

Package ‘profileScoreDist’

January 16, 2026

Type Package

Title Profile score distributions

Version 1.39.0

Date 2015-12-09

Author Paal O. Westermark

Maintainer Paal O. Westermark <pal-olof.westermark@charite.de>

Description Regularization and score distributions for position count matrices.

License MIT + file LICENSE

biocViews Software, GeneRegulation, StatisticalMethod

LazyData TRUE

LinkingTo Rcpp

Imports Rcpp, BiocGenerics, methods, graphics

Depends R(>= 3.3)

Suggests BiocStyle, knitr, MotifDb

VignetteBuilder knitr

RoxygenNote 5.0.1

NeedsCompilation yes

git_url <https://git.bioconductor.org/packages/profileScoreDist>

git_branch devel

git_last_commit 6b89885

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-15

Contents

backgroundDist	2
computeScoreDist	3
INR	4
plotDist	4
ProfileDist-class	5
regularizeMatrix	6
scoreDistCutoffs	7
signalDist	8
Index	9

backgroundDist	<i>Background distribution.</i>
----------------	---------------------------------

Description

`backgroundDist` returns the background distribution of a profile object.

Usage

`backgroundDist(x)`

Arguments

`x` A ProfileDist object.

Details

This is a generic function.

Value

The background distribution vector.

Examples

```
anObject <- ProfileDist()
backgroundDist(anObject)
```

computeScoreDist*Compute exact position weight/count matrix score distribution.*

Description

Computes the discretized score distribution of a position count matrix (PCM) or a position weight matrix (PWM), using the method described by Rahmann et al.

Usage

```
computeScoreDist(motif, gc, granularity = 0.01, unit = "nat")
```

Arguments

<code>motif</code>	A matrix representing a PCM or PWM; each column a position and each row a base corresponding to A, C, G, T. This order is assumed, unless the rows are correspondingly named in a different order.
<code>gc</code>	A scalar giving the GC fraction to assume.
<code>granularity</code>	The granularity of the discretization, defaults to 0.01.
<code>unit</code>	The logarithm unit of the score computed from the PCM or PWM, can be "nat" (default, natural logarithm), "bit" (base 2), or "dit" (base 10).

Value

a ProfileDist object

References

Rahmann, S., Mueller, T., and Vingron, M. (2003). On the power of profiles for transcription factor binding site detection. *Stat Appl Genet Mol Biol* 2, Article7.

Examples

```
data(INR)
thedist <- computeScoreDist(regularizeMatrix(INR), 0.5)
plotDist(thedist)
```

INR

*The position count matrix for INR.***Description**

The position count matrix for the initiator (INR) core promoter element. This matrix was obtained from the JASPAR public domain database, but was originally published by P. Bucher (1990); in that publication (and elsewhere) it was termed Cap signal.

Usage

INR

Format

A matrix with named rows corresponding to the counts for each of the four nucleotides.

Value

The position count matrix for INR.

Source

<http://jaspar.genereg.net>

References

Bucher, P. (1990). Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. *Journal of Molecular Biology* 212, 563??-578.

Mathelier, A., Zhao, X., Zhang, A.W., Parcy, F., Worsley-Hunt, R., Arenillas, D.J., Buchman, S., Chen, C.-Y., Chou, A., Ienasescu, H., et al. (2014). JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. *Nucleic Acids Research* 42, D142–D147.

plotDist

*Plot background and signal distributions.***Description**

plotDist creates a rudimentary plot of signals and backgrounds.

Usage

plotDist(x)

Arguments

- x A ProfileDist object.

Details

This is a generic function.

Value

The scores vector.

Examples

```
data(INR)
thedist <- computeScoreDist(regularizeMatrix(INR), 0.5)
plotDist(thedist)
```

ProfileDist-class *ProfileDist*

Description

This class represents signal and background score distributions for a profile.

Usage

```
## S4 method for signature 'ProfileDist'
show(object)

## S4 method for signature 'ProfileDist'
score(x)

## S4 method for signature 'ProfileDist'
signalDist(x)

## S4 method for signature 'ProfileDist'
backgroundDist(x)

## S4 method for signature 'ProfileDist'
plotDist(x)
```

Arguments

- object A ProfileDist object for the show method.
- x A ProfileDist object.

Value

A ProfileDist object.

Methods (by generic)

- `show`: Shows useful information
- `score`: Accessor for the scores
- `signalDist`: Accessor for the signal distribution
- `backgroundDist`: Accessor for the background distribution
- `plotDist`: Simple plot method for signal and background distributions

Slots

- f Signal distribution
- g Background distribution
- Scores Scores for the distributions

Constructor

```
ProfileDist(f=numeric, g=numeric, Scores=numeric)
```

regularizeMatrix

Careful regularization (pseudocount addition) to a position count matrix.

Description

Carries out the regularization suggested by Rahmann et al. This lets each column in the regularized matrix be a linear combination of the column in the non-regularized matrix and rho, the overall base distribution of all positions. The weighting of the linear combination is determined by the parameter E in a non-trivial way, see Rahmann et al. for more information. A default value E=1.5 usually works well.

Usage

```
regularizeMatrix(motif, E = 1.5)
```

Arguments

<code>motif</code>	A position count matrix; each column a position and each row a base corresponding to A, C, G, T. This order is assumed, unless the rows are correspondingly named in a different order.
<code>E</code>	Weighting parameter between 0 and 3 for the regularization.

Value

The regularized matrix

References

Rahmann, S., Mueller, T., and Vingron, M. (2003). On the power of profiles for transcription factor binding site detection. *Stat Appl Genet Mol Biol* 2, Article7.

Examples

```
data(INR)
regularizeMatrix(INR)
```

scoreDistCutoffs

False discovery rate and power for PWM Score distributions.

Description

Computes score cutoffs for a PWM or a PCM, given distributions as calculated with `computeScoreDist()`. Cutoffs can be computed for a given false discovery rate (FDR), for a given false negative rate (FNR), and the optimal tradeoff between the two, in the sense that $c \times FDR = FNR$ for some c that the user may choose.

Usage

```
scoreDistCutoffs(scoreDist, n, m = 1, c = 1, cutoff = 0.01)
```

Arguments

<code>scoreDist</code>	A <code>ProfileDist</code> object, as computed by <code>computeScoreDist()</code>
<code>n</code>	The number of scores considered for the given PWM. If one sequence is considered and a score is computed for all overlapping windows of the same length as the PWM, this will be the length of the sequence, minus the PWM length plus 1. If scanning a sequence and its reverse complement too, this number must be further multiplied by two. The number forms the basis for the FDR, since this is a multiple testing problem.
<code>m</code>	The number of true positives assumed for computing the FNR.
<code>c</code>	A factor expressing how much more important the FDR is compared to the FNR, when computing the tradeoff cutoff that considers both FDR and FNR. See Rahmann et al. for details.
<code>cutoff</code>	The FDR and FNR considered, typically 0.01 or 0.05.

Value

a list with elements:

cutoffa Score cutoff for FDR=cutoff
cutoffb Score cutoff for FNR=cutoff
cutoffopt Score cutoff for $c^*FDR = FNR$

References

Rahmann, S., Mueller, T., and Vingron, M. (2003). On the power of profiles for transcription factor binding site detection. *Stat Appl Genet Mol Biol* 2, Article7.

Examples

```
data(INR)
thedist <- computeScoreDist(regularizeMatrix(INR), 0.5)
scoreDistCutoffs(thedist, n=2000, cutoff=0.05)
```

signalDist

Signal distribution.

Description

`signalDist` returns the signal distribution of a profile object.

Usage

```
signalDist(x)
```

Arguments

`x` A ProfileDist object.

Details

This is a generic function.

Value

The signal distribution vector.

Examples

```
anObject <- ProfileDist()
backgroundDist(anObject)
```

Index

- * **datasets**
 - INR, [4](#)
- backgroundDist, [2](#)
 - backgroundDist,ProfileDist-method
 - (ProfileDist-class), [5](#)
- computeScoreDist, [3](#)
 - INR, [4](#)
- plotDist, [4](#)
 - plotDist,ProfileDist-method
 - (ProfileDist-class), [5](#)
- ProfileDist (ProfileDist-class), [5](#)
 - ProfileDist-class, [5](#)
- regularizeMatrix, [6](#)
 - score,ProfileDist-method
 - (ProfileDist-class), [5](#)
- scoreDistCutoffs, [7](#)
 - show,ProfileDist-method
 - (ProfileDist-class), [5](#)
- signalDist, [8](#)
 - signalDist,ProfileDist-method
 - (ProfileDist-class), [5](#)