Package ‘stPipe’

January 16, 2026

Type Package

Title Upstream pre-processing for Sequencing-Based Spatial
Transcriptomics

Version 1.1.2

biocViews ImmunoOncology, Software, Sequencing, RNASeq,
GeneExpression, SingleCell, Visualization, SequenceMatching,
Preprocessing, QualityControl, GenomeAnnotation, Datalmport,
Spatial, Transcriptomics, Clustering

Description This package serves as an upstream pipeline for pre-processing sequencing-based spa-
tial transcriptomics data. Functions includes FASTQ trimming, BAM file reformatting, in-
dex building, spatial barcode detection, demultiplexing, gene count matrix genera-
tion with UMI deduplication, QC, and revelant visualization. Config is an essential in-
put for most of the functions which aims to improve reproducibility.

Depends R (>=4.5.0)

Imports basilisk, data.table, DropletUtils, dplyr, ggplot2, methods,
pbmcapply, reticulate, rmarkdown, Rcpp, Rhtslib, Rsubread,
Rtsne, Seurat, SeuratObject, scPipe, shiny,
SummarizedExperiment, SingleCellExperiment, SpatialExperiment,
stats, umap, yaml

LinkingTo Rcpp, Rhdf5lib, testthat, Rhtslib
SystemRequirements GNU make

License GPL-3

Encoding UTF-8

LazyData false

RoxygenNote 7.3.2

URL https://github.com/mritchielab/stPipe

BugReports https://github.com/mritchielab/stPipe/issues/new
Suggests knitr, plotly, BiocStyle, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

https://github.com/mritchielab/stPipe
https://github.com/mritchielab/stPipe/issues/new

2 Run_Clustering

git_url https://git.bioconductor.org/packages/stPipe
git_branch devel

git_last_commit 4830cb8

git_last_commit_date 2025-11-20

Repository Bioconductor 3.23

Date/Publication 2026-01-15

Author Yang Xu [aut, cre] (ORCID: <https://orcid.org/0009-0008-3274-6516>),
Callum Sargeant [aut],
Shian Su [aut],
Luyi Tian [aut],
Yunshun Chen [ctb],
Matthew Ritchie [ctb, fnd]

Maintainer Yang Xu <xu.ya@wehi.edu.au>

Contents
Run_Clustering e 2
Run_Create_Obj e 3
Run_HTML e e 4
Run_Interactive e e 6
Run_Loc Match e 7
Run_QC e 8
Run_ST e 10
Run_Visualization e e e 11
StPipe . . . e 12

Index 13

Run_Clustering Perform Basic Clustering Algorithms
Description

This function performs basic clustering using t-SNE and UMAP, either before or after the QC step
and outputs visualizations results.

Usage

Run_Clustering(gene.count, matched.data, num_clusters = 5)

Arguments

gene.count A data frame containing gene count data with gene IDs as row names.

matched.data A data frame containing matched spatial coordinates with raw UMI counts.

num_clusters Number of clusters during clustering. Default set to five.

https://orcid.org/0009-0008-3274-6516

Run_Create_Obj 3

Details
T-SNE (t-Distributed Stochastic Neighbor Embedding)

T-SNE is a popular dimensionality reduction technique used to project high-dimensional data into
two or three dimensions. It optimizes for preserving the local structure of the data, meaning
that points that are close to each other in high-dimensional space will remain close in the lower-
dimensional representation. This method is widely used in single-cell RNA-seq and spatial tran-
scriptomics to explore the heterogeneity of the data and identify cells or spatial regions with similar
expression profiles.

UMAP (Uniform Manifold Approximation and Projection)

UMAP is another popular dimensionality reduction technique that aims to preserve both the local
and global structures of the data, with a stronger emphasis on efficiency. It excels at handling large
datasets, generating low-dimensional projections in less time compared to T-SNE. Unlike T-SNE,
UMAP seeks to retain both local and global data structures, making it more suitable for capturing
broad clustering patterns across the datasets.

Value

A list which contains interactive clustering visualization result with related data frames.

Examples

set.seed(123)
gene.count <- matrix(sample(@:100, 200 x 100, replace = TRUE), nrow = 200)
rownames(gene.count) <- paste@("Gene", seq_len(200))
colnames(gene.count) <- paste@(”Spot”, seq_len(100))
matched.data <- data.frame(
spatial_name = paste@("Spot"”, seq_len(100)),
x_coord = runif(100, @, 10),
y_coord = runif(100, 0, 10)
)
result <- Run_Clustering(
gene.count = gene.count,
matched.data = matched.data,
num_clusters = 3

)
Run_Create_Obj This function creates specified spatial transcriptomics data object for
further personalized downstream analysis
Description

This function creates specified spatial transcriptomics data object for further personalized down-
stream analysis

Usage

Run_Create_Obj(gene.matrix, matched.data, obj.type, tech, ss.radius = 3000)

4 Run HTML

Arguments

gene.matrix Gene count matrix. This is usually obtained from ’Run_ST’ function.

matched.data Data frame which contains spatial localization matched with gene count matrix.
This is usually obtained from ’Run_loc_match’ function.

obj.type Type of spatial transcriptomics object being created, can be ’Seurat’, ’Spatial-
Experiment’, or ’AnnData’.

tech Type of spatial transcriptomics sequencing technology, can be "Visium", "Slideseq",
"Curio-seeker", or "Stereoseq".

ss.radius Optional. Radius for filtering SlideSeq or Curio-seeker spots for Seurat object.
Default is 3000.

Details

Current mainstream analytic tools for downstream includes: Seurat, SpatialExperiment supported
tools, and Squidpy. This function can help creates corresponding objects for further downstream
analysis.

Value

Created spatial transcriptomics data object as required by ’obj.type’. set.seed(123) gene.count
<- matrix(sample(0:100, 200¥100, TRUE), nrow=200) rownames(gene.count) <- paste0(’Gene’,
1:200) colnames(gene.count) <- pasteO(’Spot’, 1:100) matched.data <- data.frame(spatial_name =
colnames(gene.count), barcode_sequence = paste0CBC’, 1:100), X_coordinate = runif(100,0,10),
Y_coordinate = runif(100,0,10), UMI_count = sample(50:200,100,TRUE)) seu <- Run_Create_Obj(
gene.matrix = gene.count, matched.data = matched.data, obj.type = ’Seurat’, tech = ’Slideseq’)

Run_HTML HTML report generation in RMarkDown format

Description

This function generates a HTML report of stPipe upstream processing steps in Rmarkdown format.
It extracts plots in the result directory and outputs them in the whole report with corresponding
explanation.

Usage
Run_HTML (path)

Arguments
path Path to where results are stored, including the ones obtained from 'Run_ST’,
’Run_loc_match’, ’Run_Vis’, and "Run_Clustering’.
Value

Generated HTML report in RMarkDown format.

Run HTML 5

Examples

Qexample
temp_dir <- tempdir()
dummy_gene_count <- data.frame(GeneA = c(10, 20), GeneB = c(5, 15))
rownames (dummy_gene_count) <- c("spot1”, "spot2")
write.csv(dummy_gene_count, file = file.path(temp_dir, "gene_count.csv"), row.names = TRUE)
png_files <- c("Mapping_statistics_plot.png”, "UMI_duplication_plot.png",
"Barcode_demultiplexing_plot.png”, "Spatial_Heatmap_of_UMI_Count_raw.png”,
"Spatial_Heatmap_of_UMI_Count_log.png"”, "Threshold.png")
for (f in png_files) {
fileConn <- file(file.path(temp_dir, f))
writeLines("dummy image content”, fileConn)
close(fileConn)}
html_files <- c("tsne_interactive.html”, "umap_interactive.html")
for (f in html_files) {
fileConn <- file(file.path(temp_dir, f))
writeLines("<html>dummy interactive html</html>", fileConn)
close(fileConn)}
dummy_rmd <- paste(
"Report for stPipe”,
"Mapping Statistics: <<Mapping_statistics_plot>>",
"UMI Duplication: <<UMI_duplication_plot>>",
"Barcode Demultiplexing: <<Barcode_demultiplexing_plot>>",
"Spatial Heatmap Raw: <<Spatial_Heatmap_of_UMI_Count_raw>>",
"Spatial Heatmap Log: <<Spatial_Heatmap_of_UMI_Count_log>>",
"Threshold: <<Threshold>>",
"tSNE Interactive: <<tsne_interactive>>",
"UMAP Interactive: <<umap_interactive>>",
sep = "\n"
)
dummy_template_path <- file.path(temp_dir, "stPipe_Report_Skeleton.Rmd")
writeLines(dummy_rmd, dummy_template_path)
Run_HTML_test <- function(path) {
rmd_template_path <- dummy_template_path
if (rmd_template_path == "") {
stop("Template file not found. Please check if it's properly installed in your package.")
}
rmd_template <- readLines(rmd_template_path)
gene_count <- read.csv(file.path(path, "gene_count.csv"), row.names = 1)
Mapping_statistics_plot <- normalizePath(file.path(path, "Mapping_statistics_plot.png"))
UMI_duplication_plot <- normalizePath(file.path(path, "UMI_duplication_plot.png"))
Barcode_demultiplexing_plot <- normalizePath(file.path(path, "Barcode_demultiplexing_plot.png"))
Spatial_Heatmap_of_UMI_Count_raw <- normalizePath(file.path(path, "Spatial_Heatmap_of_UMI_Count_raw.png"))
Spatial_Heatmap_of_UMI_Count_log <- normalizePath(file.path(path, "Spatial_Heatmap_of_UMI_Count_log.png"))
Threshold <- normalizePath(file.path(path, "Threshold.png"))
tsne_interactive <- normalizePath(file.path(path, "tsne_interactive.html"))
umap_interactive <- normalizePath(file.path(path, "umap_interactive.html”))
rmd_content <- gsub("<<path>>", path, rmd_template)
rmd_content <- gsub("<<Mapping_statistics_plot>>", Mapping_statistics_plot, rmd_content)
rmd_content <- gsub("<<UMI_duplication_plot>>", UMI_duplication_plot, rmd_content)
rmd_content <- gsub("<<Barcode_demultiplexing_plot>>", Barcode_demultiplexing_plot, rmd_content)
rmd_content <- gsub("<<Spatial_Heatmap_of_UMI_Count_raw>>", Spatial_Heatmap_of_UMI_Count_raw, rmd_content)

Run_Interactive

rmd_content <- gsub("<<Spatial_Heatmap_of_UMI_Count_log>>", Spatial_Heatmap_of_UMI_Count_log, rmd_content)
rmd_content <- gsub("<<Threshold>>", Threshold, rmd_content)

rmd_content <- gsub("<<tsne_interactive>>", tsne_interactive, rmd_content)

rmd_content <- gsub("<<umap_interactive>>", umap_interactive, rmd_content)

rmd_file <- file.path(path, "report.Rmd")

writeLines(rmd_content, rmd_file)

rmarkdown: :render(rmd_file, output_file = file.path(path, "report.html"))}
Run_HTML_test(temp_dir)

Run_Interactive Interactive Visualization for Spatial Transcriptomics Data and spot

plot with save functionality

Description

Interactive Visualization for Spatial Transcriptomics Data and spot plot with save functionality
Usage

Run_Interactive(
matched_data,
clustering_result,
background_img = NULL,
reduction_method = "tsne”,
point_size = 1

Arguments

matched_data A data frame containing matched spatial coordinates with raw UMI counts.
clustering_result
A data frame containing matched spatial coordinates with raw UMI counts.

background_img Optional background H&E image.
reduction_method

T-SNE ("tsne") or UMAP ("umap") result data frame obtained from *'Run_Clustering’
function. Default set as "tsne".

point_size Size of point shown in the spatial heatmap. Default set as 1.

Details

This function generates interactive plots to visualize spatial transcriptomics data. It takes matched

spatial coordinates and raw UMI counts to produce customized t-SNE or UMAP plots overlayed on
a optional background H&E image.

Value

R-shiny interactive webpage.

Run_Loc_Match 7

Examples

matched_data <- data.frame(
X_coordinate = runif (10, @, 100),
Y_coordinate = runif(10, @, 100),
UMI_count = sample(seq_len(100), 10),
spatial_name = paste@("”Spot”, seqg_len(10)),
stringsAsFactors = FALSE
)
clustering_result <- data.frame(
TSNE1 = runif(10, -50, 50),
TSNE2 = runif(10, -50, 50),
spot = paste@("Spot"”, seq_len(10)),
cluster = sample(seq_len(3), 10, replace = TRUE),
stringsAsFactors = FALSE
)
if (interactive()) {
Run_Interactive(
matched_data = matched_data,
clustering_result = clustering_result,
background_img = NULL,
reduction_method = "tsne”,
point_size = 1)

Run_Loc_Match Match spatial location After Pre-Processing for Sequencing-Based
Spatial Transcriptomics

Description

This function matches spatial coordinates for sST data after upstream pre-processing. ’Run_loc_match’
can either map the technology coordination system (such as spot in Visium coordination, bead in
Slide-seq coordination) or compute pixel for each spot and map the pixel information back to the
image (only for Visium)

Usage

Run_Loc_Match(config, pixel = FALSE, show.config = TRUE)

Arguments
config Path to the YAML configuration file.
pixel Computing spot pixel or not. If yes, compute pixel for each spot and map back
to image; if not, map the Visium coordination system. Defaults to FALSE.
show.config Logical value indicating whether to print the configuration. Defaults to TRUE.
Value

A data frame contains gene count matrix with spatial coordinates

8 Run_QC

Examples

data_dir <- tempdir()
output_dir <- file.path(tempdir(), "Run_Loc_Match_output"”)
if (!dir.exists(output_dir)) dir.create(output_dir, recursive = TRUE)
sample_index <- data.frame(
barcode_sequence = c("”BC001", "BC00O2", "BCO03"),
cell_name = c("CELL_1", "CELL_2", "CELL_3"),
stringsAsFactors = FALSE
)
write.csv(sample_index, file = file.path(output_dir, "sample_index.csv"), row.names = FALSE)
gene_count <- data.frame(
gene_id = c("genel”, "gene2"),
CELL_1 = c(10, 5),
CELL_2 = c(20, 10),
CELL_3 = c(30, 15),
stringsAsFactors = FALSE
)
write.csv(gene_count, file = file.path(output_dir, "gene_count.csv"), row.names = FALSE)
config_list <- list(
output_directory = output_dir,
data_directory = data_dir,

technology_version = "Visium_probe_v1",
visium_coordination = "V1"

)

config_file <- tempfile(fileext = ".yml")

yaml::write_yaml(config_list, config_file)
result <- Run_Loc_Match(

config = config_file,

pixel = FALSE,

show.config = FALSE

)
Run_QC QC Control After Upstream Pre-Processing for Sequencing-Based
Spatial Transcriptomics
Description

QC Control After Upstream Pre-Processing for Sequencing-Based Spatial Transcriptomics

Usage

Run_QC(config, matched.data, gene.matrix, show.config = TRUE)

Arguments

config Path to the YAML configuration file.

matched.data A data frame containing spatial transcriptomics data, including UMI counts and
spatial coordinates, this is usually obtained from *Run_loc_match’ function.

Run_QC 9

gene.matrix A gene count matrix, this is usually obtained from *'Run_ST’ function.
show.config Logical value indicating whether to print the configuration. Defaults to TRUE.
Details

This function performs QC control on sequencing-based spatial transcriptomics data after upstream
pre-processing step such as ’Run_ST’ step. Ensure the output directory is the same with the
’Run_ST’ one. Filtering is performed either use specific UMI threshold or assign the threshold
to "DropletUtils’.

"max_slope"

In this approach, the filtering is done based on UMI counts. Spots with counts below a certain
threshold are considered low-quality and are filtered out. This method helps retain only the spots
with significant transcriptomic signals, reducing noise from sptos with minimal or no meaningful
biological information.

Threshold Determination: The threshold in this method is computed by analyzing the distribution
of UMI counts across spots, and identifying the point of maximum slope in the cumulative UMI
distribution curve. This point often corresponds to the transition between background noise and real
biological signals.

"EmptyDropletUtils"

Alternatively, the DropletUtils package offers a more sophisticated approach by using statistical
methods to identify droplets or spots that contain real cells, as opposed to empty droplets or those
containing background RNA. This method calculates a false discovery rate (FDR) to assess the
likelihood of each droplet containing a real cell. Sptos are retained if they meet the significance
criteria for either the p-value or FDR. To learn more details regarding DropletUtils, visit this link
to its Bioconductor page.

Multiple Thresholds: This method will determine two thresholds based on the config file input
parameters. Filtering can be fine-tuned using both p-value and FDR thresholds, offering greater
flexibility in distinguishing between noise and meaningful data. Sptos are retained if they meet the
significance criteria for either the p-value or FDR.

Value

A list containing filtered gene counts with matched spatial coordinates after QC.

Examples

output_dir <- tempdir()

config_list <- list(

output_directory = output_dir,

gc_filter = "slope_max",

qgc_per = "0.4_0.8"

)

config_path <- tempfile(fileext = ".yml")

yaml: :write_yaml(config_list, config_path)
set.seed(123)

gene_ids <- paste@("gene", seq_len(100))
spatial_names <- paste@("SPATIAL_", seq_len(100))
count_matrix <- matrix(rpois(100%100, lambda = 20), nrow = 100, ncol = 100)

https://bioconductor.org/packages/release/bioc/html/DropletUtils.html
https://bioconductor.org/packages/release/bioc/html/DropletUtils.html

10 Run_ST

colnames(count_matrix) <- spatial_names

gene_matrix <- data.frame(row.names = gene_ids, count_matrix, stringsAsFactors = FALSE)
matched_data <- data.frame(

X_coordinate = runif(100, min = @, max = 1000),

Y_coordinate = runif (100, min = @, max = 1000),

barcode_sequence = paste@("BC", seq_len(100)),

spatial_name = spatial_names,

stringsAsFactors = FALSE

)

umi_counts <- colSums(gene_matrix[, -11)
matched_data$UMI_count <- umi_counts[match(matched_data$spatial_name, names(umi_counts))]
gc_results <- Run_QC(

config = config_path,

matched.data = matched_data,

gene.matrix = gene_matrix,

show.config = FALSE

)

Run_ST Pre-processing function for sequencing-based spatial transcriptomics

Description

Pre-processing from FASTQ files to gene count matrix and extract spatial location information,
processing multiple sample is done via parallel computing. NB: for multiple samples, ’species’
and ’technology_version’ should be the same. This function processes sequencing-based spatial
transcriptomics data using various steps, including BAM to FASTQ conversion, trimming, index
building, alignment, and barcode detection. For Slideseq technology, the input should be BAM file
and for all other technologies the input should be FASTQ file.

Usage
Run_ST(config, show.config = TRUE)

Arguments

config Path to the YAML configuration file.

show.config Logical value indicating whether to print the configuration. Defaults to TRUE.
Value

None. Outputs are saved to specified directories.

Examples

data_path <- system.file("extdata”, package = "stPipe")
output_directory <- file.path(tempdir(), "stPipe_output”)
config_list <- list(

data_directory = data_path,

Run_ Visualization 11

output_directory = output_directory,
technology_version = "Visium_probe_v1",
species = "mouse”,
scpipe_nthreads = 4,
max_reads = 100000,
min_count = 10,
number_of_locations = 100,
bs1= -1,
bli= o,
bs2= 0,
bl2= 16,
us= 16,
ul= 12,
11= 0
)
config_file <- tempfile(fileext = ".yml")
yaml::write_yaml(config_list, config_file)
Run_ST(
config = config_file,
show.config = FALSE
)

Run_Visualization Visualize pre-processed sST data

Description

This function visualizes both spatial-level and read-level information either before or after the
’Run_QC’ step. It outputs raw and log-transformed UMI count plots for spatial flag, and demulti-
plexing and mapping statistics for read flag.

Usage

Run_Visualization(
matched.data = NULL,
config,

Vis.spatial = TRUE,
Vis.read = TRUE,
show.config = TRUE

Arguments

matched.data A data frame containing spatial transcriptomics data, including UMI counts and
spatial coordinates. This is usually obtained from *Run_loc_match’ function.

config Path to the YAML configuration file.
Vis.spatial Logical value indicating whether to visualize spatial data. Defaults to TRUE.
Vis.read Logical value indicating whether to visualize read-level data. Defaults to TRUE.

show.config Logical value indicating whether to print the configuration. Defaults to TRUE.

12 stPipe

Value

A list contains spatial and read level visualization results.

Examples
temp_config <- tempfile(fileext = ".yml")
writeLines("technology_version: 'Visium 1.0'\noutput_directory: '.'", temp_config)

matched.data <- data.frame(
X_coordinate = runif(10, @, 100),
Y_coordinate = runif(10, @, 100),
UMI_count = sample(seq_len(100), 10),
spatial_name = paste@("Spot", seq_len(10)),
stringsAsFactors = FALSE
)
vis_results <- Run_Visualization(

matched.data = matched.data,

config = temp_config,

Vis.spatial = TRUE,

Vis.read = FALSE,

show.config = FALSE

)
stPipe stPipe: A package for pre-processing sequencing-based spatial tran-
scriptomics data.
Description

The stPipe will do spatial barcode demultiplexing, UMI deduplication, spatial location matching
and quality control on fastq data generated from all mainstream protocols

stPipe functions

The stPipe functions Run_ST, Run_loc_match, Run_QC, Run_Vis, Run_Clustering, Run_create_obj,
Run_HTML, Run_Interactive

Author(s)

Yang Xu <xu.ya@wehi.edu.au>

See Also
Useful links:

* https://github.com/mritchielab/stPipe
* Report bugs at https://github.com/mritchielab/stPipe/issues/new

https://github.com/mritchielab/stPipe
https://github.com/mritchielab/stPipe/issues/new

Index

Run_Clustering, 2
Run_Create_0bj, 3
Run_HTML, 4
Run_Interactive, 6
Run_Loc_Match, 7
Run_QC, 8

Run_ST, 10
Run_Visualization, 11

stPipe, 12
stPipe-package (stPipe), 12

13

	Run_Clustering
	Run_Create_Obj
	Run_HTML
	Run_Interactive
	Run_Loc_Match
	Run_QC
	Run_ST
	Run_Visualization
	stPipe
	Index

