Package ‘sva’

January 16, 2026

Title Surrogate Variable Analysis
Version 3.59.0

Author Jeffrey T. Leek <jtleek@gmail.com>, W. Evan Johnson <wej@bu.edu>,
Hilary S. Parker <hiparker@jhsph.edu>, Elana J. Fertig <ejfertig@jhmi.edu>,
Andrew E. Jaffe <ajaffe@jhsph.edu>, Yuqing Zhang <zhangyuqing.pkusms@gmail .com>,
John D. Storey <jstorey@princeton.edu>,
Leonardo Collado Torres <lcolladotor@gmail.com>

Description The sva package contains functions for removing batch
effects and other unwanted variation in high-throughput
experiment. Specifically, the sva package contains functions
for the identifying and building surrogate variables for
high-dimensional data sets. Surrogate variables are covariates
constructed directly from high-dimensional data (like gene
expression/RNA sequencing/methylation/brain imaging data) that
can be used in subsequent analyses to adjust for unknown,
unmodeled, or latent sources of noise. The sva package can be
used to remove artifacts in three ways: (1) identifying and
estimating surrogate variables for unknown sources of variation
in high-throughput experiments (Leek and Storey 2007 PLoS
Genetics,2008 PNAS), (2) directly removing known batch
effects using ComBat (Johnson et al. 2007 Biostatistics) and (3) removing
batch effects with known control probes (Leek 2014 biorXiv).
Removing batch effects and using surrogate variables in
differential expression analysis have been shown to reduce
dependence, stabilize error rate estimates, and improve
reproducibility, see (Leek and Storey 2007 PLoS Genetics, 2008
PNAS or Leek et al. 2011 Nat. Reviews Genetics).

Maintainer Jeffrey T. Leek <jtleek@gmail.com>, John D. Storey
<jstorey@princeton.edu>, W. Evan Johnson <wej@bu. edu>

Depends R (>=3.2), mgcv, genefilter, BiocParallel

Imports matrixStats, stats, graphics, utils, limma, edgeR

Suggests pamr, bladderbatch, BiocStyle, zebrafishRNASeq, testthat

License Artistic-2.0

2 ComBat
biocViews ImmunoOncology, Microarray, StatisticalMethod,
Preprocessing, MultipleComparison, Sequencing, RNASeq,
BatchEffect, Normalization

RoxygenNote 7.0.2

git_url https://git.bioconductor.org/packages/sva

git_branch devel

git_last_commit fefe806

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-15

Contents
ComBat e 2
ComBat_seq e 4
empirical.controls L L. e e 5
fipvalue L 6
fstatso e 7
fSva . . e 7
irwsvabuildo 9
NUILSY © o v vt v e e e e e e e e e e e e e e e e e e 10
PSVA . o e e e 11
SVA . v v e e e e e e e e 12
read.degradation.matrixXol e e 13
SSVA v e e e e e e e 14
2 15
sva.check L 17
SVASEQ « v v v v e 18
sva_networko 20
twostepsva.build oL 20

Index 22

ComBat Adjust for batch effects using an empirical Bayes framework
Description

ComBat allows users to adjust for batch effects in datasets where the batch covariate is known,
using methodology described in Johnson et al. 2007. It uses either parametric or non-parametric
empirical Bayes frameworks for adjusting data for batch effects. Users are returned an expression
matrix that has been corrected for batch effects. The input data are assumed to be cleaned and
normalized before batch effect removal.

ComBat 3

Usage

ComBat (
dat,
batch,
mod = NULL,
par.prior = TRUE,
prior.plots = FALSE,
mean.only = FALSE,
ref.batch = NULL,
BPPARAM = bpparam(”SerialParam")

)
Arguments
dat Genomic measure matrix (dimensions probe x sample) - for example, expression
matrix
batch Batch covariate (only one batch allowed)
mod Model matrix for outcome of interest and other covariates besides batch
par.prior (Optional) TRUE indicates parametric adjustments will be used, FALSE indi-

cates non-parametric adjustments will be used

prior.plots (Optional) TRUE give prior plots with black as a kernel estimate of the empirical
batch effect density and red as the parametric

mean.only (Optional) FALSE If TRUE ComBat only corrects the mean of the batch effect
(no scale adjustment)

ref.batch (Optional) NULL If given, will use the selected batch as a reference for batch
adjustment.
BPPARAM (Optional) BiocParallelParam for parallel operation
Value

data A probe x sample genomic measure matrix, adjusted for batch effects.

Examples

library(bladderbatch)
data(bladderdata)
dat <- bladderEset[1:50,]

pheno = pData(dat)
edata = exprs(dat)
batch = pheno$batch
mod = model.matrix(~as.factor(cancer), data=pheno)

parametric adjustment
combat_edatal = ComBat(dat=edata, batch=batch, mod=NULL, par.prior=TRUE, prior.plots=FALSE)

non-parametric adjustment, mean-only version
combat_edata2 = ComBat(dat=edata, batch=batch, mod=NULL, par.prior=FALSE, mean.only=TRUE)

4 ComBat_seq

reference-batch version, with covariates
combat_edata3 = ComBat(dat=edata, batch=batch, mod=mod, par.prior=TRUE, ref.batch=3)

ComBat_seq Adjust for batch effects using an empirical Bayes framework in RNA-
seq raw counts

Description

ComBat_seq is an improved model from ComBat using negative binomial regression, which specif-
ically targets RNA-Seq count data.

Usage
ComBat_seq(
counts,
batch,
group = NULL,

covar_mod = NULL,
full_mod = TRUE,
shrink = FALSE,
shrink.disp = FALSE,
gene.subset.n = NULL

)
Arguments
counts Raw count matrix from genomic studies (dimensions gene x sample)
batch Vector / factor for batch
group Vector / factor for biological condition of interest
covar_mod Model matrix for multiple covariates to include in linear model (signals from
these variables are kept in data after adjustment)
full_mod Boolean, if TRUE include condition of interest in model
shrink Boolean, whether to apply shrinkage on parameter estimation
shrink.disp Boolean, whether to apply shrinkage on dispersion

gene.subset.n Number of genes to use in empirical Bayes estimation, only useful when shrink
=TRUE

Value

data A gene x sample count matrix, adjusted for batch effects.

empirical.controls 5

Examples

count_matrix <- matrix(rnbinom(400, size=10, prob=0.1), nrow=50, ncol=8)
batch <- c(rep(1, 4), rep(2, 4))
group <- rep(c(0,1), 4)

include condition (group variable)
adjusted_counts <- ComBat_seq(count_matrix, batch=batch, group=group, full_mod=TRUE)

do not include condition
adjusted_counts <- ComBat_seq(count_matrix, batch=batch, group=NULL, full_mod=FALSE)

empirical.controls A function for estimating the probability that each gene is an empirical
control

Description

This function uses the iteratively reweighted surrogate variable analysis approach to estimate the
probability that each gene is an empirical control.

Usage
empirical.controls(
dat,
mod,
modd = NULL,
n.sv,
B = 5,
type = c("norm”, "counts")
)
Arguments
dat The transformed data matrix with the variables in rows and samples in columns
mod The model matrix being used to fit the data
mod@ The null model being compared when fitting the data
n.sv The number of surogate variables to estimate
B The number of iterations of the irwsva algorithm to perform
type If type is norm then standard irwsva is applied, if type is counts, then the mod-
erated log transform is applied first
Value

pcontrol A vector of probabilites that each gene is a control.

6 f.pvalue

Examples

library(bladderbatch)
data(bladderdata)
dat <- bladderEset[1:5000,]

pheno = pData(dat)
edata = exprs(dat)
mod = model.matrix(~as.factor(cancer), data=pheno)

n.sv = num.sv(edata,mod,method="1eek")
pcontrol <- empirical.controls(edata,mod,mod@=NULL,n.sv=n.sv,type="norm")

f.pvalue A function for quickly calculating f statistic p-values for use in sva

Description

This function does simple linear algebra to calculate f-statistics for each row of a data matrix com-
paring the nested models defined by the design matrices for the alternative (mod) and and null
(mod0) cases. The columns of mod0O must be a subset of the columns of mod.

Usage
f.pvalue(dat, mod, mod@)

Arguments
dat The transformed data matrix with the variables in rows and samples in columns
mod The model matrix being used to fit the data
mod@ The null model being compared when fitting the data

Value

p A vector of F-statistic p-values one for each row of dat.

Examples

library(bladderbatch)
data(bladderdata)
dat <- bladderEset[1:50,]

pheno = pData(dat)

edata = exprs(dat)

mod = model.matrix(~as.factor(cancer), data=pheno)
mod@ = model.matrix(~1,data=pheno)

pValues = f.pvalue(edata,mod,mod@)
gValues = p.adjust(pValues,method="BH")

fstats 7

fstats A function for quickly calculating f statistics for use in sva

Description

This function does simple linear algebra to calculate f-statistics for each row of a data matrix com-
paring the nested models defined by the design matrices for the alternative (mod) and and null
(mod0) cases. The columns of mod0O must be a subset of the columns of mod.

Usage
fstats(dat, mod, modd)

Arguments
dat The transformed data matrix with the variables in rows and samples in columns
mod The model matrix being used to fit the data
mod@ The null model being compared when fitting the data

Value

fstats A vector of F-statistics one for each row of dat.

Examples

library(bladderbatch)
data(bladderdata)
dat <- bladderEset[1:50,]

pheno = pData(dat)

edata = exprs(dat)

mod = model.matrix(~as.factor(cancer), data=pheno)
mod@ = model.matrix(~1,data=pheno)

fs <- fstats(edata, mod, mod@)

fsva A function for performing frozen surrogate variable analysis as pro-
posed in Parker, Corrada Bravo and Leek 2013

Description

This function performs frozen surrogate variable analysis as described in Parker, Corrada Bravo
and Leek 2013. The approach uses a training database to create surrogate variables which are then
used to remove batch effects both from the training database and a new data set for prediction
purposes. For inferential analysis see sva, svaseq, with low level functionality available through
irwsva.build and ssva.

8 fsva

Usage

fsva(dbdat, mod, sv, newdat = NULL, method = c("fast”, "exact"))

Arguments
dbdat A m genes by n arrays matrix of expression data from the database/training data
mod The model matrix for the terms included in the analysis for the training data
sV The surrogate variable object created by running sva on dbdat using mod.
newdat (optional) A set of test samples to be adjusted using the training database
method If method ="fast" then the SVD is calculated using an online approach, this may
introduce slight bias. If method="exact" the exact SVD is calculated, but will
be slower
Value

db An adjusted version of the training database where the effect of batch/expression heterogeneity
has been removed

new An adjusted version of the new samples, adjusted one at a time using the fsva methodology.

newsv Surrogate variables for the new samples

Examples

library(bladderbatch)
library(pamr)
data(bladderdata)

dat <- bladderEset[1:50,]

pheno = pData(dat)
edata = exprs(dat)

set.seed(1234)

trainIndicator = sample(1:57,size=30,replace=FALSE)
testIndicator = (1:57)[-trainIndicator]

trainData = edatal,trainIndicator]

testData = edatal,testIndicator]

trainPheno = pheno[trainIndicator,]

testPheno = pheno[testIndicator,]

mydata = list(x=trainData,y=trainPheno$cancer)
mytrain = pamr.train(mydata)
table(pamr.predict(mytrain, testData, threshold=2), testPheno$cancer)

trainMod = model.matrix(~cancer,data=trainPheno)
trainMod@ = model.matrix(~1,data=trainPheno)
trainSv = sva(trainData,trainMod, trainMod®)

fsvaobj = fsva(trainData,trainMod,trainSv,testData)
mydataSv = list(x=fsvaobj$db,y=trainPheno$cancer)
mytrainSv = pamr.train(mydataSv)

irwsva.build 9

table(pamr.predict(mytrainSv, fsvaobj$new, threshold=1), testPheno$cancer)

irwsva.build A function for estimating surrogate variables by estimating empirical
control probes

Description

This function is the implementation of the iteratively re-weighted least squares approach for esti-
mating surrogate variables. As a buy product, this function produces estimates of the probability
of being an empirical control. See the function empirical.controls for a direct estimate of the
empirical controls.

Usage
irwsva.build(dat, mod, mod® = NULL, n.sv, B = 5)

Arguments
dat The transformed data matrix with the variables in rows and samples in columns
mod The model matrix being used to fit the data
mod@ The null model being compared when fitting the data
n.sv The number of surogate variables to estimate
B The number of iterations of the irwsva algorithm to perform
Value

sv The estimated surrogate variables, one in each column
pprob.gam: A vector of the posterior probabilities each gene is affected by heterogeneity
pprob.b A vector of the posterior probabilities each gene is affected by mod

n.sv The number of significant surrogate variables

Examples

library(bladderbatch)
data(bladderdata)
dat <- bladderEset[1:5000,]

pheno = pData(dat)
edata = exprs(dat)
mod = model.matrix(~as.factor(cancer), data=pheno)

n.sv = num.sv(edata,mod,method="1eek")
res <- irwsva.build(edata, mod, mod® = NULL,n.sv,B=5)

10 num.sv

num. sv A function for calculating the number of surrogate variables to esti-
mate in a model

Description

This function estimates the number of surrogate variables that should be included in a differential
expression model. The default approach is based on a permutation procedure originally prooposed
by Buja and Eyuboglu 1992. The function also provides an interface to the asymptotic approach
proposed by Leek 2011 Biometrics.

Usage

num.sv(dat, mod, method = c("be”, "leek"”), vfilter = NULL, B = 20, seed = NULL)

Arguments
dat The transformed data matrix with the variables in rows and samples in columns
mod The model matrix being used to fit the data
method One of "be" or "leek" as described in the details section
vfilter You may choose to filter to the vfilter most variable rows before performing the
analysis
B The number of permutaitons to use if method = "be"
seed Set a seed when using the permutation approach
Value

n.sv The number of surrogate variables to use in the sva software

Examples

library(bladderbatch)
data(bladderdata)
dat <- bladderEset[1:5000,]

pheno = pData(dat)
edata = exprs(dat)
mod = model.matrix(~as.factor(cancer), data=pheno)

n.sv = num.sv(edata,mod,method="1eek")

psva 11

psva A function for estimating surrogate variables with the two step ap-
proach of Leek and Storey 2007

Description

This function is the implementation of the two step approach for estimating surrogate variables pro-
posed by Leek and Storey 2007 PLoS Genetics. This function is primarily included for backwards
compatibility. Newer versions of the sva algorithm are available through sva, svaseq, with low
level functionality available through irwsva.build and ssva.

Usage
psva(dat, batch, ...)
Arguments
dat The transformed data matrix with the variables in rows and samples in columns
batch A factor variable giving the known batch levels
Other arguments to the sva function.
Value

psva.D Data with batch effect removed but biological heterogeneity preserved

Author(s)

Elana J. Fertig

Examples

library(bladderbatch)
library(limma)
data(bladderdata)

dat <- bladderEset[1:50,]

pheno = pData(dat)

edata = exprs(dat)

batch = pheno$batch
batch.fac = as.factor(batch)

psva_data <- psva(edata,batch.fac)

12 gsva

gsva A function for computing quality surrogate variables (gSVs)

Description

This function computes quality surrogate variables (qSVs) from the library-size- and read-length-
normalized degradation matrix for subsequent RNA quality correction

Usage
gsva(
degradationMatrix,
mod = matrix(1, ncol = 1, nrow = ncol(degradationMatrix))
)
Arguments
degradationMatrix
the normalized degradation matrix, region by sample
mod (Optional) statistical model used in DE analysis
Value

the gSV adjustment variables

Examples

Find files
bwPath <- system.file('extdata', 'bwtool', package = 'sva')

Read the data

degCovAdj = read.degradation.matrix(

covFiles = list.files(bwPath,full.names=TRUE),
sampleNames = list.files(bwPath), readlLength = 76,
totalMapped = rep(100e6,5), type="bwtool")

Input data
head(degCovAdj)

Results
gsva(degCovAdj)

read.degradation.matrix 13

read.degradation.matrix

A function for reading in coverage data from degradation-susceptible
regions

Description

This function reads in degradation regions to form a library-size- and read-length-normalized degra-
dation matrix for subsequent RNA quality correction

Usage
read.degradation.matrix(
covFiles,
sampleNames,
totalMapped,
readLength = 100,
normFactor = 8e+07,
type = c("bwtool”, "region_matrix_single”, "region_matrix_all"),
BPPARAM = bpparam()
)
Arguments
covFiles coverage file(s) for degradation regions
sampleNames sample names; creates column names of degradation matrix
totalMapped how many reads per sample (library size normalization)
readLength read length in base pairs (read length normalization)
normFactor common library size to normalize to; 80M reads as default
type whether input are individual ‘bwtool* output, ‘region_matrix‘ run on individual
samples, or ‘region_matrix‘ run on all samples together
BPPARAM (Optional) BiocParallelParam for parallel operation
Value

the normalized degradation matrix, region by sample

Examples

bwtool
bwPath = system.file('extdata', 'bwtool', package = 'sva')
degCovAdj = read.degradation.matrix(
covFiles = list.files(bwPath,full.names=TRUE),
sampleNames = list.files(bwPath), readlLength = 76,
totalMapped = rep(100e6,5), type="bwtool")
head(degCovAdj)

14 ssva
region_matrix: each sample
riPath = system.file('extdata', 'region_matrix_one', package = 'sva')
degCovAdj1 = read.degradation.matrix(
covFiles = list.files(r1Path,full.names=TRUE),
sampleNames = list.files(r1Path), readlLength = 76,
totalMapped = rep(100e6,5),type="region_matrix_single")
head(degCovAdj1)
r2Path = system.file('extdata', 'region_matrix_all', package = 'sva')
degCovAdj2 = read.degradation.matrix(
covFiles = list.files(r2Path,full.names=TRUE),
sampleNames = list.files(r1Path), readlLength = 76,
totalMapped = rep(100e6,5),type="region_matrix_all")
head(degCovAdj2)
ssva A function for estimating surrogate variables using a supervised ap-
proach
Description

This function implements a supervised surrogate variable analysis approach where genes/probes
known to be affected by artifacts but not by the biological variables of interest are assumed to
be known in advance. This supervised sva approach can be called through the sva and svaseq
functions by specifying controls.

Usage

ssva(dat, controls, n.sv)

Arguments
dat The transformed data matrix with the variables in rows and samples in columns
controls A vector of probabilities (between 0 and 1, inclusive) that each gene is a control.
A value of 1 means the gene is certainly a control and a value of 0 means the
gene is certainly not a control.
n.sv The number of surogate variables to estimate
Value

sv The estimated surrogate variables, one in each column

pprob.gam: A vector of the posterior probabilities each gene is affected by heterogeneity (exactly
equal to controls for ssva)

pprob.b A vector of the posterior probabilities each gene is affected by mod (always null for ssva)

n.sv The number of significant surrogate variables

sva 15

Examples

library(bladderbatch)
data(bladderdata)
dat <- bladderEset[1:5000,]

pheno = pData(dat)
edata = exprs(dat)
mod = model.matrix(~as.factor(cancer), data=pheno)

n.sv = num.sv(edata,mod,method="1eek")
set.seed(1234)

controls <- runif(nrow(edata))
ssva_res <- ssva(edata,controls,n.sv)

sva sva: a package for removing artifacts from microarray and sequencing
data

Description

sva has functionality to estimate and remove artifacts from high dimensional data the sva function
can be used to estimate artifacts from microarray data the svaseq function can be used to estimate
artifacts from count-based RNA-sequencing (and other sequencing) data. The ComBat function can
be used to remove known batch effecs from microarray data. The fsva function can be used to
remove batch effects for prediction problems.

This function is the implementation of the iteratively re-weighted least squares approach for esti-
mating surrogate variables. As a by product, this function produces estimates of the probability
of being an empirical control. See the function empirical.controls for a direct estimate of the
empirical controls.

Usage

sva(
dat,
mod,
mod® = NULL,
n.sv = NULL,
controls = NULL,
method = c("irw”, "two-step”, "supervised”),
vfilter = NULL,
B =5,
numSVmethod = "be"

16

Arguments

dat
mod
mod@
n.sv

controls

method
vfilter
B

numSVmethod

Details

sva

The transformed data matrix with the variables in rows and samples in columns
The model matrix being used to fit the data

The null model being compared when fitting the data

The number of surogate variables to estimate

A vector of probabilities (between 0 and 1, inclusive) that each gene is a control.
A value of 1 means the gene is certainly a control and a value of 0 means the
gene is certainly not a control.

For empirical estimation of control probes use "irw".
known use "supervised"

If control probes are

You may choose to filter to the vfilter most variable rows before performing the
analysis. vfilter must be NULL if method is "supervised"

The number of iterations of the irwsva algorithm to perform

If n.sv is NULL, sva will attempt to estimate the number of needed surrogate
variables. This should not be adapted by the user unless they are an expert.

A vignette is available by typing browseVignettes(”sva") in the R prompt.

Value

sv The estimated surrogate variables, one in each column

pprob.gam: A vector of the posterior probabilities each gene is affected by heterogeneity

pprob.b A vector of the posterior probabilities each gene is affected by mod

n.sv The number of significant surrogate variables

Author(s)

Jeffrey T. Leek, W. Evan Johnson, Hilary S. Parker, Andrew E. Jaffe, John D. Storey, Yuqing Zhang

References

For the package: Leek JT, Johnson WE, Parker HS, Jaffe AE, and Storey JD. (2012) The sva
package for removing batch effects and other unwanted variation in high-throughput experiments.
Bioinformatics DOI:10.1093/bioinformatics/bts034

For sva: Leek JT and Storey JD. (2008) A general framework for multiple testing dependence.
Proceedings of the National Academy of Sciences , 105: 18718-18723.

For sva: Leek JT and Storey JD. (2007) Capturing heterogeneity in gene expression studies by
‘Surrogate Variable Analysis’. PLoS Genetics, 3: el161.

For Combat: Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expres-
sion data using empirical Bayes methods. Biostatistics, 8 (1), 118-127

For svaseq: Leek JT (2014) svaseq: removing batch and other artifacts from count-based sequencing
data. bioRxiv doi: TBD

sva.check 17

For fsva: Parker HS, Bravo HC, Leek JT (2013) Removing batch effects for prediction problems
with frozen surrogate variable analysis arXiv:1301.3947

For psva: Parker HS, Leek JT, Favorov AV, Considine M, Xia X, Chavan S, Chung CH, Fertig
EJ (2014) Preserving biological heterogeneity with a permuted surrogate variable analysis for ge-
nomics batch correction Bioinformatics doi: 10.1093/bioinformatics/btu375

Examples

library(bladderbatch)
data(bladderdata)
dat <- bladderEset[1:5000,]

pheno = pData(dat)

edata = exprs(dat)

mod = model.matrix(~as.factor(cancer), data=pheno)
mod@ = model.matrix(~1,data=pheno)

n.sv = num.sv(edata,mod,method="1eek")
svobj = sva(edata,mod,mod®@,n.sv=n.sv)

sva.check A function for post-hoc checking of an sva object to check for degen-
erate cases.

Description

This function is designed to check for degenerate cases in the sva fit and fix the sva object where
possible.

Usage

sva.check(svaobj, dat, mod, mod@)

Arguments
svaobj The transformed data matrix with the variables in rows and samples in columns
dat The data set that was used to build the surrogate variables
mod The model matrix being used to fit the data
mod@ The null model matrix being used to fit the data
Details

empirical.controls for a direct estimate of the empirical controls.

Value

sv The estimated surrogate variables, one in each column
pprob.gam: A vector of the posterior probabilities each gene is affected by heterogeneity
pprob.b A vector of the posterior probabilities each gene is affected by mod

n.sv The number of significant surrogate variables

Examples

library(bladderbatch)
data(bladderdata)

#dat <- bladderEset

dat <- bladderEset[1:5000,]

pheno = pData(dat)

edata = exprs(dat)

mod = model.matrix(~as.factor(cancer), data=pheno)
mod@ = model.matrix(~1,data=pheno)

n.sv = num.sv(edata,mod,method="1eek")
svobj = sva(edata,mod,mod®,n.sv=n.sv)
svacheckobj = sva.check(svobj,edata,mod,mod®)

svaseq

svaseq

data.

A function for estimating surrogate variables for count based RNA-seq

Description

This function is the implementation of the iteratively re-weighted least squares approach for esti-
mating surrogate variables. As a by product, this function produces estimates of the probability of
being an empirical control. This function first applies a moderated log transform as described in
Leek 2014 before calculating the surrogate variables. See the function empirical.controls for a

direct estimate of the empirical controls.

Usage

svaseq(
dat,
mod,
mod® = NULL,
n.sv NULL,
controls = NULL,
method = c("irw”, "two-step”, "supervised”),
vfilter = NULL,
B = 5,
numSVYmethod = "be",

svaseq

constant =

Arguments

dat

mod

mod@
n.sv
controls
method

vfilter

B
numSVmethod

constant

Value

1

19

The transformed data matrix with the variables in rows and samples in columns
The model matrix being used to fit the data

The null model being compared when fitting the data

The number of surogate variables to estimate

A vector of probabilities (between 0 and 1, inclusive) that each gene is a control.
A value of 1 means the gene is certainly a control and a value of 0 means the
gene is certainly not a control.

" "

For empirical estimation of control probes use "irw". If control probes are
known use "supervised"

You may choose to filter to the vfilter most variable rows before performing the
analysis. vfilter must be NULL if method is "supervised"

The number of iterations of the irwsva algorithm to perform

If n.sv is NULL, sva will attempt to estimate the number of needed surrogate
variables. This should not be adapted by the user unless they are an expert.

The function takes log(dat + constant) before performing sva. By default con-
stant = 1, all values of dat + constant should be positive.

sv The estimated surrogate variables, one in each column

pprob.gam: A vector of the posterior probabilities each gene is affected by heterogeneity

pprob.b A vector of the posterior probabilities each gene is affected by mod

n.sv The number of significant surrogate variables

Examples

library(zebrafishRNASeq)

data(zfGenes)

filter = apply(zfGenes, 1, function(x) length(x[x>5])>=2)
filtered = zfGenes[filter,]

genes = rownames(filtered)[grep("*ENS", rownames(filtered))]
controls = grepl("*ERCC", rownames(filtered))

group = as.factor(rep(c(”"Ctl”, "Trt"), each=3))

dato = as.matrix(filtered)

mod1 = model.matrix(~group)

mod® = cbind(mod1[,1])

svseq = svaseq(dat@,mod1,mod@,n.sv=1)$sv
plot(svseq,pch=19,col="blue")

20 twostepsva.build

sva_network A function to adjust gene expression data before network inference

Description

This function corrects a gene expression matrix prior to network inference by returning the residuals
after regressing out the top principal components. The number of principal components to remove
can be determined using a permutation-based approach using the "num.sv" function with method =
llbell

Usage

sva_network(dat, n.pc)

Arguments
dat The uncorrected normalized gene expression data matrix with samples in rows
and genes in columns
n.pc The number of principal components to remove
Value

dat.adjusted Cleaned gene expression data matrix with the top prinicpal components removed

Examples

library(bladderbatch)
data(bladderdata)
dat <- bladderEset[1:5000,]

edata = exprs(dat)
mod = matrix(1, nrow = dim(dat)[2], ncol = 1)

n.pc = num.sv(edata, mod, method="be")
dat.adjusted = sva_network(t(edata), n.pc)

twostepsva.build A function for estimating surrogate variables with the two step ap-
proach of Leek and Storey 2007

Description

This function is the implementation of the two step approach for estimating surrogate variables pro-
posed by Leek and Storey 2007 PLoS Genetics. This function is primarily included for backwards
compatibility. Newer versions of the sva algorithm are available through sva, svaseq, with low
level functionality available through irwsva.build and ssva.

twostepsva.build 21

Usage

twostepsva.build(dat, mod, n.sv)

Arguments
dat The transformed data matrix with the variables in rows and samples in columns
mod The model matrix being used to fit the data
n.sv The number of surogate variables to estimate

Value

sv The estimated surrogate variables, one in each column
pprob.gam: A vector of the posterior probabilities each gene is affected by heterogeneity

pprob.b A vector of the posterior probabilities each gene is affected by mod (this is always null for
the two-step approach)

n.sv The number of significant surrogate variables

Examples

library(bladderbatch)
library(limma)
data(bladderdata)

dat <- bladderEset

pheno = pData(dat)
edata = exprs(dat)
mod = model.matrix(~as.factor(cancer), data=pheno)

n.sv = num.sv(edata,mod,method="1eek")
svatwostep <- twostepsva.build(edata,mod,n.sv)

Index

ComBat, 2, 15
ComBat_seq, 4

empirical.controls, 5,9, 15,17, 18

f.pvalue, 6
fstats, 7
fsva, 7,15

irwsva.build, 7,9, 11, 20
num.sv, 10

psva, 11

gsva, 12
read.degradation.matrix, 13
ssva, 7, 11,14, 20

sva, 7, 11,14, 15,15, 20
sva.check, 17

sva_network, 20
svaseq, 7, 11, 14, 15, 18, 20

twostepsva.build, 20

22

	ComBat
	ComBat_seq
	empirical.controls
	f.pvalue
	fstats
	fsva
	irwsva.build
	num.sv
	psva
	qsva
	read.degradation.matrix
	ssva
	sva
	sva.check
	svaseq
	sva_network
	twostepsva.build
	Index

