZ4_RA" option is equivalent to "LZ4_RA hc:256K".
The block size can be specified by following colon, and "16K", "32K", "64K", "128K", "256K",

"512K", "1M", "2M", "4M" and "8M" are allowed, like "LZ4_RA:64K". The compression algo-

rithm tries to keep each independent compressed data block to be about of the specified block size,

like 64K.

Value

An object of class gdsn.class.

Author(s)

Xiuwen Zheng

See Also

getfile.gdsn, add.gdsn

Examples

save a .RData object
obj <- list(X=1:10, Y=seq(l, 10, 0.1))
save(obj, file="tmp.RData")

cteate a GDS file
f <- createfn.gds("test.gds")

add.gdsn(f, "double", val=seq(1, 1000, 0.4))
addfile.gdsn(f, "tmp.RData”, "tmp.RData")

open the GDS file
closefn.gds(f)
open the existing file

(f <- openfn.gds("test.gds"))

getfile.gdsn(index.gdsn(f, "tmp.RData"), "tmpl.RData")
(obj <- get(load("tmpl.RData")))

https://github.com/lz4/lz4
https://github.com/lz4/lz4

addfolder.gdsn 11

open the GDS file
closefn.gds(f)

delete the temporary files
unlink(c("test.gds”, "tmp.RData”, "tmpl.RData"), force=TRUE)

addfolder.gdsn Add a folder to the GDS node

Description

Add a directory or a virtual folder to the GDS node.

Usage

addfolder.gdsn(node, name, type=c("directory”, "virtual”), gds.fn="",
replace=FALSE, visible=TRUE)

Arguments
node an object of class gdsn.class or gds.class
name the variable name; if it is not specified, a temporary name is assigned
type "directory" (default) — create a directory of GDS node; "virtual" — create a virtual
folder linking another GDS file by mapping all of the content to this virtual
folder
gds.fn the name of another GDS file; it is applicable only if type="virtual”
replace if TRUE, replace the existing variable silently if possible
visible FALSE — invisible/hidden, except print(, all=TRUE)
Value

An object of class gdsn.class.

Author(s)

Xiuwen Zheng

See Also

add.gdsn, addfile.gdsn

12 addfolder.gdsn

Examples

create the first GDS file
f1 <- createfn.gds("test1.gds")

add.gdsn(f1, "NULL")
addfolder.gdsn(f1, "dir")
add.gdsn(f1, "int", 1:100)
1

open the GDS file
closefn.gds(f1)

HHHHHBHRHHRHAAHRHHEHERHHEAHRHAARERHR R

create the second GDS file
f2 <- createfn.gds("test2.gds")

add.gdsn(f2, "int", 101:200)

link to the first file
addfolder.gdsn(f2, "virtual_folder”, type="virtual”, gds.fn="test1.gds")

f2

open the GDS file
closefn.gds(f2)

A

open the second file (writable)

(f <- openfn.gds("test2.gds", FALSE))

+ L 1]

|--+ int { Int32 100, 400 bytes }

|--+ virtual_folder [--> testl.gds]

| |--+ NULL
| |--+dir [1
1 |--+int { Int32 100, 400 bytes }

read.gdsn(index.gdsn(f, "int"))
read.gdsn(index.gdsn(f, "virtual_folder/int"))
add.gdsn(index.gdsn(f, "virtual_folder/dir"), "nm", 1:10)

f’
open the GDS file

closefn.gds(f)

HHHEHHAREERE AR
open 'testl.gds', there is a new variable "dir/nm"

append.gdsn 13

(f <- openfn.gds("test1.gds"))
closefn.gds(f)

HHHHHHARHEE AR
remove 'testl.gds'

file.remove("test1.gds")

Not run:
(f <- openfn.gds("test2.gds"))
o+ L 1

|--+ int { Int32 100, 400 bytes }
|--+ virtual_folder [-X- testl.gds]

closefn.gds(f)
End(Not run)

delete the temporary file
unlink("test.gds", force=TRUE)

append.gdsn Append data to a specified variable

Description

Append new data to the data field of a GDS node.

Usage
append. gdsn(node, val, check=TRUE)

Arguments
node an object of class gdsn.class
val R primitive data, like integer; or an object of class gdsn.class
check whether a warning is given, when appended data can not match the capability of
data field; if val is character-type, a warning will be shown if there is any NA in
val
Details

storage.mode(val) should be "integer", "double", "character" or "logical". GDS format does not
support missing characters NA, and any NA will be converted to a blank string "".

Value

None.

14 append.gdsn

Author(s)

Xiuwen Zheng

See Also

read.gdsn, write.gdsn, add.gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

commom types
n <- add.gdsn(f, "int", val=matrix(1:10000, nrow=100, ncol=100),
compress="ZIP")

no warning, and add a new column
append.gdsn(n, -1:-100)
f'

a warning
append.gdsn(n, -1:-50)
.f.‘

no warning here, and add a new column
append.gdsn(n, -51:-100)
f

you should call "readmode.gdsn"” before reading, since compress="ZIP"
readmode. gdsn(n)

check the last column

read.gdsn(n, start=c(1, 102), count=c(-1, 1))

characters
n <- add.gdsn(f, "string", val=as.character(1:100))
append.gdsn(n, as.character(rep(NA, 25)))

read.gdsn(n)

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds", force=TRUE)

apply.gdsn

15

apply.gdsn

Apply functions over margins

Description

Return a vector or list of values obtained by applying a function to margins of a GDS matrix or

array.
Usage
apply.gdsn(node, margin, FUN, selection=NULL,
as.is=c("list"”, "none"”, "integer", "double", "character"”, "logical”,
"raw”, "gdsnode"), var.index=c("none”, "relative", "absolute"),
target.node=NULL, .useraw=FALSE, .value=NULL, .substitute=NULL, ...)
Arguments
node an object of class gdsn.class, or a list of objects of class gdsn.class
margin an integer giving the subscripts which the function will be applied over. E.g.,
for a matrix 1 indicates rows, 2 indicates columns
FUN the function to be applied
selection a list or NULL; if a list, it is a list of logical vectors according to dimensions
indicating selection; if NULL, uses all data
as.is returned value: a list, an integer vector, etc; "gdsnode"” — the returned value
from the user-defined function will be appended to target.node.
var.index if "none”, call FUN(x, ...) without an index; if "relative” or "absolute”,
add an argument to the user-defined function FUN like FUN(index, x, ...)

target.node

.useraw

.value

.substitute

where index in the function is an index starting from 1: "relative” for in-
dexing in the selection defined by selection, "absolute” for indexing with
respect to all data

NULL, an object of class gdsn.class or a list of gdsn.class: output to the
target GDS node(s) when as.is="gdsnode". See details

use R RAW storage mode if integers can be stored in a byte, to reduce memory
usage

a vector of values to be replaced in the original data array, or NULL for nothing

a vector of values after replacing, or NULL for nothing; length(.substitute)
should be one or length(.value);if length(.substitute) =1length(.value),
it is a mapping from .value to .substitute

optional arguments to FUN

16 apply.gdsn

Details

The algorithm is optimized by blocking the computations to exploit the high-speed memory instead
of disk.

When as.is="gdsnode"” and there are more than one gdsn.class object in target.node, the
user-defined function should return a list with elements corresponding to target.node, or NULL
indicating no appending.

Value

A vector or list of values.

Author(s)

Xiuwen Zheng

See Also

read. gdsn, readex.gdsn, clusterApply.gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

(n1 <- add.gdsn(f, "matrix”, val=matrix(1:(10%6), nrow=10)))
read.gdsn(index.gdsn(f, "matrix"))

(n2 <- add.gdsn(f, "string",
val=matrix(paste("L", 1:(10x6), sep=","), nrow=10)))
read.gdsn(index.gdsn(f, "string"))

Apply functions over rows of matrix

apply.gdsn(n1, margin=1, FUN=function(x) print(x), as.is="none")

apply.gdsn(n1, margin=1,
selection = list(rep(c(TRUE, FALSE), 5), rep(c(TRUE, FALSE), 3)),
FUN=function(x) print(x), as.is="none")

apply.gdsn(n1, margin=1, var.index="relative"”,
selection = list(rep(c(TRUE, FALSE), 5), rep(c(TRUE, FALSE), 3)),
FUN=function(i, x) { cat("index: ", i, ", ", sep=""); print(x) },
as.is="none")

apply.gdsn(n1, margin=1, var.index="absolute"”,
selection = list(rep(c(TRUE, FALSE), 5), rep(c(TRUE, FALSE), 3)),
FUN=function(i, x) { cat("index: ", i, ", ", sep=""); print(x) },
as.is="none")

apply.gdsn(n2, margin=1, FUN=function(x) print(x), as.is="none")

Apply functions over columns of matrix
apply.gdsn(n1, margin=2, FUN=function(x) print(x), as.is="none")
apply.gdsn(n1, margin=2,

selection = list(rep(c(TRUE, FALSE), 5), rep(c(TRUE, FALSE), 3)),

apply.gdsn 17

FUN=function(x) print(x), as.is="none")

apply.gdsn(n2, margin=2,
selection = list(rep(c(TRUE, FALSE), 5), rep(c(TRUE, FALSE), 3)),
FUN=function(x) print(x), as.is="none")

apply.gdsn(n1, margin=1, FUN=function(x) print(x), as.is="none",
.value=16:40, .substitute=NA)

apply.gdsn(n1, margin=2, FUN=function(x) print(x), as.is="none",
.value=16:40, .substitute=NA)

close
closefn.gds(f)

HHHHHHHEHEEHE AR AR
#

Append to a target GDS node

#

cteate a GDS file
f <- createfn.gds("test.gds")

(n2 <- add.gdsn(f, "matrix”, val=matrix(1:(10%6), nrow=10)))

(n2 <- add.gdsn(f, "string",
val=matrix(paste("L", 1:(10%6), sep=","), nrow=10)))
read.gdsn(index.gdsn(f, "string"))

n2.1 <- add.gdsn(f, "transpose.matrix”, storage="int", valdim=c(6,0))
n2.1 <- add.gdsn(f, "transpose.string”, storage="string", valdim=c(6,0))

Apply functions over rows of matrix
apply.gdsn(n2, margin=1, FUN="c", as.is="gdsnode”, target.node=n2.1)

matrix transpose
read.gdsn(n2)
read.gdsn(n2.1)

Apply functions over rows of matrix
apply.gdsn(n2, margin=1, FUN="c”, as.is="gdsnode”, target.node=n2.1)

matrix transpose
read.gdsn(n2)
read.gdsn(n2.1)

close
closefn.gds(f)

18

apply.gdsn

B
#

Append to multiple target GDS node

#

cteate a GDS file
f <- createfn.gds("test.gds")

(n2 <- add.gdsn(f, "matrix"”, val=matrix(1:(10%6), nrow=10)))

n2.1 <- add.gdsn(f, "transpose.matrix”, storage="int", valdim=c(6,0))
n2.2 <- add.gdsn(f, "n.matrix"”, storage="int", valdim=c(0))

Apply functions over rows of matrix
apply.gdsn(n2, margin=1, FUN=function(x) list(x, x[1]),
as.is="gdsnode", target.node=list(n2.1, n2.2))

matrix transpose
read.gdsn(n2)
read.gdsn(n2.1)
read.gdsn(n2.2)

close
closefn.gds(f)

HHHEHHEEEE A AR
#

Multiple variables

#

cteate a GDS file
f <- createfn.gds("test.gds")

X <- matrix(1:50, nrow=10)

Y <- matrix((1:50)/100, nrow=10)

721 <- factor(c(rep(c("ABC", "DEF", "ETD"), 3), "TTT"))
Z2 <- c(TRUE, FALSE, TRUE, FALSE, TRUE)

node.X <- add.gdsn(f, "X", X)
node.Y <- add.gdsn(f, "Y", Y)
node.Z1 <- add.gdsn(f, "z1", Z1)
node.Z2 <- add.gdsn(f, "Z2", Z2)

v <- apply.gdsn(list(X=node.X, Y=node.Y, Z=node.Z1), margin=c(1, 1, 1),
FUN=print, as.is="none")

v <- apply.gdsn(list(X=node.X, Y=node.Y, Z=node.Z2), margin=c(2, 2, 1),
FUN=print)

assign.gdsn 19

v <- apply.gdsn(list(X=node.X, Y=node.Y, Z=node.Z2), margin=c(2, 2, 1),
FUN=print, .value=35:45, .substitute=NA)

v <- apply.gdsn(list(X=node.X, Y=node.Y, Z=node.Z2), margin=c(2, 2, 1),
FUN=print, .value=35:45, .substitute=NA)

with selection

s1 <- rep(c(FALSE, TRUE), 5)
s2 <- c(TRUE, FALSE, TRUE, FALSE, TRUE)

v <- apply.gdsn(list(X=node.X, Y=node.Y, Z=node.Z1), margin=c(1, 1, 1),
selection = list(list(s1, s2), list(sl, s2), list(s1)),
FUN=function(x) print(x))

v <- apply.gdsn(list(X=node.X, Y=node.Y, Z=node.Z2), margin=c(2, 2, 1),
selection = list(list(s1, s2), list(sl1, s2), list(s2)),
FUN=function(x) print(x))

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

assign.gdsn Assign/append data to a GDS node

Description

Assign data to a GDS node, or append data to a GDS node

Usage

assign.gdsn(node, src.node=NULL, resize=TRUE, seldim=NULL, append=FALSE,
.value=NULL, .substitute=NULL)

Arguments
node an object of class gdsn.class, a target GDS node
src.node an object of class gdsn.class, a source GDS node
resize whether call setdim. gdsn to reset the dimension(s)
seldim the selection of src.obj with numeric or logical indicators, or NULL for all data

append if TRUE, append data by calling append. gdsn; otherwise, replace the old one

20 assign.gdsn

.value a vector of values to be replaced in the original data array, or NULL for nothing

.substitute a vector of values after replacing, or NULL for nothing; length(.substitute)
should be one or length(.value);if length(.substitute) =1length(.value),
it is a mapping from .value to .substitute

Value

None.

Author(s)

Xiuwen Zheng

See Also

read. gdsn, readex.gdsn, apply.gdsn, write.gdsn, append.gdsn

Examples

f <- createfn.gds("test.gds")

nl <- add.gdsn(f, "nl1", 1:100)

n2 <- add.gdsn(f, "n2", storage="int", valdim=c(20, 0))
n3 <- add.gdsn(f, "n3", storage="int", valdim=c(0))

n4 <- add.gdsn(f, "n4"”, matrix(1:48, 6))

f’

assign.gdsn(n2, nl1, resize=FALSE, append=TRUE)

read.gdsn(n1)
read.gdsn(n2)

assign.gdsn(n2, n1, resize=FALSE, append=TRUE)
append.gdsn(n2, nl)
read.gdsn(n2)
assign.gdsn(n3, n2, seldim=
list(rep(c(TRUE, FALSE), 10), c(rep(c(TRUE, FALSE), 7), TRUE)))
read.gdsn(n3)
setdim.gdsn(n2, c(25,0))
assign.gdsn(n2, n1, append=TRUE, seldim=rep(c(TRUE, FALSE), 50))
read.gdsn(n2)

assign.gdsn(n2, n1); read.gdsn(n2)
f

##
read.gdsn(n4)

substitute

cache.gdsn 21

assign.gdsn(n4, .value=c(3:8,35:40), .substitute=NA); read.gdsn(n4)

subset
assign.gdsn(n4, seldim=list(c(4,2,6,NA), c(5,6,NA,2,8,NA,4))); read.gdsn(n4)

n4 <- add.gdsn(f, "n4", matrix(1:48, 6), replace=TRUE)
read.gdsn(n4)

sort into descending order

assign.gdsn(n4, seldim=1list(6:1, 8:1)); read.gdsn(n4)

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds", force=TRUE)

cache.gdsn Caching variable data

Description

Caching the data associated with a GDS variable

Usage

cache.gdsn(node)

Arguments

node an object of class gdsn.class, a GDS node

Details

If random access of array-based data is required, it is possible to speed up the access time by caching
data in memory. This function tries to force the operating system to cache the data associated
with the GDS node, however how to cache data depends on the configuration of operating system,
including system memory and caching strategy. Note that this function does not explicitly allocate
memory for the data.

If the data has been compressed, caching strategy almost has no effect on random access, since the
data has to be decompressed serially.

Value

None.

22 cleanup.gds

Author(s)

Xiuwen Zheng

See Also

read.gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

n <- add.gdsn(f, "int.matrix”, matrix(1:50%100, nrow=100, ncol=50))
n

cache.gdsn(n)

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

cleanup.gds Clean up fragments

Description

Clean up the fragments of a CoreArray Genomic Data Structure (GDS) file.

Usage

cleanup.gds(filename, verbose=TRUE)

Arguments

filename the file name of a GDS file to be opened

verbose if TRUE, show information

Value

None.

Author(s)

Xiuwen Zheng

closefn.gds

See Also

openfn.gds, createfn.gds, closefn.gds

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

commom types

add.gdsn(f, "int", val=1:10000)

L <- -2500:2499

add.gdsn(f, "int.matrix"”, val=matrix(L, nrow=100, ncol=50))

save a .RData object

obj <- list(X=1:10, Y=seq(1, 10, 0.1))

save(obj, file="tmp.RData")

addfile.gdsn(f, "tmp.RData"”, filename="tmp.RData")

.F
close the GDS file

closefn.gds(f)

clean up fragments
cleanup.gds("test.gds")

open ...
(f <- openfn.gds("test.gds"))
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

23

closefn.gds Close a GDS file

Description

Close a CoreArray Genomic Data Structure (GDS) file.

Usage
closefn.gds(gdsfile)

Arguments

gdsfile an object of class gds. class, a GDS file

24 clusterApply.gdsn

Details

For better performance, data in a GDS file are usually cached in memory. Keep in mind that the
new file may not actually be written to disk, until closefn.gds or sync.gds is called. Anyway,
when R shuts down, all GDS files created or opened would be automatically closed.

Value

None.

Author(s)

Xiuwen Zheng

See Also

createfn.gds, openfn.gds, sync.gds

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add.gdsn(f, "int.matrix", matrix(1:50*100, nrow=100, ncol=50))

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds", force=TRUE)

clusterApply.gdsn Apply functions over matrix margins in parallel

Description

Return a vector or list of values obtained by applying a function to margins of a GDS matrix in

parallel.
Usage
clusterApply.gdsn(cl, gds.fn, node.name, margin, FUN, selection=NULL,
as.is=c("list"”, "none"”, "integer"”, "double”, "character"”, "logical”, "raw"),
var.index=c("none”, "relative"”, "absolute"”), .useraw=FALSE,

.value=NULL, .substitute=NULL, ...)

clusterApply.gdsn 25

Arguments

cl a cluster object, created by this package or by the package parallel

gds.fn the file name of a GDS file

node. name a character vector indicating GDS node path

margin an integer giving the subscripts which the function will be applied over. E.g.,
for a matrix 1 indicates rows, 2 indicates columns

FUN the function to be applied

selection a list or NULL,; if a list, it is a list of logical vectors according to dimensions
indicating selection; if NULL, uses all data

as.is returned value: a list, an integer vector, etc

var.index if "none”, call FUN(x, ...) without an index; if "relative” or "absolute”,
add an argument to the user-defined function FUN like FUN(index, x, ...)
where index in the function is an index starting from 1: "relative” for in-
dexing in the selection defined by selection, "absolute"” for indexing with
respect to all data

.useraw use R RAW storage mode if integers can be stored in a byte, to reduce memory
usage

.value a vector of values to be replaced in the original data array, or NULL for nothing

.substitute a vector of values after replacing, or NULL for nothing; length(.substitute)
should be one or length(.value);if length(.substitute) =1length(.value),
it is a mapping from .value to .substitute

optional arguments to FUN

Details

The algorithm of applying is optimized by blocking the computations to exploit the high-speed
memory instead of disk.

Value

A vector or list of values.

Author(s)

Xiuwen Zheng

See Also
apply.gdsn

Examples

B R s S s T
prepare a GDS file

cteate a GDS file

26

clusterApply.gdsn

f <- createfn.gds("test1.gds")

(n <- add.gdsn(f, "matrix"”, val=matrix(1:(10%6), nrow=10)))
read.gdsn(index.gdsn(f, "matrix"))

closefn.gds(f)

cteate the GDS file "test2.gds”
(f <- createfn.gds("test2.gds"))

X <- matrix(1:50, nrow=10)

Y <- matrix((1:50)/100, nrow=10)

Z1 <- factor(c(rep(c("ABC", "DEF", "ETD"), 3), "TTT"))
Z2 <- c(TRUE, FALSE, TRUE, FALSE, TRUE)

node.X <- add.gdsn(f, "X", X)
node.Y <- add.gdsn(f, "Y", Y)
node.Z1 <- add.gdsn(f, "Z1", Z1)
node.Z2 <- add.gdsn(f, "Z2", Z2)
f

closefn.gds(f)

B S s s s
apply in parallel

library(parallel)
Use option cl.core to choose an appropriate cluster size.
cl <- makeCluster(getOption(”cl.cores”, 2L))
Apply functions over rows or columns of matrix
clusterApply.gdsn(cl, "testl.gds"”, "matrix”, margin=1, FUN=function(x) x)
clusterApply.gdsn(cl, "testl.gds”, "matrix”, margin=2, FUN=function(x) x)
clusterApply.gdsn(cl, "testl.gds"”, "matrix", margin=1,
selection = list(rep(c(TRUE, FALSE), 5), rep(c(TRUE, FALSE), 3)),
FUN=function(x) x)
clusterApply.gdsn(cl, "testl.gds”, "matrix", margin=2,

selection = list(rep(c(TRUE, FALSE), 5), rep(c(TRUE, FALSE), 3)),
FUN=function(x) x)

Apply functions over rows or columns of multiple data sets

cnt.gdsn 27

clusterApply.gdsn(cl, "test2.gds", c("X", "Y", "Z1"), margin=c(1, 1, 1),
FUN=function(x) x)

with variable names
clusterApply.gdsn(cl, "test2.gds", c(X="X", Y="Y", Z="Z2"), margin=c(2, 2, 1),
FUN=function(x) x)

stop clusters
stopCluster(cl)

delete the temporary file
unlink(c("test1.gds"”, "test2.gds"), force=TRUE)

cnt.gdsn Return the number of child nodes

Description

Return the number of child nodes for a GDS node.

Usage

cnt.gdsn(node, include.hidden=FALSE)

Arguments

node an object of class gdsn.class, a GDS node

include.hidden whether including hidden variables or folders

Value

If node is a folder, return the numbers of variables in the folder including child folders. Otherwise,
return 0.

Author(s)

Xiuwen Zheng

See Also

objdesp.gdsn, 1s.gdsn, index.gdsn, delete.gdsn, add. gdsn

28 compression.gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add a list to "test.gds”

node <- add.gdsn(f, name="list"”, val=list(x=c(1,2), y=c("T","B","C"), z=TRUE))
cnt.gdsn(node)

3

close the GDS file

closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

compression.gdsn Modify compression mode

Description

Modifie the compression mode of data field in the GDS node.

Usage
compression.gdsn(node,
compress=c("", "ZIP", "ZIP_RA", "LZMA", "LZMA_RA", "LZ4", "LZ4_RA"))
Arguments
node an object of class gdsn.class, a GDS node
compress the compression method can be "" (no compression), "ZIP", "ZIP.fast", "ZIP.def",

"ZIP.max" or "ZIP.none" (original zlib); "ZIP_RA", "ZIP_RA fast", "ZIP_RA .def",
"ZIP_RA.max" or "ZIP_RA.none" (zlib with efficient random access); "LZ4",
"LZA.none", "LZA4 .fast", "LZ4.hc" or "LZ4.max" (LZ4 compression/decompression
library); "LZ4_RA", "LZ4_RA.none", "LZ4_RA fast", "LZ4_RA.hc" or "LZ4_RA.max"
(with efficient random access). "LZMA", "LZMA .fast", "LZMA .def", "LZMA .max",
"LZMA_RA", "LZMA_RA fast", "LZMA_RA . def", "LZMA_RA.max" (Izma
compression/decompression algorithm). See details

Details

Z compression algorithm (http://www.zlib.net) can be used to deflate the data stored in the
GDS file. "ZIP" option is equivalent to "ZIP.def". "ZIP.fast", "ZIP.def" and "ZIP.max" correspond
to different compression levels.

To support efficient random access of Z stream, "ZIP_RA", "ZIP_RA .fast", "ZIP_RA.def" or "ZIP_RA.max"
should be specified. "ZIP_RA" option is equivalent to "ZIP_RA.def:256K". The block size can be

http://www.zlib.net

compression.gdsn 29

specified by following colon, and "16K", "32K", "64K", "128K", "256K", "512K", "1IM", "2M",
"4M" and "8M" are allowed, like "ZIP_RA:64K". The compression algorithm tries to keep each
independent compressed data block to be about of the specified block size, like 64K.

LZA fast lossless compression algorithm is allowed when compress="LzZ4" (https://github.
com/1z4/1z4). Three compression levels can be specified, "LZ4.fast" (LZ4 fast mode), "LZ4.hc"
(LZ4 high compression mode), "LZ4.max" (maximize the compression ratio). The block size can
be specified by following colon, and "64K", "256K", "IM" and "4M" are allowed according to LZ4
frame format. "LZ4" is equivalent to "LZ4.hc:256K".

To support efficient random access of LZ4 stream, "LZ4_RA", "LZ4_RA fast", "LZ4_RA.hc" or
"ZIP_RA.max" should be specified. "LZ4_RA" option is equivalent to "LZ4_RA hc:256K". The
block size can be specified by following colon, and "16K", "32K", "64K", "128K", "256K", "512K",
"IM", "2M", "4M" and "8M" are allowed, like "LZ4_RA:64K". The compression algorithm tries
to keep each independent compressed data block to be about of the specified block size, like 64K.

LZMA compression algorithm (https://tukaani.org/xz/) is available since gdsfmt_v1.7.18,
which has a higher compression ratio than ZIP algorithm. "LZMA", "LZMA .fast", "LZMA .def"
and "LZMA .max" available. To support efficient random access of LZMA stream, "LZMA_RA",
"LZMA_RA .fast", "LZMA_RA.def" and "LZMA_RA.max" can be used. The block size can be
specified by following colon. "LZMA_RA" is equivalent to "LZMA_RA.def:256K".

compression 1

compression 2

command line

Z1P ZIP_RA gzip -6
ZIPfast ZIP_RA fast gzip —fast
ZIP.def ZIP_RA.def gzip -6
ZIP.max ZIP_RA.max gzip —best
LZ4 LZ4 RA LZ4 HC -6
LZ4.min LZ4_RA .min LZ4 fast @
LZ4 fast LZ4 RA fast LZ4 fast 2
LZA4 hc LZ4_RA.hc LZ4 HC -6
LZ4.max LZ4 RA.max LZ4 HC -9
LZMA LZMA_RA Xz -6
LZMA .min LZMA_RA .min Xz -0
LZMA fast LZMA _RA fast Xz =2
LZMA .def LZMA_RA.def Xz -6
LZMA .max LZMA_RA.max xz -9e
LZMA .ultra LZMA_RA .ultra xz —1zma2=dict=512Mi

LZMA .ultra_max

Value

Return node.

Author(s)

Xiuwen Zheng

References

http://zlib.net, https://github.com/1z4/1z4, https://tukaani.org/xz/

LZMA_RA .ultra_max

xz —1zma2=dict=1536Mi

https://github.com/lz4/lz4
https://github.com/lz4/lz4
https://tukaani.org/xz/
http://zlib.net
https://github.com/lz4/lz4
https://tukaani.org/xz/

30 copyto.gdsn

See Also

readmode. gdsn, add. gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

n <- add.gdsn(f, "int.matrix”, matrix(1:50%100, nrow=100, ncol=50))
n

compression.gdsn(n, "ZIP")

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds", force=TRUE)

copyto.gdsn Copy GDS nodes

Description

Copy GDS node(s) to a folder with a new name

Usage

copyto.gdsn(node, source, name=NULL)

Arguments

node a folder of class gdsn.class or gds.class
source an object of class gdsn.class or gds.class

name a specified name; if NULL, it is determined by source

Value

None.

Author(s)

Xiuwen Zheng

See Also

moveto.gdsn

createfn.gds 31

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add.gdsn(f, "label"”, NULL)

add.gdsn(f, "int"”, 1:100, compress="ZIP", closezip=TRUE)
add.gdsn(f, "int.matrix"”, matrix(1:100, nrow=20))
addfolder.gdsn(f, "folderl")

addfolder.gdsn(f, "folder2")

for (nm in c("label”, "int"”, "int.matrix"))
copyto.gdsn(index.gdsn(f, "folder1"), index.gdsn(f, nm))
.f_‘

copyto.gdsn(index.gdsn(f, "folder2"), index.gdsn(f, "folder1"))
.f.‘

close the GDS file

closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

createfn.gds Create a GDS file

Description

Create a new CoreArray Genomic Data Structure (GDS) file.

Usage

createfn.gds(filename, allow.duplicate=FALSE, use.abspath=TRUE)

Arguments

filename the file name of a new GDS file to be created

allow.duplicate
if TRUE, it is allowed to open a GDS file with read-only mode when it has been
opened in the same R session

use.abspath if TRUE, ’filename’ of the gds.class object is set to be the absolute path

Details

Keep in mind that the new file may not actually be written to disk until closefn.gds or sync.gds
is called.

32 delete.attr.gdsn

Value

Return an object of class gds.class:

filename the file name to be created
id internal file id
root an object of class gdsn. class, the root of hierachical structure
readonly whether it is read-only or not
Author(s)
Xiuwen Zheng
See Also

openfn.gds, closefn.gds

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add a list to "test.gds”
node <- add.gdsn(f, val=list(x=c(1,2), y=c("T", "B", "C"), z=TRUE))

f
close the GDS file

closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

delete.attr.gdsn Delete attribute(s)

Description

Remove the attribute(s) of a GDS node.

Usage

delete.attr.gdsn(node, name)

Arguments

node an object of class gdsn.class, a GDS node

name the name(s) of an attribute

delete.gdsn

Value

None.

Author(s)
Xiuwen Zheng

See Also

put.attr.gdsn, get.attr.gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

node <- add.gdsn(f, "int"”, val=1:10000)
put.attr.gdsn(node, "missing.value”, 10000)
put.attr.gdsn(node, "one.value”, 1L)
put.attr.gdsn(node, "string”, c("ABCDEF", "THIS"))
put.attr.gdsn(node, "bool", c(TRUE, TRUE, FALSE))

f_‘
get.attr.gdsn(node)

delete.attr.gdsn(node, c("one.value”, "bool"))
get.attr.gdsn(node)

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds", force=TRUE)

33

delete.gdsn Delete a GDS node

Description

Delete a specified GDS node.

Usage

delete.gdsn(node, force=FALSE)

Arguments

node an object of class gdsn.class, a GDS node

force if FALSE, it is not allowed to delete a non-empty folder

34 diagnosis.gds

Value

None.

Author(s)

Xiuwen Zheng

See Also

add. gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add a list to "test.gds"
node <- add.gdsn(f, name="list", val=list(x=c(1,2), y=c("T", "B", "C"), z=TRUE))
f

Not run:

delete "node”, but an error occurs
delete.gdsn(node)

End(Not run)

delete "node”
delete.gdsn(node, TRUE)

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

diagnosis.gds Diagnose the GDS file

Description

Diagnose the GDS file and data information.

Usage

diagnosis.gds(gds, log.only=FALSE)

diagnosis.gds 35

Arguments
gds an object of class gdsn.class or gds.class
log.only if TRUE, return a character vector of log only
Value

A list with stream and chunk information.

If gds is a "gds.class"” object (i.e., a GDS file), the function returns a list with components, like:

stream summary of byte stream

log event log records

If gds is a "gdsn.class" object, the function returns a list with components, like:

head total_size, chunk_offset, chunk_size
data total_size, chunk_offset, chunk_size
Author(s)
Xiuwen Zheng
Examples

cteate a GDS file
f <- createfn.gds("test.gds")

set.seed(1000)
rawval <- as.raw(rep(0:99, 50))

add.gdsn(f, "label”, NULL)
add.gdsn(f, "raw", rawval)

closefn.gds(f)

##

f <- openfn.gds("test.gds")
diagnosis.gds(f)
diagnosis.gds(f$root)
diagnosis.gds(index.gdsn(f, "label”))
diagnosis.gds(index.gdsn(f, "raw"))
closefn.gds(f)

remove fragments

cleanup.gds("test.gds")

36 digest.gdsn

##

f <- openfn.gds("test.gds")
diagnosis.gds(f$root)
diagnosis.gds(index.gdsn(f, "label”))

(adr <- diagnosis.gds(index.gdsn(f, "raw")))

closefn.gds(f)

read binary data directly

f <- file("test.gds”, "rb")

dat <- NULL
for (i in seq_len(length(adr$data$chunk_offset)))
{

seek(f, adr$data$chunk_offset[i])
dat <- c(dat, readBin(f, "raw"”, adr$data$chunk_sizel[i]))
3

identical(dat, rawval) # should be TRUE

close(f)

delete the temporary file
unlink("test.gds", force=TRUE)

digest.gdsn create hash function digests

Description

Create hash function digests for a GDS node.

Usage
digest.gdsn(node, algo=c("md5", "shal", "sha256", "sha384", "sha512"),
action=c("none”, "Robject”, "add", "add.Robj", "clear”, "verify”, "return”))
Arguments
node an object of class gdsn.class, a GDS node
algo the algorithm to be used; currently available choices are "md5" (by default),

"shal”, "sha256", "sha384", "sha512"

digest.gdsn 37

action "none": nothing (by default); "Robject": convert to R object, i.e., raw, integer,
double or character before applying hash digests; "add": add a barcode attribute;
"add.Robj": add a barcode attribute generated from R object; "clear": remove
all hash barcodes; "verify": verify data integrity if there is any hash code in
the attributes, and stop if any fails; "return": compare the existing hash code
in the attributes, and return FALSE if fails, NA if no hash code, and TRUE if the
verification succeeds

Details

The R package digest should be installed to perform hash function digests.

Value

A character or NA_character_ when the hash algorithm is not available.

Author(s)

Xiuwen Zheng

Examples

library(digest)
library(tools)

cteate a GDS file
f <- createfn.gds("test.gds")

val <- as.raw(rep(1:128, 1024))

n1 <- add.gdsn(f, "rawl”, val)

n2 <- add.gdsn(f, "int1", as.integer(val))

n3 <- add.gdsn(f, "int2", as.integer(val), compress="ZIP", closezip=TRUE)

digest.gdsn(n1)

digest.gdsn(n1, action="Robject")

digest.gdsn(n1, action="add")

digest.gdsn(nl1, action="add.Robj")
writeBin(read.gdsn(n1, .useraw=TRUE), con="testl.bin")

write.gdsn(n1, @, start=1027, count=1)

digest.gdsn(n1, action="add")

digest.gdsn(n1, action="add.Robj")

digest.gdsn(n1, "shal”, action="add")

digest.gdsn(n1, "sha256", action="add")

digest.gdsn(n1, "sha384", action="add") ## digest_0.6.11 does not work
digest.gdsn(n1, "sha512", action="add")

writeBin(read.gdsn(n1, .useraw=TRUE), con="test2.bin")

print(n1, attribute=TRUE)
digest.gdsn(n1, action="verify")

digest.gdsn(n1, action="clear")

38 exist.gdsn

print(n1, attribute=TRUE)

digest.gdsn(n2)
digest.gdsn(n2, action="Robject")

using R object
digest.gdsn(n2) == digest.gdsn(n3) # FALSE
digest.gdsn(n2, action="Robject"”) == digest.gdsn(n3, action="Robject”) # TRUE

close the GDS file
closefn.gds(f)

check with other program

md5sum(c("test1.bin"”, "test2.bin"))

delete the temporary file
unlink(c("test.gds"”, "testl.bin"”, "test2.bin"), force=TRUE)

exist.gdsn Return whether the path exists or not

Description

Get a logical vector to show whether the path exists or not.

Usage

exist.gdsn(node, path)

Arguments

node an object of class gdsn.class, a GDS node

path the path(s) specifying a GDS node with °/* as a separator
Value

A logical vector.

Author(s)

Xiuwen Zheng

See Also

1s.gdsn, index.gdsn

gds.class 39

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add a list to "test.gds”
node <- add.gdsn(f, name="list"”, val=list(x=c(1,2), y=c("T","B","C"), z=TRUE))
1s.gdsn(node)

Mx" o mym o ng

x" "y" "z
exist.gdsn(f, c("list”, "list/z", "wuw/dj"))
close the GDS file

closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

gds.class the class of GDS file

Description

The class of a CoreArray Genomic Data Structure (GDS) file.

Value

There are three components:

filename the file name to be created
id internal file id, an integer
root an object of class gdsn.class, the root of hierachical structure
readonly whether it is read-only or not
Author(s)
Xiuwen Zheng
See Also

createfn.gds, openfn.gds, closefn.gds

40

get.attr.gdsn

gdsn.class the class of variable node in the GDS file

Description

The class of variable node in the GDS file.

Author(s)

Xiuwen Zheng

See Also

add.gdsn, read.gdsn, write.gdsn

get.attr.gdsn Get attributes

Description

Get the attributes of a GDS node.

Usage

get.attr.gdsn(node)

Arguments

node an object of class gdsn.class, a GDS node

Value

A list of attributes.

Author(s)

Xiuwen Zheng

See Also

put.attr.gdsn, delete.attr.gdsn

getfile.gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

node <- add.gdsn(f, "int"”, val=1:10000)
put.attr.gdsn(node, "missing.value”, 10000)

.f.‘
get.attr.gdsn(node)

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds", force=TRUE)

getfile.gdsn Output a file from a stream container

Description

Get a file from a GDS node of stream container.

Usage

getfile.gdsn(node, out.filename)

Arguments

node an object of class gdsn.class, a GDS node

out.filename the file name of output stream

Value

None.

Author(s)

Xiuwen Zheng

See Also

addfile.gdsn

42 getfolder.gdsn

Examples

save a .RData object
obj <- list(X=1:10, Y=seq(1, 10, 0.1))
save(obj, file="tmp.RData")

cteate a GDS file
f <- createfn.gds("test.gds")

add.gdsn(f, "double", val=seq(1l, 1000, 0.4))
addfile.gdsn(f, "tmp.RData”, "tmp.RData")

open the GDS file
closefn.gds(f)
open the existing file

(f <- openfn.gds("test.gds"))

getfile.gdsn(index.gdsn(f, "tmp.RData"), "tmpl.RData")
(obj <- get(load("tmpl.RData")))

open the GDS file
closefn.gds(f)

delete the temporary files
unlink(c("test.gds"”, "tmp.RData"”, "tmpl.RData"), force=TRUE)

getfolder.gdsn Get the folder

Description

Get the folder which contains the specified GDS node.

Usage
getfolder.gdsn(node)

Arguments

node an object of class gdsn.class

Value

An object of class gdsn.class.

Author(s)

Xiuwen Zheng

index.gdsn 43

See Also

index.gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add.gdsn(f, "label”, NULL)

add.gdsn(f, "double”, seq(1, 1000, 0.4))

add.gdsn(f, "list"”, list(X=1:10, Y=seq(l, 10, 0.25)))
add.gdsn(f, "data.frame”, data.frame(X=1:19, Y=seq(1, 10, 0.5)))

f

getfolder.gdsn(index.gdsn(f, "label”))
getfolder.gdsn(index.gdsn(f, "double"))
getfolder.gdsn(index.gdsn(f, "list/X"))
getfolder.gdsn(index.gdsn(f, "data.frame/Y"))

getfolder.gdsn(f$root)

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

index.gdsn Get the specified node

Description

Get a specified GDS node.

Usage

index.gdsn(node, path=NULL, index=NULL, silent=FALSE)

Arguments
node an object of class gdsn.class (a GDS node), or gds.class (a GDS file)
path the path specifying a GDS node with ’/’ as a separator
index a numeric vector or characters, specifying the path; it is applicable if path=NULL

silent if TRUE, return NULL if the specified node does not exist

44 index.gdsn

Details

If index is a numeric vector, e.g., c(1, 2), the result is the second child node of the first child of
node. If index is a vector of characters, e.g., c("list"”, "x"), the result is the child node with
name "x" of the "1ist"” child node.

Value

An object of class gdsn.class for the specified node.

Author(s)

Xiuwen Zheng

See Also

cnt.gdsn, 1s.gdsn, name.gdsn, add. gdsn, delete.gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add a list to "test.gds”
node <- add.gdsn(f, name="list"”, val=list(x=c(1,2), y=c("T","B","C"), z=TRUE))
.F

index.gdsn(f, "list/x")
index.gdsn(f, index=c("list”, "x"))
index.gdsn(f, index=c(1, 1))
index.gdsn(f, index=c("list”, "z"))

Not run:
index.gdsn(f, "list/x/z")
Error in index.gdsn(f, "list/x/z") : Invalid path "list/x/z"!

End(Not run)

return NULL
index.gdsn(f, "list/x/z", silent=TRUE)

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds", force=TRUE)

is.element.gdsn

is.element.gdsn whether the elements are in a set

Description

Determine whether the elements are in a specified set.

Usage

is.element.gdsn(node, set)

Arguments
node an object of class gdsn.class (a GDS node)
set the specified set of elements

Value

A logical vector or array.

Author(s)

Xiuwen Zheng

See Also

read.gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add.gdsn(f, "int", val=1:100)

add.gdsn(f, "mat”, val=matrix(1:12, nrow=4, ncol=3))

add.gdsn(f, "double", val=seq(1, 10, 0.1))

add.gdsn(f, "character”, val=c("int", "double"”, "logical"”, "factor”))

is.element.gdsn(index.gdsn(f, "int"), c(1, 10, 20))
is.element.gdsn(index.gdsn(f, "mat"”), c(2, 8, 12))
is.element.gdsn(index.gdsn(f, "double"”), c(1.1, 1.3, 1.5))
is.element.gdsn(index.gdsn(f, "character”), c("int", "factor”))

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds", force=TRUE)

46

is.sparse.gdsn

is.sparse.gdsn whether a sparse array or not

Description

Determine whether the node is a sparse array or not.

Usage

is.sparse.gdsn(node)

Arguments

node an object of class gdsn.class (a GDS node)

Value

TRUE / FALSE.

Author(s)

Xiuwen Zheng

See Also

add. gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

cnt <- matrix(@, nrow=4, ncol=8)

set.seed(100)

cnt[sample.int(length(cnt), 8)] <- rpois(8, 4)
cnt

add.gdsn(f, "mat"”, val=cnt)

add.gdsn(f, "sp.mat", val=cnt, storage="sp.real”)
f

is.sparse.gdsn(index.gdsn(f, "mat"))
is.sparse.gdsn(index.gdsn(f, "sp.mat"))

read.gdsn(index.gdsn(f, "sp.mat"))

close the GDS file
closefn.gds(f)

lasterr.gds 47

delete the temporary file
unlink("test.gds", force=TRUE)

lasterr.gds Return the last error message

Description

Get the last error message and clear the error message(s) in the gdsfmt package.

Usage

lasterr.gds()

Value

Character.

Author(s)

Xiuwen Zheng

Examples

lasterr.gds()

1s.gdsn Return the names of child nodes

Description

Get a list of names for its child nodes.

Usage

1s.gdsn(node, include.hidden=FALSE, recursive=FALSE, include.dirs=TRUE)

Arguments

node an object of class gdsn.class, a GDS node
include.hidden whether including hidden variables or folders
recursive whether the listing recurses into directories or not

include.dirs whether subdirectory names should be included in recursive listings

48

Value

A vector of characters, or character (@) if node is not a folder.

Author(s)

Xiuwen Zheng

See Also

cnt.gdsn, objdesp.gdsn, 1s.gdsn, index.gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add a list to "test.gds”

moveto.gdsn

node <- add.gdsn(f, name="list"”, val=list(x=c(1,2), y=c("T","B","C"), z=TRUE))

1s.gdsn(node)

Mx" mym o ng

x" "y" "z

1s.gdsn(f$root)
"list”

1s.gdsn(f$root, recursive=TRUE)
"list” "list/x" "list/y" "list/z"

ls.gdsn(f$root, recursive=TRUE, include.dirs=FALSE)
"list/x" "list/y" "list/z"

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

moveto.gdsn Relocate a GDS node

Description

Move a GDS node to a new place in the same file

Usage

moveto.gdsn(node, loc.node,

relpos = c("after”, "before"”, "replace”, "replacetrename”))

moveto.gdsn 49

Arguments
node an object of class gdsn.class (a GDS node)
loc.node an object of class gdsn.class (a GDS node), indicates the new location
relpos "after"”: after loc.node, "before"”: before loc.node, "replace”: replace
loc.node (loc.node will be deleted); "replace+rename”: replace loc.node
(loc.node will be deleted and node has a new name as loc.node)
Value
None.
Author(s)
Xiuwen Zheng
See Also

createfn.gds, openfn.gds, index.gdsn, add. gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")
L <- -2500:2499

commom types

add.gdsn(f, "label”, NULL)

add.gdsn(f, "int"”, 1:10000, compress="ZIP", closezip=TRUE)
add.gdsn(f, "int.matrix"”, matrix(L, nrow=100, ncol=50))
add.gdsn(f, "double”", seq(l, 1000, 0.4))

add.gdsn(f, "character”, c("int"”, "double"”, "logical”, "factor"))

f’
o+ [1]
|--+ label

|--+ int { Int32 10000 ZIP(34.74%) }
|--+ int.matrix { Int32 100x50 }

|--+ double { Float64 2498 }

|--+ character { VStr8 4 }

n1 <- index.gdsn(f, "label”)
n2 <- index.gdsn(f, "double")

moveto.gdsn(nl, n2, relpos="after")
f’

moveto.gdsn(nl, n2, relpos="before")
f’

moveto.gdsn(nl, n2, relpos="replace")

50 name.gdsn

n2 <- index.gdsn(f, "int")
moveto.gdsn(nl, n2, relpos="replace+rename”)
.f.‘

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds", force=TRUE)

name. gdsn Return the variable name of a node

Description

Get the variable name of a GDS node.

Usage
name.gdsn(node, fullname=FALSE)

Arguments

node an object of class gdsn.class, a GDS node

fullname if FALSE, return the node name (by default); otherwise the name with a full path

Value

Characters.

Author(s)

Xiuwen Zheng

See Also

cnt.gdsn, objdesp.gdsn, 1s.gdsn, rename. gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add a list to "test.gds"
add.gdsn(f, name="list", val=list(x=c(1,2), y=c("T","B","C"), z=TRUE))
node <- index.gdsn(f, "list/x")

objdesp.gdsn 51

name.gdsn(node)
"y

name.gdsn(node, fullname=TRUE)
"list/x"

close the GDS file

closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

objdesp.gdsn Variable description

Description

Get the description of a GDS node.

Usage
objdesp.gdsn(node)

Arguments

node an object of class gdsn.class, a GDS node

Value

Returns a list:

name the variable name of a specified node

fullname the full name of a specified node

storage the storage mode in the GDS file

trait the description of data field, like "Int8"

type a factor indicating the storage mode in R: Label — a label node, Folder — a di-

rectory, VFolder — a virtual folder linking to another GDS file, Raw — raw data
(addfile.gdsn), Integer — integers, Factor — factor values, Logical — logical
values (FALSE, TRUE and NA), Real — floating numbers, String — characters,
Unknown — unknown type

is.array indicates whether it is array-type
is.sparse TRUE, if it is a sparse array
dim the dimension of data field

encoder encoder for compressed data, such like "ZIP"

52

compress
cpratio
size

good

hidden

message

param

Author(s)

Xiuwen Zheng

See Also

objdesp.gdsn

the compression method: "", "ZIP.max", etc
data compression ratio, NaN indicates no compression
the size of data stored in the GDS file

logical, indicates the state of GDS file, e.g., FALSE if the virtual folder fails to
link the target GDS file

logical, TRUE if it is a hidden object

if applicable, messages of the GDS node, such like error messages, log informa-
tion

non

the parameters, used in add. gdsn, like "maxlen", "offset", "scale"

cnt.gdsn, name.gdsn, 1s.gdsn, index.gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add a vector to "test.gds”
nodel <- add.gdsn(f, name="vectorl”, val=1:10000)
objdesp.gdsn(nodel)

add a vector to "test.gds”

node2 <- add.gdsn(f, name="vector2”, val=1:10000, compress="ZIP.max",
closezip=FALSE)

objdesp.gdsn(node2)

add a character to "test.gds”

node3 <- add.gdsn(f, name="vector3", val=c("A", "BC", "DEF"),
compress="ZIP", closezip=TRUE)

objdesp.gdsn(node3)

close the GDS file

closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

opentn.gds 53

openfn.gds Open a GDS file

Description

Open an existing file of CoreArray Genomic Data Structure (GDS) for reading or writing.

Usage

openfn.gds(filename, readonly=TRUE, allow.duplicate=FALSE, allow.fork=FALSE,
allow.error=FALSE, use.abspath=TRUE)

Arguments
filename the file name of a GDS file to be opened
readonly if TRUE, the file is opened read-only; otherwise, it is allowed to write data to the

file
allow.duplicate

if TRUE, it is allowed to open a GDS file with read-only mode when it has been
opened in the same R session

allow.fork TRUE for parallel environment using forking, see details

allow.error TRUE for data recovery from a crashed GDS file

use.abspath if TRUE, ’filename’ of the gds.class object is set to be the absolute path

Details

This function opens an existing GDS file for reading (or, if readonly=FALSE, for writing). To create
anew GDS file, use createfn.gds instead.

If the file is opened read-only, all data in the file are not allowed to be changed, including hierachical
structure, variable names, data fields, etc.

mclapply and mcmapply in the R package parallel rely on unix forking. However, the forked
child process inherits copies of the parent’s set of open file descriptors. Each file descriptor in the
child refers to the same open file description as the corresponding file descriptor in the parent. This
means that the two descriptors share open file status flags, current file offset, and signal-driven I/O
attributes. The sharing of file description can cause a serious problem (wrong reading, even program
crashes), when child processes read or write the same GDS file simultaneously. allow. fork=TRUE
adds additional file operations to avoid any conflict using forking. The current implementation does
not support writing in forked processes.

Value

Return an object of class gds.class.

filename the file name to be created
id internal file id, an integer
root an object of class gdsn.class, the root of hierachical structure

readonly whether it is read-only or not

54 permdim.gdsn

Author(s)

Xiuwen Zheng

See Also

createfn.gds, closefn.gds

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add a list to "test.gds”

node <- add.gdsn(f, name="list"”, val=list(x=c(1,2), y=c("T","B","C"), z=TRUE))
close

closefn.gds(f)

open the same file
f <- openfn.gds("test.gds")

read
(node <- index.gdsn(f, "list"))
read. gdsn(node)

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

permdim.gdsn Array Transposition

Description

Transpose an array by permuting its dimensions.

Usage

permdim.gdsn(node, dimidx, target=NULL)

Arguments
node an object of class gdsn.class, a GDS node
dimidx the subscript permutation vector, and it should be a permutation of the integers

’1:n’, where ’n’ is the number of dimensions

target if it is not NULL, the transposed data are saved to target

permdim.gdsn

Value

None.

Author(s)

Xiuwen Zheng

See Also

setdim.gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

(node <- add.gdsn(f, "matrix", val=matrix(1:48, nrow=6),
compress="ZIP", closezip=TRUE))
read. gdsn(node)

permdim.gdsn(node, c(2,1))
read. gdsn(node)

(node <- add.gdsn(f, "array", val=array(1:120, dim=c(5,4,3,2)),
compress="ZIP", closezip=TRUE))
read. gdsn(node)

mat <- read.gdsn(node)
permdim.gdsn(node, c(1,2,3,4))
stopifnot(identical(mat, read.gdsn(node)))

mat <- read.gdsn(node)
permdim.gdsn(node, c(4,2,1,3))
stopifnot(identical (aperm(mat, c(4,2,1,3)), read.gdsn(node)))

mat <- read.gdsn(node)
permdim.gdsn(node, c¢(3,2,4,1))
stopifnot(identical (aperm(mat, c(3,2,4,1)), read.gdsn(node)))

mat <- read.gdsn(node)
permdim.gdsn(node, c(2,3,1,4))
stopifnot(identical (aperm(mat, c(2,3,1,4)), read.gdsn(node)))

close the GDS file
closefn.gds(f)

remove unused space after permuting dimensions
cleanup.gds("test.gds")

56

print.gds.class

delete the temporary file
unlink("test.gds", force=TRUE)

print.gds.class

Show the information of class "gds.class" and "gdsn.class"

Description

Displays the contents of "gds.class" (a GDS file) and "gdsn.class" (a GDS node).

Usage

S3 method for class 'gds.class'

print(x, path="", show=TRUE, ...)

S3 method for class 'gdsn.class'

print(x, expand=TRUE, all=FALSE, nmax=Inf, depth=Inf,
attribute=FALSE, attribute.trim=FALSE, ...)

S4 method for signature 'gdsn.class'

show(object)

Arguments

X

object

path

show
expand
all

nmax
depth
attribute

attribute.trim

Value

None.

Author(s)

Xiuwen Zheng

an object of class gds. class, a GDS file; or gdsn. class, a GDS node

an object of class gds.class, the number of elements in the preview can be
specified via the option getOption("gds.preview.num”, 6L), while 6L is the
default value

the path specifying a GDS node with ’/’ as a separator

if TRUE, display the preview of array node

whether enumerate all of child nodes

if FALSE, hide GDS nodes with an attribute "R.invisible"
display nodes within the maximum number nmax

display nodes under maximum depth

if TRUE, show the attribute(s)

if TRUE, trim the attribute information if it is too long

the arguments passed to or from other methods

put.attr.gdsn 57

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add.gdsn(f, "int"”, 1:100)
add.gdsn(f, "int.matrix"”, matrix(1:(50%100), nrow=100, ncol=50))
put.attr.gdsn(index.gdsn(f, "int.matrix”), "int", 1:10)

print(f, all=TRUE)
print(f, all=TRUE, attribute=TRUE)
print(f, all=TRUE, attribute=TRUE, attribute.trim=FALSE)

show(index.gdsn(f, "int"))
show(index.gdsn(f, "int.matrix"))

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

put.attr.gdsn Add an attribute into a GDS node

Description

Add an attribute to a GDS node.

Usage

put.attr.gdsn(node, name, val=NULL)

Arguments
node an object of class gdsn.class, a GDS node
name the name of an attribute
val the value of an attribute, or a gdsn. class object
Details

Missing values are allowed in a numerical attribute, but not allowed for characters or logical values.
Missing characters are converted to "NA", and missing logical values are converted to FALSE.

If val is a gdsn. class object, copy all attributes to node.

Value

None.

58 read.gdsn

Author(s)

Xiuwen Zheng

See Also

get.attr.gdsn, delete.attr.gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

node <- add.gdsn(f, "int"”, val=1:10000)

put.attr.gdsn(node, "missing.value”, 10000)

put.attr.gdsn(node, "one.value”, 1L)

put.attr.gdsn(node, "string”, c("ABCDEF", "THIS", paste(letters, collapse="")))
put.attr.gdsn(node, "bool”, c(TRUE, TRUE, FALSE))

.f.‘
get.attr.gdsn(node)

delete.attr.gdsn(node, "one.value")
get.attr.gdsn(node)

node2 <- add.gdsn(f, "char"”, val=letters)
get.attr.gdsn(node2)

put.attr.gdsn(node2, val=node)
get.attr.gdsn(node2)

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

read.gdsn Read data field of a GDS node

Description

Get data from a GDS node.

Usage

read.gdsn(node, start=NULL, count=NULL,
simplify=c("auto”, "none", "force"), .useraw=FALSE, .value=NULL,
.substitute=NULL, .sparse=TRUE)

read.gdsn 59

Arguments
node an object of class gdsn.class, a GDS node
start a vector of integers, starting from 1 for each dimension component
count a vector of integers, the length of each dimnension. As a special case, the value
"-1" indicates that all entries along that dimension should be read, starting from
start
simplify if "auto”, the result is collapsed to be a vector if possible; "force"”, the result
is forced to be a vector
.useraw use R RAW storage mode if integers can be stored in a byte, to reduce memory
usage
.value a vector of values to be replaced in the original data array, or NULL for nothing
.substitute a vector of values after replacing, or NULL for nothing; length(.substitute)
should be one or length(.value);if length(.substitute) =1length(.value),
it is a mapping from .value to .substitute
.sparse only applicable for the sparse array nodes, if TRUE and it is a vector or matrix,
return a Matrix: :dgCMatrix object
Details

start, count: the values in data are taken to be those in the array with the leftmost subscript
moving fastest.
Value

Return an array, list, or data. frame.

Author(s)

Xiuwen Zheng

See Also

readex.gdsn, append. gdsn, write.gdsn, add. gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add.gdsn(f, "vector”, 1:128)

add.gdsn(f, "list"”, list(X=1:10, Y=seq(l, 10, 0.25)))
add.gdsn(f, "data.frame”, data.frame(X=1:19, Y=seq(1, 10, 0.5)))
add.gdsn(f, "matrix”, matrix(1:12, ncol=4))

f

read.gdsn(index.gdsn(f, "vector"))
read.gdsn(index.gdsn(f, "list"))

60 readex.gdsn

read.gdsn(index.gdsn(f, "data.frame"))

the effects of 'simplify'
read.gdsn(index.gdsn(f, "matrix"), start=c(2,2), count=c(-1,1))
[1] 56 <- a vector

read.gdsn(index.gdsn(f, "matrix"), start=c(2,2), count=c(-1,1),
simplify="none")
[,1] <- a matrix

read.gdsn(index.gdsn(f, "matrix"), start=c(2,2), count=c(-1,3))
read.gdsn(index.gdsn(f, "matrix"), start=c(2,2), count=c(-1,3),
.value=c(12,5), .substitute=NA)

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

readex.gdsn Read data field of a GDS node with a selection

Description

Get data from a GDS node with subset selection.

Usage
readex.gdsn(node, sel=NULL, simplify=c("auto”, "none", "force"),
.useraw=FALSE, .value=NULL, .substitute=NULL, .sparse=TRUE)
Arguments
node an object of class gdsn.class, a GDS node
sel a list of m logical vectors, where m is the number of dimensions of node and each
logical vector should have the same size of dimension in node
simplify if "auto”, the result is collapsed to be a vector if possible; "force”, the result
is forced to be a vector
.useraw use R RAW storage mode if integers can be stored in a byte, to reduce memory

usage

.value a vector of values to be replaced in the original data array, or NULL for nothing

readex.gdsn 61

.substitute a vector of values after replacing, or NULL for nothing; length(.substitute)
should be one or 1ength(.value);if length(.substitute) =1length(.value),
it is a mapping from .value to .substitute

.sparse only applicable for the sparse array nodes, if TRUE and it is a vector or matrix,
return a Matrix: :dgCMatrix object

Details

If sel is a list of numeric vectors, the internal method converts the numeric vectors to logical vectors
first, extract data with logical vectors, and then call [to reorder or expend data.

Value

Return an array.

Author(s)

Xiuwen Zheng

See Also

read. gdsn, append.gdsn, write.gdsn, add.gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add.gdsn(f, "vector”, 1:128)
add.gdsn(f, "matrix", matrix(as.character(1:(10%6)), nrow=10))
f’

read vector

readex.gdsn(index.gdsn(f, "vector"), sel=rep(c(TRUE, FALSE), 64))
readex.gdsn(index.gdsn(f, "vector"), sel=c(4:8, 1, 2, 12))
readex.gdsn(index.gdsn(f, "vector”), sel=-1:-10)

readex.gdsn(index.gdsn(f, "vector"), sel=c(4, 1, 10, NA, 12, NA))
readex.gdsn(index.gdsn(f, "vector”), sel=c(4, 1, 10, NA, 12, NA),
.value=c(NA, 1, 12), .substitute=c(6, 7, NA))

read matrix
readex.gdsn(index.gdsn(f, "matrix"))
readex.gdsn(index.gdsn(f, "matrix"),

sel=list(rep(c(TRUE, FALSE), 5), rep(c(TRUE, FALSE), 3)))
readex.gdsn(index.gdsn(f, "matrix"), sel=list(NULL, c(1,3,6)))
readex.gdsn(index.gdsn(f, "matrix"),

sel=list(rep(c(TRUE, FALSE), 5), c(1,3,6)))
readex.gdsn(index.gdsn(f, "matrix"), sel=list(c(1,3,6,10), c(1,3,6)))
readex.gdsn(index.gdsn(f, "matrix"), sel=list(c(-1,-3), -6))

62

readmode.gdsn

readex.gdsn(index.gdsn(f, "matrix"), sel=list(c(1,3,NA,10), c(1,3,NA,5)))
readex.gdsn(index.gdsn(f, "matrix"), sel=list(c(1,3,NA,10), c(1,3,NA,5)),
simplify="force")

readex.gdsn(index.gdsn(f, "matrix"), sel=list(c(1,3,NA,10), c(1,3,NA,5)))
readex.gdsn(index.gdsn(f, "matrix"), sel=list(c(1,3,NA,10), c(1,3,NA,5)),
.value=NA, .substitute="X")

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

readmode. gdsn Switch to read mode in the compression settings

Description

Switch to read mode for a GDS node with respect to its compression settings.

Usage

readmode. gdsn(node)

Arguments

node an object of class gdsn.class, a GDS node

Details

After the compressed data field is created, it is in writing mode. Users can add new data to the
compressed data field, but can not read data from the data field. Users have to call readmode. gdsn
to finish writing, before reading any data from the compressed data field.

Once switch to the read mode, users can not add more data to the data field. If users would like to
append more data or modify the data field, please call compression.gdsn(node, compress="")
to decompress data first.

Value

Return node.

Author(s)

Xiuwen Zheng

rename.gdsn

See Also

compression.gdsn, add. gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

commom types
n <- add.gdsn(f, "int"”, val=1:100, compress="ZIP")

you can not read the variable "int" because of writing mode
read.gdsn(n)

readmode. gdsn(n)

now you can read "int"
read.gdsn(n)

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

63

rename.gdsn Rename a GDS node

Description

Rename a GDS node.

Usage

rename.gdsn(node, newname)

Arguments
node an object of class gdsn.class, a GDS node
newname the new name of a specified node

Details

CoreArray hierarchical structure does not allow duplicate names in the same folder.

Value

None.

64 setdim.gdsn

Author(s)

Xiuwen Zheng

See Also

name.gdsn, 1s.gdsn, index.gdsn

Examples

cteate a GDS file

f <- createfn.gds("test.gds")

n <- add.gdsn(f, "old.name", val=1:10)
.f.‘

rename.gdsn(n, "new.name")
.f.‘

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

setdim.gdsn Set the dimension of data field

Description

Assign new dimensions to the data field of a GDS node.

Usage

setdim.gdsn(node, valdim, permute=FALSE)

Arguments
node an object of class gdsn.class, a GDS node
valdim the new dimension(s) for the array to be created, which is a vector of length one
or more giving the maximal indices in each dimension. The values in data are
taken to be those in the array with the leftmost subscript moving fastest. The
last entry could be ZERO. If the total number of elements is zero, gdsfmt does
not allocate storage space. NA is treated as 0.
permute if TRUE, the elements are rearranged to preserve their relative positions in each
dimension of the array
Value

Returns node.

showfile.gds

Author(s)

Xiuwen Zheng

See Also

read.gdsn, write.gdsn, add. gdsn, append. gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

n <- add.gdsn(f, "int"”, val=1:24)
read.gdsn(n)

setdim.gdsn(n, c(6, 4))
read.gdsn(n)

setdim.gdsn(n, c(8, 5), permute=TRUE)
read.gdsn(n)

setdim.gdsn(n, c(3, 4), permute=TRUE)
read.gdsn(n)
n <- add.gdsn(f, "bit3", val=1:24, storage="bit3")

read.gdsn(n)

setdim.gdsn(n, c(6, 4))
read.gdsn(n)

setdim.gdsn(n, c(8, 5), permute=TRUE)
read.gdsn(n)

setdim.gdsn(n, c(3, 4), permute=TRUE)
read.gdsn(n)

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

65

showfile.gds Enumerate opened GDS files

66 summarize.gdsn

Description

Enumerate all opened GDS files

Usage
showfile.gds(closeall=FALSE, verbose=TRUE)

Arguments
closeall if TRUE, close all GDS files
verbose if TRUE, show information
Value

A data. frame with the columns "FileName", "ReadOnly" and "State", or NULL if there is no opened
gds file.

Author(s)

Xiuwen Zheng

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add.gdsn(f, "int"”, val=1:10000)
showfile.gds()
showfile.gds(closeall=TRUE)

delete the temporary file
unlink("test.gds"”, force=TRUE)

summarize.gdsn GDS object Summaries

Description

Get the summaries of a GDS node.

Usage

summarize.gdsn(node)

sync.gds 67

Arguments

node an object of class gdsn.class, a GDS node

Value

A list including

min the minimum value

max the maximum value

num_na the number of invalid numbers or NA

decimal the count of each decimal (integer, 0.1, 0.01, ..., or other)
Author(s)

Xiuwen Zheng
Examples

cteate a GDS file
f <- createfn.gds("test.gds")

nl <- add.gdsn(f, "x", seq(1, 10, 0.1), storage="float")

n2 <- add.gdsn(f, "y", seq(1, 10, 0.1), storage="double")

n3 <- add.gdsn(f, "int", c(1:100, NA, 112, NA), storage="int")
n4 <- add.gdsn(f, "int8", c(1:100, NA, 112, NA), storage="int8")

summarize.gdsn(n1)
summarize.gdsn(n2)
summarize.gdsn(n3)
summarize.gdsn(n4)

close the file
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

sync.gds Synchronize a GDS file

Description

Write the data cached in memory to disk.

Usage
sync.gds(gdsfile)

68 sync.gds

Arguments

gdsfile An object of class gds.class, a GDS file

Details

For better performance, Data in a GDS file are usually cached in memory. Keep in mind that the
new file may not actually be written to disk, until closefn.gds or sync.gds is called. Anyway,
when R shuts down, all GDS files created or opened would be automatically closed.

Value

None.

Author(s)

Xiuwen Zheng

See Also

createfn.gds, openfn.gds

Examples
options(gds.verbose=TRUE)

cteate a GDS file
f <- createfn.gds("test.gds")

node <- add.gdsn(f, "int", val=1:10000)
put.attr.gdsn(node, "missing.value”, 10000)
f

sync.gds(f)

get.attr.gdsn(node)

close the GDS file

closefn.gds(f)

delete the temporary file
unlink("test.gds", force=TRUE)

system.gds 69

system.gds Get the parameters in the GDS system

Description

Get a list of parameters in the GDS system

Usage

system.gds()

Value
A list including

num.logical.core
the number of logical cores

11i.cache.size LI instruction cache
11d.cache.size LI data cache
12.cache.size L2 datacache
13.cache.size L3 data cache

14.cache.size L4 data cache if applicable

compression.encoder
compression/decompression algorithms

compiler information of compiler
compiler.flag SIMD instructions supported by the compiler
class.list class list in the GDS system

options list all options associated with GDS format or package, including gds.crayon(FALSE
for no stylish terminal output), gds.parallel and gds.verbose

Author(s)

Xiuwen Zheng

Examples

system.gds()

70 unload.gdsn

unload.gdsn Unload a GDS node

Description

Unload a specified GDS node.

Usage
unload. gdsn(node)

Arguments

node an object of class gdsn.class, a GDS node

Value

None.

Author(s)
Xiuwen Zheng

See Also

delete.gdsn

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

add a list to "test.gds”
node <- add.gdsn(f, "val”, 1:1000)
node

Not run:

unload.gdsn(node)

node # Error: Invalid GDS node object (it was unloaded or deleted).
End(Not run)

index.gdsn(f, "val")

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

write.gdsn

71

write.gdsn

Write data to a GDS node

Description

Write data to a GDS node.

Usage

write.gdsn(node, val, start=NULL, count=NULL, check=TRUE)

Arguments

node
val
start
count

check

Details

an object of class gdsn.class, a GDS node

the data to be written

a vector of integers, starting from 1 for each dimension
a vector of integers, the length of each dimnension

if TRUE, a warning will be given when val is character and there are missing
values in val

start, count: The values in data are taken to be those in the array with the leftmost subscript

moving fastest.

start and count should both exist or be missing. If start and count are both missing, the dimen-
sions and values of val will be assigned to the data field.

GDS format does not support missing characters NA, and any NA will be converted to a blank string

nn

Value

None.

Author(s)

Xiuwen Zheng

See Also

append. gdsn, read. gdsn, add. gdsn

72

Examples

cteate a GDS file
f <- createfn.gds("test.gds")

A

n <- add.gdsn(f, "matrix", matrix(1:20, ncol=5))
read.gdsn(n)

write.gdsn(n, val=c(NA, NA), start=c(2, 2), count=c(2, 1))

read.gdsn(n)

I

n <- add.gdsn(f, "n", val=1:12)
read.gdsn(n)

write.gdsn(n, matrix(1:24, ncol=6))
read.gdsn(n)

write.gdsn(n, array(1:24, c(4,3,2)))
read.gdsn(n)

close the GDS file
closefn.gds(f)

delete the temporary file
unlink("test.gds"”, force=TRUE)

write.gdsn

Index

* GDS

add.gdsn, 5
addfile.gdsn, 9
addfolder.gdsn, 11
append.gdsn, 13
apply.gdsn, 15
assign.gdsn, 19
cache.gdsn, 21
cleanup.gds, 22
closefn.gds, 23
clusterApply.gdsn, 24
cnt.gdsn, 27
compression.gdsn, 28
copyto.gdsn, 30
createfn.gds, 31
delete.attr.gdsn, 32
delete.gdsn, 33
diagnosis.gds, 34
digest.gdsn, 36
exist.gdsn, 38
gds.class, 39
gdsfmt-package, 3
gdsn.class, 40
get.attr.gdsn, 40
getfile.gdsn, 41
getfolder.gdsn, 42
index.gdsn, 43
is.element.gdsn, 45
is.sparse.gdsn, 46
lasterr.gds, 47
1s.gdsn, 47
moveto.gdsn, 48
name. gdsn, 50
objdesp.gdsn, 51
openfn.gds, 53
permdim.gdsn, 54
print.gds.class, 56
put.attr.gdsn, 57
read.gdsn, 58

73

readex.gdsn, 60
readmode. gdsn, 62
rename.gdsn, 63
setdim.gdsn, 64
showfile.gds, 65
summarize.gdsn, 66
sync.gds, 67
system.gds, 69
unload.gdsn, 70
write.gdsn, 71
* 10
gdsfmt-package, 3
+ database
gdsfmt-package, 3
* file
gdsfmt-package, 3
* interface
gdsfmt-package, 3
+ utilities
add.gdsn, 5
addfile.gdsn, 9
addfolder.gdsn, 11
append. gdsn, 13
apply.gdsn, 15
assign.gdsn, 19
cache.gdsn, 21
cleanup.gds, 22
closefn.gds, 23
clusterApply.gdsn, 24
cnt.gdsn, 27
compression.gdsn, 28
copyto.gdsn, 30
createfn.gds, 31
delete.attr.gdsn, 32
delete.gdsn, 33
diagnosis.gds, 34
digest.gdsn, 36
exist.gdsn, 38
gds.class, 39

74

gdsfmt-package, 3
gdsn.class, 40
get.attr.gdsn, 40
getfile.gdsn, 41
getfolder.gdsn, 42
index.gdsn, 43
is.element.gdsn, 45
is.sparse.gdsn, 46
lasterr.gds, 47
1s.gdsn, 47
moveto.gdsn, 48
name. gdsn, 50
objdesp.gdsn, 51
openfn.gds, 53
permdim.gdsn, 54
print.gds.class, 56
put.attr.gdsn, 57
read.gdsn, 58
readex.gdsn, 60
readmode. gdsn, 62
rename.gdsn, 63
setdim.gdsn, 64
showfile.gds, 65
summarize.gdsn, 66
sync.gds, 67
system. gds, 69
unload.gdsn, 70
write.gdsn, 71
[,61

add.gdsn, 5, 10, 11, 14, 27, 30, 34, 40, 44, 46,
49, 52, 59,61, 63,65,71

addfile.gdsn, 7,9, 11,41,51

addfolder.gdsn, 7, 11

append.gdsn, 7, 13, 19, 20, 59, 61, 65, 71

apply.gdsn, 15, 20, 25

assign.gdsn, 19

cache.gdsn, 21

cleanup.gds, 22
closefn.gds, 23,23, 24, 31, 32, 39, 54, 68
clusterApply.gdsn, 16, 24
cnt.gdsn, 27, 44, 48, 50, 52
compression.gdsn, 7, 28, 63
copyto.gdsn, 30
createfn.gds, 23, 24, 31, 39, 49, 53, 54, 68

delete.attr.gdsn, 32, 40, 58
delete.gdsn, 27, 33,44, 70

INDEX

diagnosis.gds, 34
digest.gdsn, 36

exist.gdsn, 38

gds.class, 5,9, 11, 23, 30, 32, 35, 39, 43, 53,
56, 68

gdsfmt (gdsfmt-package), 3

gdsfmt-package, 3

gdsn.class, 5-7,9-11, 13,15, 16, 19, 21, 27,
28, 30, 32, 33, 35, 36, 3840, 40,
41-47,49-51, 53, 54, 56, 57, 59, 60,
62-64,67,70, 71

get.attr.gdsn, 33, 40, 58

getfile.gdsn, 10, 41

getfolder.gdsn, 42

index.gdsn, 7, 27, 38, 43, 43, 48, 49, 52, 64
is.element.gdsn, 45
is.sparse.gdsn, 46

lasterr.gds, 47
1s.gdsn, 27, 38, 44, 47, 48, 50, 52, 64

mclapply, 53
mcmapply, 53
moveto.gdsn, 30, 48

name. gdsn, 44, 50, 52, 64

objdesp.gdsn, 27, 48, 50, 51
openfn.gds, 23, 24, 32, 39, 49, 53, 68

parallel, 25

permdim. gdsn, 54

print.gds.class, 56

print.gdsn.class (print.gds.class), 56
put.attr.gdsn, 33, 40, 57

read.gdsn, 7, 14, 16, 20, 22, 40, 45, 58, 61,

65,71
readex.gdsn, 7, 16, 20, 59, 60
readmode. gdsn, 7, 30, 62
rename.gdsn, 50, 63

setdim.gdsn, 19, 55, 64

show, gdsn.class-method
(print.gds.class), 56

showfile.gds, 65

summarize.gdsn, 66

INDEX

sync.gds, 24, 31, 67, 68
system.gds, 69

unload.gdsn, 70

write.gdsn, 7, 14, 20, 40, 59, 61, 65, 71

75

	gdsfmt-package
	add.gdsn
	addfile.gdsn
	addfolder.gdsn
	append.gdsn
	apply.gdsn
	assign.gdsn
	cache.gdsn
	cleanup.gds
	closefn.gds
	clusterApply.gdsn
	cnt.gdsn
	compression.gdsn
	copyto.gdsn
	createfn.gds
	delete.attr.gdsn
	delete.gdsn
	diagnosis.gds
	digest.gdsn
	exist.gdsn
	gds.class
	gdsn.class
	get.attr.gdsn
	getfile.gdsn
	getfolder.gdsn
	index.gdsn
	is.element.gdsn
	is.sparse.gdsn
	lasterr.gds
	ls.gdsn
	moveto.gdsn
	name.gdsn
	objdesp.gdsn
	openfn.gds
	permdim.gdsn
	print.gds.class
	put.attr.gdsn
	read.gdsn
	readex.gdsn
	readmode.gdsn
	rename.gdsn
	setdim.gdsn
	showfile.gds
	summarize.gdsn
	sync.gds
	system.gds
	unload.gdsn
	write.gdsn
	Index

