Package ‘ribor’

January 16, 2026

Title An R Interface for Ribo Files
Version 1.23.0

Description The ribor package provides an R Interface for .ribo files. It provides functional-
ity to read the .ribo file, which is of HDF5 format, and performs common analyses on its contents.

License GPL-3

Encoding UTF-8

LazyData false

Depends R (>=3.6.0)

biocViews Software, Infrastructure

Imports dplyr, ggplot2, hash, methods, rhdf5, rlang, stats, S4 Vectors,
tidyr, tools, yaml

Suggests testthat, knitr, rmarkdown
RoxygenNote 7.1.1
VignetteBuilder knitr

Collate 'annotation_functions.R' 'check_functions.R'
'coverage_functions.R' 'ribo_class.R' 'ribo_methods.R'
'create_ribo.R' 'helper_functions.R' 'info_functions.R'
'metagene_functions.R' 'region_count_functions.R' 'ribor.R’
'rnaseq_functions.R'

git_url https://git.bioconductor.org/packages/ribor
git_branch devel

git_last_commit 9decab8

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-15

Author Michael Geng [cre, aut],
Hakan Ozadam [aut],
Can Cenik [aut]

Maintainer Michael Geng <michaelgeng@utexas.edu>

1

2 get_coverage

Contents
GELLCOVEIAZE « . . v v v v et e e e e e e e e e e e e e 2
GEL_eXPEriMENtS o v it e e e e e e e e 4
get_info Lo 5
get_internal_region_coordinates Lo 6
get_internal_region_lengths oL o 7
get_length_distribution oL 7
get_metadata L e 9
GEE_MELAZENE e e e e e e e e e e e 10
get_original_region_coordinates 12
get_original_region_lengths oL oo 13
get_reference_names 13
get_region_coordinatesl e e 14
GEL_IEZION_COUNES o v vt vt e ettt e e e e e 15
get_region_lengths 17
GELINASEQ « + « ¢ v v e 18
get_tidy_metagene L. e 19
plot_length_distribution 21
plot_metagene 23
plot_region_counts e 24
rename_default 26
ENAME_ranSCripPtsS v v v v e b e e e e e e e e e e e 27
Ribo-class e 28
rbOr e 30
set_aliases e, 31

Index 32

get_coverage Retrieves the coverage data for a given transcript
Description

The function get_coverage generates a DataFrame of coverage data over the length of a given
transcript.

Usage

get_coverage(

ribo.object,

name,

range.lower = length_min(ribo.object),
range.upper = length_max(ribo.object),
length = TRUE,

tidy = FALSE,

alias = FALSE,

compact = TRUE,

get_coverage 3

experiment = experiments(ribo.object)

)

Arguments

ribo.object A ’Ribo’ object

name Transcript Name
range. lower Lower bound of the read length, inclusive
range.upper Upper bound of the read length, inclusive
length Logical value that denotes if the coverage should be summed across read lengths
tidy Logical value denoting whether or not the user wants a tidy format
alias Option to accept the transcript input as aliases/nicknames
compact Option to return a DataFrame with Rle and factor as opposed to a raw data.frame
experiment List of experiments to obtain coverage information on
Details

The function get_coverage first checks the experiments in the ’experiments’ parameter to see if
they are present in the .ribo file. It will then check these experiments for coverage data which is an
optional dataset. As a result, this function safe guards against experiments that do not have coverage
data, but it also, by default, includes all of the experiments in a file in the experiments’ parameter.

The function checks the coverage of one transcript at a time at each read length from ’range.lower’
to ‘range.upper’, inclusive. However, the parameter ’length’ allows the user to obtain the cov-
erage information of a transcript across the range of read lengths indicated by 'range.lower’ and
’range.upper’.

If the ribo.object is generated with aliases, the ’alias’ parameter, if set to TRUE, allows the user to
use the alias of the transcript as the 'name’ parameter instead of the original transcript name.

Value

An annotated DataFrame or data.frame (if the compact parameter is set to FALSE) of the coverage
information for the provided list of ’experiments’ in the ’experiment’ parameter. The returned
object will have a length column when the ’length’ parameter is set to FALSE, indicating that the
user does not want to sum the count information across the range of read lengths. The returned data
frame has the option of being tidy, and if the ’tidy’ parameter is set to TRUE, a position column
will be added. Finally, if the ’alias’ parameter is set to TRUE, the alias transcript name must have
been provided at the generation of the ribo object, and the function will accept this aliased name in
the “transcript’ parameter.

See Also

Ribo to generate the necessary ribo.object parameter

get_experiments

Examples

#generate the ribo object

file.path <- system.file("extdata”, "sample.ribo"”, package = "ribor")
sample <- Ribo(file.path)

#get the experiments of interest that also contain coverage data
experiments <- c("Hela_1", "Hela_2", "Hela_3", "WT_1")

#the ribo file contains a transcript named 'MYC'

coverage.data <- get_coverage(ribo.object = sample,
name = "MYC",
range.lower = 2,
range.upper = 5
length = TRUE,
experiment = experiments)

’

get_experiments Provides a list of experiments from a .ribo file

Description

The function get_experiments provides a list of experiment names in the .ribo file.

Usage

get_experiments(ribo.object)

Arguments

ribo.object S4 object of class "Ribo"

Details

get_experiments returns a list of strings denoting the experiments. It obtains this by reading
directly from the .ribo file through the path of the 'ribo.object’ parameter. To generate the param
’ribo.object’, call the Ribo function and provide the path to the .ribo file of interest.

The user can then choose to create a subset from this list for any specific experiments of interest for
later function calls. Many functions that have the param ’experiment.list’ call get_experiments to
generate a default list of all experiments in the .ribo file.

Value

A list of the experiment names

See Also

Ribo to generate the necessary ribo.object parameter

get_info 5

Examples

#generate the ribo object
file.path <- system.file("extdata”, "sample.ribo"”, package = "ribor")
sample <- Ribo(file.path)

#get a list of the experiments
get_experiments(sample)

get_info Get information about the .ribo file

Description
The function get_info provides information on the attributes, metadata, and datasets of the ribo
file.

Usage

get_info(ribo.object)

Arguments

ribo.object ribo.object is an S4 object of class "Ribo"

Details

The get_info first provides information on the format version, left_span, right_span, longest read
length, shortest read length, metagene_radius, and reference model. The last element of the returned
list contains the information about the presence of coverage and RNA-seq data which are optional
datasets to include in a .ribo file.

Value
Returns a list containing a nested list of file attributes, a logical value denoting whether the root file
has additional metadata, and a data.frame of information on each experiment

See Also

Ribo to generate the necessary ribo.object parameter

Examples

#generate the ribo object
file.path <- system.file("extdata”, "sample.ribo"”, package = "ribor")
sample <- Ribo(file.path)

#retrieve information
get_info(sample)

6 get_internal_region_coordinates

get_internal_region_coordinates
Retrieves the region stop and start coordinates

Description

The function get_internal_region_coordinates retrieves the start and site positions for the
UTRS, UTRS Junction, CDS, UTR3 Junction, and UTR3 regions of every transcript.

Usage

get_internal_region_coordinates(ribo.object, alias = FALSE)

Arguments
ribo.object A ’Ribo’ object

alias Option to return the transcript names as aliases

Details

To note, because of the R-specific 1-based indexing, the positions start at 1 instead of 0 in other
programming languages. The positions provided in the returned data.frame will correspond to the
positions in the output of get_coverage.

Additionally, within the transcripts, there are edge cases. NA values found in the returned data.frame
means that the region has no start and stop position and a length of zero after computing the bound-
aries of the UTRS and UTR3 junction.

Value

A data.frame of start and stop coordinates for every region

Examples

generate a ribo object
file.path <- system.file("extdata”, "HEK293_ingolia.ribo"”, package = "ribor")
sample <- Ribo(file.path, rename = rename_default)

get the region coordinates
coord <- get_internal_region_coordinates(sample, alias = TRUE)

get_internal_region_lengths 7

get_internal_region_lengths
Returns the overall length of each region with UTR Junctions

Description
The function get_internal_region_coordinates retrieves the lengths for the UTRS5, UTRS
Junction, CDS, UTR3 Junction, and UTR3 regions of every transcript.

Usage

get_internal_region_lengths(ribo.object, alias = FALSE)

Arguments
ribo.object A ’Ribo’ object

alias Option to return the transcript names as aliases

Value

A data.frame of the region lengths

Examples

generate a ribo object
file.path <- system.file("extdata”, "HEK293_ingolia.ribo"”, package = "ribor")
sample <- Ribo(file.path, rename = rename_default)

get the region lengths
region_lengths <- get_internal_region_lengths(sample, alias = TRUE)

get_length_distribution
Retrieves the length distribution of a given region

Description

The function get_length_distribution retrieves the raw or normalized counts at each read length
from ’range.lower’ to "range.upper’.

8 get_length_distribution

Usage

get_length_distribution(
ribo.object,
region,
range.lower = length_min(ribo.object),
range.upper = length_max(ribo.object),
compact = TRUE,
experiment = experiments(ribo.object)

Arguments

ribo.object A ’Ribo’ object

region Specific region of interest
range.lower Lower bound of the read length, inclusive
range.upper Upper bound of the read length, inclusive
compact Option to return a DataFrame with Rle and factor as opposed to a raw data.frame
experiment List of experiment names
Details

This function is a wrapper function of get_region_counts, and the returned DataFrame is valid
input for plot_length_distribution.

Value

An annotated DataFrame or data.frame (if the compact parameter is set to FALSE) of the read-
length specific region count information for a single region specified in the ‘region’ parameter. The
returned data frame will have a length column, and it will not contain a transcript column.

See Also

plot_length_distribution to plot the output of this function

Examples

#generate the ribo object
file.path <- system.file("extdata”, "sample.ribo"”, package = "ribor")
sample <- Ribo(file.path)

#specify the experiments of interest
experiments <- c("Hela_1", "Hela_2", "WT_1")

#gets the normalized length distribution from read length 2 to 5

length.dist <- get_length_distribution(ribo.object = sample,
region = "CDS",
range.lower = 2,
range.upper = 5)

get_metadata 9

get_metadata Retrieves the metadata of an experiment

Description

get_metadata provides information on all of the user-inputted metadata of an experiment. If the
experiment is not found, then the attributes of the root .ribo file is returned instead.

Usage

get_metadata(ribo.object, name = NULL, print = TRUE)

Arguments

ribo.object object of class ’ribo’

name The name of the experiment

print Logical value indicating whether or not to neatly print the output
Value

If a valid experiment name is provided, a list of elements providing all of the metadata of the
experiment is returned.

If the name is not provided and the root file has metadata, then a list of elements providing all of
the metadata found in the root file is returnend.

See Also

Ribo to generate the necessary ribo.object parameter

Examples

#ribo object use case

#tgenerate the ribo object

file.path <- system.file("extdata”, "sample.ribo"”, package = "ribor")
sample <- Ribo(file.path)

#the ribo file contains an experiment named 'Hela_1'
get_metadata(sample, "Hela_1")

10 get_metagene

get_metagene Retrieves the metagene data from a .ribo file

Description

The function get_metagene returns a data frame that provides the coverage at the positions sur-
rounding the metagene start or stop site.

Usage

get_metagene(
ribo.object,
site,
range.lower = length_min(ribo.object),
range.upper = length_max(ribo.object),
transcript = TRUE,
length = TRUE,
alias = FALSE,
compact = TRUE,
experiment = experiments(ribo.object)

Arguments

ribo.object A ’Ribo’ object

site "start" or "stop" site coverage

range. lower Lower bound of the read length, inclusive

range.upper Upper bound of the read length, inclusive

transcript Logical value that denotes if the metagene information should be summed across
transcripts

length Logical value that denotes if the metagene information should be summed across
read lengths

alias Option to report the transcripts as aliases/nicknames

compact Option to return a DataFrame with Rle and factor as opposed to a raw data.frame

experiment List of experiment names

Details

The dimensions of the returned data frame depend on the parameters range.lower, range.upper,
length, and transcript.

The param ’length’ condenses the read lengths together. When length is TRUE and transcript is
FALSE, the data frame presents information for each transcript across all of the read lengths. That
is, each transcript has a value that is the sum of all of the counts across every read length. As a
result, information about the transcript at each specific read length is lost.

get_metagene 11

The param ’transcripts’ condenses the transcripts together. When transcript is TRUE and length is
FALSE, the data frame presents information at each read length between range.lower and range.upper
inclusive. That is, each separate read length denotes the sum of counts from every transcript. As a
result, information about the counts of each individual transcript is lost.

If both ’length’ and ’transcript’ are TRUE, then the resulting data frame prints out one row for each
experiment. This provides the metagene information across all transcripts and all reads in a given
experiment.

If both length’ and ’transcript’ are FALSE, no calculations are done to the data, all information is
preserved for both the read length and the transcript. The data frame would just present the entire
stored raw data from the read length ‘range.lower’ to the read length ‘range.upper’ which in most
cases would result in a slow run time with a massive DataFrame returned.

When ’transcript’ is set to FALSE, the ’alias’ parameter specifies whether or not the returned
DataFrame should present each transcript as an alias instead of the original name. If ’alias’ is
set to TRUE, then the returned data frame will contain the aliases rather than the original reference
names of the .ribo file.

Value

An annotated DataFrame or data.frame (if the compact parameter is set to FALSE) of the meta-
gene information for either the ’stop’ or ’start’ site provided in the ’site’ parameter. The returned
data frame will have a length column when the ’length’ parameter is set to FALSE, indicating the
returned data frame will have a transcript column whe the ’transcript’ parameter is set to FALSE,
indicating that the count information will not be summed across the transcripts. In the case that
transcript parameter is "FALSE’, the returned data frame will present the transcripts according to
the aliases specified at the creation of the ribo object if the ’alias’ parameter is set to TRUE.

See Also

Ribo to generate the necessary "Ribo’ class object, plot_metagene to visualize the metagene data,
get_tidy_metagene to obtain tidy metagene data under certain conditions

Examples

#generate the ribo object by providing the file.path to the ribo file
file.path <- system.file("extdata”, "sample.ribo"”, package = "ribor")
sample <- Ribo(file.path)

#extract the total metagene information for all experiments
#across the read lengths and transcripts of the start site
#from read length 2 to 5
metagene_info <- get_metagene(ribo.object = sample,

site = "start”,

range.lower = 2,

range.upper = 5,

length = TRUE,

transcript = TRUE,

experiment = experiments(sample))

12 get_original_region_coordinates

#Note that length, transcript, and experiments in this case are the
#default values and can be left out. The following generates the same output.

metagene_info <- get_metagene(ribo.object = sample,
site = "start”,
range.lower = 2,
range.upper = 5)

get_original_region_coordinates
Retrieves the region stop and start coordinates

Description
The function get_original_region_coordinates retrieves the start and site positions for the
UTRS, UTRS Junction, CDS, UTR3 Junction, and UTR3 regions of every transcript.

Usage

get_original_region_coordinates(ribo.object, alias = FALSE)

Arguments

ribo.object A ’Ribo’ object

alias Option to return the transcript names as aliases

Details

To note, because of the R-specific 1-based indexing, the positions start at 1 instead of O in other
programming languages. The positions provided in the returned data.frame will correspond to the
positions in the output of get_coverage.

Additionally, within the transcripts, there are edge cases. NA values found in the returned data.frame
means that the region has no start and stop position and a length of zero after computing the bound-
aries of the UTRS and UTR3 junction.

Value

A data.frame of start and stop coordinates for every region

Examples

generate a ribo object
file.path <- system.file("extdata”, "HEK293_ingolia.ribo"”, package = "ribor")
sample <- Ribo(file.path, rename = rename_default)

get the region coordinates
coord <- get_original_region_coordinates(sample, alias = TRUE)

get_original_region_lengths 13

get_original_region_lengths
Returns the overall length of each region

Description
The function get_original_region_coordinates retrieves the lengths for the UTRS, CDS, and
UTR3 regions of every transcript.

Usage

get_original_region_lengths(ribo.object, alias = FALSE)

Arguments
ribo.object A ’Ribo’ object

alias Option to return the transcript names as aliases

Value

A data.frame of the region lengths

Examples

generate a ribo object
file.path <- system.file("extdata”, "HEK293_ingolia.ribo"”, package = "ribor")
sample <- Ribo(file.path, rename = rename_default)

get the region coordinates
region_lengths <- get_original_region_lengths(sample, alias = TRUE)

get_reference_names Retrieves a list of reference names

Description

Gets a list of reference names by reading directly from the .ribo file

Usage

get_reference_names(ribo.object)

Arguments

ribo.object A ’Ribo’ object-=09

14 get_region_coordinates

Value

a list of the reference names

Examples

#generate a ribo object with transcript nicknames/aliases
file.path <- system.file("extdata”, "HEK293_ingolia.ribo"”, package = "ribor")
sample <- Ribo(file.path)

#tget the reference names
names <- get_reference_names(sample)

get_region_coordinates
Retrieves the region stop and start coordinates

Description

The function get_region_coordinates retrieves the start and site positions for the UTRS, UTRS
Junction, CDS, UTR3 Junction, and UTR3 regions of every transcript.

Usage

get_region_coordinates(ribo.object, alias = FALSE)

Arguments
ribo.object A ’Ribo’ object

alias Option to return the transcript names as aliases

Details

To note, because of the R-specific 1-based indexing, the positions start at 1 instead of 0 in other
programming languages. The positions provided in the returned data.frame will correspond to the
positions in the output of get_coverage.

Additionally, within the transcripts, there are edge cases. NA values found in the returned data.frame
means that the region has no start and stop position and a length of zero after computing the bound-
aries of the UTRS and UTR3 junction.

Value

A data.frame of start and stop coordinates for every region

get_region_counts

15

get_region_counts Retrieves the region counts from a .ribo file

Description

get_region_counts will return the particular region counts of any subset of regions for a given set
of experiments.

Usage

get_region_counts(

ribo.object,
range. lower
range.upper

length = TRU
transcript =
tidy = TRUE,
alias = FALS
normalize =
region = c(”
compact = TR
experiment =
)
Arguments

ribo.object

range. lower

range.upper

length

transcript

tidy

alias

normalize

region

compact

experiment

= length_min(ribo.object),
= length_max(ribo.object),
E,

TRUE,

E’

FALSE,

UTR5", "UTR5J", "CDS", "UTR3J", "UTR3"),
UE,

experiments(ribo.object)

A "Ribo’ object
Lower bound of the read length, inclusive
Upper bound of the read length, inclusive

Logical value that denotes if the region count information should be summed
across read lengths

Logical value that denotes if the region count information should be summed
across transcripts

Option to return the data frame in a tidy format

Option to report the transcripts as aliases/nicknames

Option to normalize the counts as counts per million reads

Specific region of interest

Option to return a DataFrame with Rle and factor as opposed to a raw data.frame

List of experiment names

16 get_region_counts

Details

This function will return a data frane of the counts at each specified region for each specified ex-
periment. The region options are "UTRS", "UTRS5J", "CDS", "UTR3J", and "UTR3". The user can
specify any subset of regions in the form of a vector, a list, or a single string if only one region is
desired.

The dimensions of the returned DataFrame depend on the parameters range.lower, range.upper,
length, and transcript.

The param ’length’ condenses the read lengths together. When length is TRUE and transcript is
FALSE, the data frame presents information for each transcript across all of the read lengths. That
is, each transcript has a value that is the sum of all of the counts across every read length. As a
result, information about the transcript at each specific read length is lost.

The param ’transcript’ condenses the transcripts together. When transcript is TRUE and length is
FALSE data frame presents information at each read length between range.lower and range.upper
inclusive. That is, each separate read length denotes the sum of counts from every transcript. As a
result, information about the counts of each individual transcript is lost.

When ’transcript’ is set to FALSE, the ’alias’ parameter specifies whether or not the returned
DataFrame should present each transcript as an alias instead of the original name. If ’alias’ is set
to TRUE, then the column of the transcript names will contain the aliases rather than the original
reference names of the .ribo file.

If both ’length’ and ’transcript’ are TRUE, then the resulting DataFrame prints out one row for each
experiment. This provides the metagene information across all transcripts and all reads in a given
experiment.

If both length’ and ’transcript’ are FALSE, calculations are done to the data, all information is
preserved for both the read length and the transcript. The DataFrame would just present the entire
stored raw data from the read length 'range.lower’ to the read length ‘range.upper’ which in most
cases would result in a slow run time with a massive DataFrame returned.

When ’transcript’ is set to FALSE, the ’alias’ parameter specifies whether or not the returned
DataFrame should present each transcript as an alias instead of the original name. If ’alias’ is set
to TRUE, then the column of the transcript names will contain the aliases rather than the original
reference names of the .ribo file.

Value

An annotated DataFrame or data.frame (if the compact parameter is set to FALSE) of the region
count information for the regions specified in the ’region’ parameter. The returned data frame
will have a length column when the ’length’ parameter is set to FALSE, indicating that the count
information will not be summed across the provided range of read lengths. Similarly, the returned
data frame will have a transcript column when the ’transcript’ parameter is set to FALSE, indicating
that the count information will not be summed across the transcripts. In the case that transcript
parameter is "FALSE’, the returned data frame will present the transcripts according to the aliases
specified at the creation of the ribo object if the ’alias’ parameter is set to TRUE.

Examples

#generate the ribo object
file.path <- system.file("extdata”, "sample.ribo"”, package = "ribor")

get_region_lengths 17

sample <- Ribo(file.path)

#specify the regions and experiments of interest
regions <- c("UTR5", "UTR5J", "CDS", "UTR3J", "UTR3")
experiments <- c("Hela_1", "Hela_2", "WT_1")

#obtains the region counts at each individual read length, summed across every transcript
region.counts <- get_region_counts(ribo.object = sample,

region = regions,

range.lower = 2,

range.upper = 5,

length = FALSE,

transcript = TRUE,

tidy = FALSE,

alias = FALSE,

experiment = experiments)

get_region_lengths Returns the overall length of each region with UTR Junctions

Description
The function get_region_lengths retrieves the lengths for the UTRS, UTRS Junction, CDS,
UTR3 Junction, and UTR3 regions of every transcript.

Usage

get_region_lengths(ribo.object, alias = FALSE)

Arguments
ribo.object A ’Ribo’ object

alias Option to return the transcript names as aliases

Details

This function is deprecated, and we recommend get_internal_region_lengths.

Value

A data.frame of the region lengths

18 get_rnaseq

get_rnaseq Information on the RNA-Seq data of the experiments, if any

Description

get_rnaseq returns a data frame containing information on the transcript name, experiment, and
sequence abundance

Usage

get_rnaseq(
ribo.object,
tidy = TRUE,
region = c("UTR5", "UTR5J", "CDS", "UTR3J", "UTR3"),
experiment = experiments(ribo.object),
compact = TRUE,
alias = FALSE

Arguments

ribo.object A ’Ribo’ object

tidy Option to return the data frame in a tidy format
region Specific region(s) of interest
experiment List of experiment names
compact Option to return a DataFrame with Rle and factor as opposed to a raw data.frame
alias Option to report the transcripts as aliases/nicknames
Details

As a default value, experiment.list is presumed to include all of the experiments within a ribo file.
RNA-Seq data is an optional dataset to include in a .ribo file. The experiments in experiment.list
are checked for experiment existence in the ribo file and then checked for RNA-seq data.

The returned DataFrame can either be in the tidy format for easier data cleaning or in a condensed
non-tidy format. The data will present RNA-seq counts for each transcript in each valid experiment
in experiment.list.

The ’alias’ parameter specifies whether or not the returned DataFrame should present each transcript
as an alias instead of the original name. If ’alias’ is set to TRUE, then the column of the transcript
names will contain the aliases rather than the original reference names of the .ribo file.

Value

An annotated data frame containing the RNA-Seq counts for the regions in specified in the ‘region’
parameter with the option of presenting the data in a tidy format. Additionally, the function returns
a DataFrame with Rle and factor applied if the ‘compact‘ parameter is set to TRUE and a data.frame
without any Rle or factor if the ‘compact* parameter is set to FALSE

get_tidy_metagene 19

See Also

Ribo to generate the necessary ribo.object parameter

Examples

#generate the ribo object
file.path <- system.file("extdata”, "sample.ribo”, package = "ribor")
sample <- Ribo(file.path)

#list out the experiments of interest that have RNA-Seq data
experiments <- c("Hela_1", "Hela_2", "WT_1")
regions <- c("UTR5", "CDS", "UTR3")
rnaseq.data <- get_rnaseq(ribo.object = sample,
tidy = TRUE,
region = regions,
experiment = experiments)

get_tidy_metagene Retrieves the metagene data in a tidy format

Description

The function get_tidy_metagene provides the user with a tidy data format for easier data cleaning
and manipulation. In providing this functionality while reducing the returned data frame size, the
user must aggregate across the transcripts and is only provided the option to aggregate the read
lengths together.

Usage

get_tidy_metagene(
ribo.object,
site,
range.lower = length_min(ribo.object),
range.upper = length_max(ribo.object),
length = TRUE,
compact = TRUE,
experiment = experiments(ribo.object)

Arguments
ribo.object A ’Ribo’ object
site "start" or "stop" site coverage
range. lower Lower bound of the read length, inclusive

range.upper Upper bound of the read length, inclusive

20 get_tidy_metagene

length Logical value that denotes if the metagene information should be summed across
read lengths
compact Option to return a DataFrame with Rle and factor as opposed to a raw data.frame
experiment List of experiment names
Details

The dimensions of the returned data frame depend on the parameters range.lower, range.upper, and
length.

The param ’length’ condenses the read lengths together. When length is TRUE, then the resulting
data frame prints out one row for each experiment. This provides a tidy format of the metagene
information across all transcripts and all read lengths in a given experiment. Each row in the data
frame represents the total metagene coverage count of a given experiment at a given position.

When the param ’length’ is FALSE, then the resulting data frame prints out the metagene coverage
count at each position of the metagene radius for each read length. This provides a tidy format of
the metagene information across the transcripts, preserving the metagene coverage count at each
read length.

Value

An annotated, tidy DataFrame or data.frame (if the compact parameter is set to FALSE) of the
metagene information for either the ’stop’ or ’start’ site provided in the ’site’ parameter. The data
frame, as a result of its tidy property, will have a position column. The returned data frame will
have a length column when the ’length’ parameter is set to FALSE, indicating will be automatically
aggregated to keep the memory footprint of this function reasonable.

See Also

Ribo to generate the necessary 'Ribo’ class object. plot_metagene to visualize the metagene data,
get_metagene to obtain tidy metagene data under certain conditions

Examples

#generate the ribo object by loading in a ribo function and calling the \code{\1link{Ribo}} function
file.path <- system.file("extdata”, "sample.ribo"”, package = "ribor")
sample <- Ribo(file.path)

#textract the total metagene information in a tidy format
#for all experiments across the read lengths and transcripts
#of the start site from read length 2 to 5

metagene_info <- get_tidy_metagene(ribo.object = sample,
site = "start”,
range.lower = 2,
range.upper = 5,
length = TRUE,
experiment = experiments(sample))

#Note that length and experiments in this case are the
#default values and can be left out. The following generates the same output.

plot_length_distribution 21

metagene_info <- get_tidy_metagene(ribo.object = sample,
site = "start”,
range.lower = 2,
range.upper = 5)

plot_length_distribution
Plots the length distribution

Description

The function plot_length_distribution can take either a DataFrame or a "Ribo" object to gen-
erate a line graph of the length distributions from range.lower to range.upper.

Usage

plot_length_distribution(
X,
region,
experiment,
range. lower,
range.upper,
fraction = FALSE,
title = "Length Distribution”

)
Arguments
X A ’Ribo’ object or a DataFrame generated from get_region_counts
region the region of interest
experiment a list of experiment names
range.lower a lower bounds for a read length range
range.upper an upper bounds for a read length range
fraction logical value that, if TRUE, presents the count as a fraction of the total reads in
the given ranges
title a title for the generated plot
Details

The param ’fraction’ will plot the fractions of each length relative to the total sum of the read length
range provided by param ’range.lower’ and ‘range.upper’. When fraction is set to FALSE, the total
count of each read length is plotted.

When given a "Ribo" object, plot_length_distribution calls get_region_counts to retrieve
the necessary information for plotting.

22

plot_length_distribution

The user can instead provide a DataFrame with the same structure as the output of the get_region_counts
function where the ’transcript’ parameter is set to FALSE and ’length’ parameters is the default

value of TRUE. This also means that the many of the remaining parameters of the plot_length_distribution
function are not necessary. The run time becomes substantially faster when plot_region_counts

is given the direct DataFrame to plot. Note that there is no manipulation by this function on the
DataFrame. This responsibility is given to the user and allows for more control.

Value

A *ggplot’ of the length distribution

See Also

get_region_counts to generate a DataFrame that can be provided as input, Ribo to create a
ribo.object that can be provided as input

Examples

#ribo object use case

#generate the ribo object
file.path <- system.file("extdata”, "sample.ribo"”, package = "ribor")
sample <- Ribo(file.path)

#specify experiments of interest
experiments <- c("Hela_1", "Hela_2", "WT_1")

plot_length_distribution(x = sample,
region = "CDS",
range.lower = 2,
range.upper = 5,
experiment = experiments,
fraction = TRUE)

#DataFrame use case
#obtains the region counts at each individual read length, summed across every transcript
region.counts <- get_length_distribution(ribo.object = sample,

region = "CDS",

range.lower = 2,

range.upper = 5,

experiment = experiments)

#the param 'length' must be set to FALSE and param 'transcript' must be set
#to TRUE to use a DataFrame
plot_length_distribution(region.counts)

plot_metagene

23

plot_metagene

Plots the metagene coverage data

Description

The function plot_metagene plots the metagene site coverage, separating by experiment.

Usage

plot_metagene(

X,
site,

experiment,
range. lower,
range.upper,

normalize = FALSE,

title = "Metagene Site Coverage”,
tick = 10
)
Arguments
X A ’Ribo’ object or a data frame generated from get_metagene
site "start" or "stop" site
experiment list of experiments

range. lower
range.upper
normalize
title

tick

Details

lower bound of the read length, inclusive

upper bound of the read length, inclusive

When TRUE, normalizes the data by the total reads.
title of the generated plot

x-axis labeling increment

If a DataFrame is provided as param ’x’, then the only additional parameter is the optional title’
parameter for the generated plot. If a ribo.object is provided as param ’x’, the rest of the parameters
listed are necessary.

When given a ribo class object, the plot_metagene function generates a DataFrame by calling the
get_tidy_metagene function, so the run times in this case will be mostly comprised of a call to
the get_metagene function.

This function uses ggplot in its underlying implementation.

Value

A ’ggplot’ of the metagene site coverage

24 plot_region_counts

Examples

#a potential use case is to directly pass in the ribo object file as param 'x

#generate the ribo object to directly use
file.path <- system.file("extdata”, "sample.ribo"”, package = "ribor")
sample <- Ribo(file.path)

#specify experiments of interest
experiments <- c("Hela_1", "Hela_2", "WT_1")

#plot the metagene start site coverage for all experiments in 'sample.ribo'
#from read length 2 to 5
plot_metagene(x = sample,

site = "start”,

range.lower = 2,

range.upper = 5,

experiment = experiments)

#Note that the site, range.lower, range.upper, and experiment parameter are only
#necessary if a ribo object is being passed in as param 'x'. If a ribo

#object is passed in, then the param 'experiments' will be set to all of

#the experiments by default.

#If a DataFrame is passed in, then the plot_metagene function

#does not need any other information. All of the elements of the DataFrame
#will be used, assuming that it contains the same column names and number of
#columns as the output from get_tidy_metagene()

#gets the metagene start site coverage from read length 2 to 5
#note that the data must be summed across transcripts and read lengths
#for the plot_metagene function
data <- get_tidy_metagene(sample,
site = "start”,
range.lower = 2,
range.upper = 5)

#plot the metagene data
plot_metagene(data)

plot_region_counts Plots the region counts of UTRS, CDS, and UTR3

Description

The function plot_region_counts can take either a DataFrame or a "Ribo" object to generate the
a stacked bar plot of proportions that correspond to the "UTRS", "CDS", and "UTR3" regions.

plot_region_counts 25

Usage

plot_region_counts(
X,
experiment,
range. lower,
range.upper,

title = "Region Counts”
)
Arguments
X A ’Ribo’ object or a DataFrame generated from get_region_counts
experiment a list of experiment names
range.lower a lower bounds for a read length range
range.upper an upper bounds for a read length range
title a title for the generated plot
Details

When given a 'Ribo’ object, plot_region_counts calls get_region_counts to retrieve the nec-
essary information for plotting. This option is in the case that a DataFrame of the region count
information is not required.

The user can instead provide a DataFrame with the same structure as the output of the get_region_counts
function where the ’transcript’ and ’length’ parameters are the default values of TRUE. This also
means that the remaining parameters of the plot_region_counts function are not necessary. The

run time becomes substantially faster when plot_region_counts is given the direct DataFrame to

plot. However, the DataFrame needs to follow the format and types in the output of the reading
functions

Value

A *ggplot’ of the region counts for each of the experiments

See Also

get_region_counts to generate a DataFrame that can be provided as input, Ribo to create a
ribo.object that can be provided as input

Examples

#ribo object use case

#generate the ribo object

file.path <- system.file("extdata”, "sample.ribo"”, package = "ribor")
sample <- Ribo(file.path)

#specify the regions and experiments of interest
regions <- c("UTR5", "CDS", "UTR3")
experiments <- c("Hela_1", "Hela_2", "WT_1")

26

plot_region_counts(sample,
range.lower =
range.upper
experiments)

#DataFrame use case

rename._default

#obtains the region counts at each individual read length, summed across every transcript
region.counts <- get_region_counts(sample,

region = regions,
range.lower = 2,
range.upper = 5,
tidy = TRUE,
length = TRUE,
transcript = TRUE)

#the params 'length' and 'transcript' must be set to true to use a DataFrame

plot_region_counts(region.counts)

rename_default

Rename function for appris transcriptome naming convention

Description

The function rename_default is the default renaming function for the appris human transcriptome.

It takes one single transcript name and returns a simplified alias.

Usage

rename_default(x)

Arguments

X

Value

Character denoting original name of the transcript

Character denoting simplified name of the object

Examples

original <- paste("”ENST00000613283.2|ENSG00000136997.17|",
"OTTHUMG00000128475.8 |- |MYC-206 |MYC|1365|protein_coding]|",

alias <- rename_default(original)

rename_transcripts 27

rename_transcripts Renames the transcripts

Description
The function rename_transcripts strives to make the transcript names less cumbersome to write
and easier to use.

Usage

rename_transcripts(ribo, rename)

Arguments
ribo a path to the ribo file or a 'Ribo’ object
rename A function that renames the original transcript or an already generated character
vector of aliases
Details

Transcript names found in a .ribo file can often be long and inconvenient to use. As a result, this
function allows the user to rename the transcripts.

Often times, a short function can be used on the ribo file reference names to split and extract a more
convenient name, and a function with a similar input and output to rename_default can be passed
in.

However, if there is no simple function that takes the original name and renames it into a unique
alias, then the user can provide a character vector of the same length as the number of transcripts
in the ribo file. This character vector would provide aliases that match the order of the original
reference names returned by the get_reference_names function.

Value

A character vector denoting the renamed transcript aliases

See Also
rename_default to view expected input and output of a ‘rename’ function Ribo to generate a ribo

object

Examples

file.path <- system.file("extdata”, "HEK293_ingolia.ribo”, package = "ribor")
sample <- Ribo(file.path, rename = rename_default)

aliases <- rename_transcripts(sample, rename = rename_default)

28 Ribo-class

Ribo-class Ribo Class

Description

The Ribo object serves as the main utility vehicle for the ribor package. Specifically, it allows the
user to interface with a .ribo file in the R ribor rely on the Ribo object to read, visualize, and inspect
the contents of the .ribo file. The information stored in this object include the .ribo file path, the list
of experiments, the format version, the reference model, the minimum read length, maximum read
length, the left span, the right span, and other transcript information.

Usage

S4 method for signature 'Ribo'’
show(object)

S4 method for signature 'Ribo’
path(object)

S4 method for signature 'Ribo’
experiments(object)

S4 method for signature 'Ribo'
format_version(object)

S4 method for signature 'Ribo’
reference(object)

S4 method for signature 'Ribo’
length_min(object)

S4 method for signature 'Ribo’
length_max(object)

S4 method for signature 'Ribo'
left_span(object)

S4 method for signature 'Ribo’
right_span(object)

S4 method for signature 'Ribo'
metagene_radius(object)

S4 method for signature 'Ribo'
length_offset(object)

S4 method for signature 'Ribo’

Ribo-class 29

has_metadata(object)

S4 method for signature 'Ribo'
experiment_info(object)

S4 method for signature 'Ribo’
transcript_info(object)

S4 method for signature 'Ribo'’
alias_hash(object)

S4 method for signature 'Ribo'
original_hash(object)

Ribo(path, rename = NULL)

Arguments
object Ribo object
path The path to the .ribo file
rename A function that renames the original transcript or an already generated character
vector of aliases
Details

Note that the path parameter takes in a file path and stores it. While using the package, be sure
to not to move or change the location of the .ribo file. The default names of the transcripts may
be difficult to use depending on the settings used to generate the .ribo file. As a result, we have
provided a rename parameter that integrates well with the Appris reference transcriptome. Users
may also define a simple function that processes a given default transcript name in a one-to-one
manner to another custom alias.

Value
Returns an S4 object of class "Ribo" containing a path to the HDFS5 file, various attributes in the
root folder, and information about the transcripts such as names and lengths

See Also
If a ribo object is already generated but aliases want to be added or updated, use the set_aliases

function.

Examples

file.path <- system.file("extdata”, "sample.ribo"”, package = "ribor")
sample <- Ribo(file.path)

show(sample)

30 ribor

#generate a ribo object with transcript nicknames/aliases
file.path <- system.file("extdata”, "HEK293_ingolia.ribo"”, package = "ribor")
sample <- Ribo(file.path, rename = rename_default)

ribor ribor: A package for reading .ribo files

Description

The ’ribor’ package offers a suite of reading functions for the datasets present in a .ribo file and also
provides some rudimentary plotting functions.

Vignette

To get started with the ribor package, please see the vignette page athttps://ribosomeprofiling.
github.io/ribor/ribor.html.

Related Tools

The paper associated with the Ribo ecosystem can be found at https://academic.oup.com/
bioinformatics/advance-article/doi/10.1093/bioinformatics/btaa028/5701654.

For more information on the preprocessing pipeline, please see the link to the source code at https:
//github.com/ribosomeprofiling/riboflow.

For more information on the .ribo file format, please see its documentation page at https://
ribopy.readthedocs.io/en/latest/ribo_file_format.html.

For an alternative to ribor, please see a link to source code of ribopy, a python interface, at https:
//github.com/ribosomeprofiling/ribopy.
Package Content
Generating a ribo object: Ribo to get started

Length Distribution: get_length_distribution to get length distribution counts
plot_length_distribution to plot the length distribution

Region Counts: get_region_counts to get region counts
plot_region_counts to plot the region counts

Metagene Coverage: get_metagene to get metagene site coverage
get_tidy_metagene to get a tidy format of the metagene site coverage
plot_metagene to plot the metagene site coverage

https://ribosomeprofiling.github.io/ribor/ribor.html
https://ribosomeprofiling.github.io/ribor/ribor.html
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btaa028/5701654
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btaa028/5701654
https://github.com/ribosomeprofiling/riboflow
https://github.com/ribosomeprofiling/riboflow
https://ribopy.readthedocs.io/en/latest/ribo_file_format.html
https://ribopy.readthedocs.io/en/latest/ribo_file_format.html
https://github.com/ribosomeprofiling/ribopy
https://github.com/ribosomeprofiling/ribopy

set_aliases 31

set_aliases Set the aliases of a ribo object

Description

The function set_aliases allows the user to add aliases to a valid ribo object.

Usage

set_aliases(ribo.object, rename)

Arguments
ribo.object A ’ribo’ object

rename A function that renames original transcript name into an alias

Details

If there is a different naming convention from the default appris transcriptome, there may be no
simple way to generate convenient aliases from the original reference names. As a result, the user
can first generate the ribo object and get the reference names, use custom (and likely more intricate)
functions to generate a list of aliases, and then pass in a character vector of these aliases. The
character vector should match the order of and correspond to the list of reference names retrieved
from get_reference_names

Value

A modified 'ribo’ object that contains alias information

Examples

#generate a ribo object with transcript nicknames/aliases
file.path <- system.file("extdata”, "HEK293_ingolia.ribo"”, package = "ribor")
sample <- Ribo(file.path)
sample <- set_aliases(ribo.object = sample,
rename = rename_default)

Index

alias_hash (Ribo-class), 28
alias_hash,Ribo-method (Ribo-class), 28

experiment_info (Ribo-class), 28

experiment_info,Ribo-method
(Ribo-class), 28

experiments (Ribo-class), 28

experiments,Ribo-method (Ribo-class), 28

format_version (Ribo-class), 28
format_version,Ribo-method
(Ribo-class), 28

get_coverage, 2,2,3,6, 12, 14
get_experiments, 4, 4
get_info, 5,5
get_internal_region_coordinates, 6, 6, 7
get_internal_region_lengths, 7, 17
get_length_distribution, 7,7, 30
get_metadata, 9,9
get_metagene, 10, 10, 20, 23, 30
get_original_region_coordinates, 12, 12,
13
get_original_region_lengths, 13
get_reference_names, 13, 27, 31
get_region_coordinates, /4, 14
get_region_counts, 8, 15, 15, 21, 22, 25, 30
get_region_lengths, 17,17
get_rnaseq, /8, 18
get_tidy_metagene, 11, 19,19, 23, 30

has_metadata (Ribo-class), 28
has_metadata,Ribo-method (Ribo-class),
28

left_span (Ribo-class), 28
left_span,Ribo-method (Ribo-class), 28
length_max (Ribo-class), 28
length_max,Ribo-method (Ribo-class), 28
length_min (Ribo-class), 28
length_min,Ribo-method (Ribo-class), 28

32

length_offset (Ribo-class), 28
length_offset,Ribo-method (Ribo-class),
28

metagene_radius (Ribo-class), 28
metagene_radius,Ribo-method
(Ribo-class), 28

original_hash (Ribo-class), 28
original_hash,Ribo-method (Ribo-class),
28

path (Ribo-class), 28
path,Ribo-method (Ribo-class), 28
plot_length_distribution, 8, 21, 21, 22,
30
plot_metagene, 11, 20, 23, 23, 30
plot_region_counts, 22, 24, 24, 25, 30

reference (Ribo-class), 28
reference,Ribo-method (Ribo-class), 28
rename_default, 26, 26, 27
rename_transcripts, 27, 27

Ribo, 3-5, 9, 11, 19, 20, 22, 25, 27, 30

Ribo (Ribo-class), 28

Ribo-class, 28

ribor, 30

right_span (Ribo-class), 28
right_span,Ribo-method (Ribo-class), 28

set_aliases, 29, 31, 31
show,Ribo-method (Ribo-class), 28

transcript_info (Ribo-class), 28
transcript_info,Ribo-method
(Ribo-class), 28

	get_coverage
	get_experiments
	get_info
	get_internal_region_coordinates
	get_internal_region_lengths
	get_length_distribution
	get_metadata
	get_metagene
	get_original_region_coordinates
	get_original_region_lengths
	get_reference_names
	get_region_coordinates
	get_region_counts
	get_region_lengths
	get_rnaseq
	get_tidy_metagene
	plot_length_distribution
	plot_metagene
	plot_region_counts
	rename_default
	rename_transcripts
	Ribo-class
	ribor
	set_aliases
	Index

