Package ‘topdownr’

January 16, 2026

Title Investigation of Fragmentation Conditions in Top-Down Proteomics
Version 1.33.0

Description The topdownr package allows automatic and systemic investigation
of fragment conditions. It creates Thermo Orbitrap Fusion Lumos method
files to test hundreds of fragmentation conditions. Additionally it
provides functions to analyse and process the generated MS data and
determine the best conditions to maximise overall fragment coverage.

Depends R (>= 3.5), methods, BiocGenerics (>= 0.20.0), ProtGenerics
(>=1.10.0), Biostrings (>= 2.42.1), S4Vectors (>= 0.12.2)

Imports grDevices, stats, tools, utils, Biobase, Matrix (>= 1.4-2),
MSnbase (>= 2.33.5), PSMatch (>= 1.11.4), ggplot2 (>=2.2.1),
mzR (>=2.27.5)

Suggests topdownrdata (>= 0.2), knitr, rmarkdown, ranger, testthat,
BiocStyle, xml2

License GPL (>=3)
URL https://codeberg.org/sgibb/topdownr/

BugReports https://codeberg.org/sgibb/topdownr/issues/
LazyData true

VignetteBuilder knitr

Roxygen list(markdown=TRUE)

RoxygenNote 7.3.2

biocViews ImmunoOncology, Infrastructure, Proteomics,
MassSpectrometry, Coverage

Encoding UTF-8

git_url https://git.bioconductor.org/packages/topdownr
git_branch devel

git_last_commit 3979e4f

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

https://codeberg.org/sgibb/topdownr/
https://codeberg.org/sgibb/topdownr/issues/

topdownr-package

Date/Publication 2026-01-15
Author Sebastian Gibb [aut, cre] (ORCID:

<https://orcid.org/0000-0001-7406-4443>),

Pavel Shliaha [aut] (ORCID: <https://orcid.org/0000-0003-3092-0724>),
Ole Ngrregaard Jensen [aut] (ORCID:

<https://orcid.org/0000-0003-1862-8528>)

Maintainer Sebastian Gibb <mail@sebastiangibb.de>

Contents
topdownr-package L. e 2
AbstractTopDownSet-class 3
createExperimentsFragmentOptimisation 8
createTngFusionMethFiles L L 11
expandMsl1Conditions 12
FragmentViews-class 13
NCBSet-class o e 15
readTopDownFiles 18
tds . . 21
topdownr-deprecated L. Lo 21
TopDownSet-class e 22
validMSISettings e e e 26
writeMethodXmls L 27

Index 30

topdownr-package Investigation of Fragmentation Conditions in Top-Down Proteomics
Description

The topdownr package allows automatic and systemic investigation of fragment conditions. It cre-
ates Thermo Orbitrap Fusion Lumos method files to test hundreds of fragmentation conditions.
Additionally it provides functions to analyse and process the generated MS data and determine the
best conditions to maximise overall fragment coverage.

Details

The usage of the topdownr package is demonstrated in the following vignettes:

* Generate .meth files prior data acquisition for the Thermo Orbitrap Fusion Lumos MS devise:

vignette("data-generation”, package="topdownr").

* How to analyse top-down fragmenation data: vignette(”analysis”, package="topdownr")

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>, Pavel Shliaha <pavels@bmb.sdu.dk>, Ole Ngrre-
gaard Jensen <jenseno@bmb. sdu.dk>

https://orcid.org/0000-0001-7406-4443
https://orcid.org/0000-0003-3092-0724
https://orcid.org/0000-0003-1862-8528

AbstractTopDownSet-class

References

https://codeberg.org/sgibb/topdownr/

See Also
Useful links:

* https://codeberg.org/sgibb/topdownr/
* Report bugs at https://codeberg.org/sgibb/topdownr/issues/

AbstractTopDownSet-class
The AbstractTopDownSet class

Description

Abstract/VIRTUAL parent class for TopDownSet and NCBSet to provide common interface.

Usage
S4 method for signature 'AbstractTopDownSet,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'AbstractTopDownSet,ANY,missing'
x[[i, 3, ...]1]

S4 replacement method for signature 'AbstractTopDownSet,ANY,missing'
x[[i, j, ...]]1 <- value

S4 method for signature 'AbstractTopDownSet'
x$name

S4 replacement method for signature 'AbstractTopDownSet'
x$name <- value

S4 method for signature 'AbstractTopDownSet'
assayData(object)

S4 method for signature 'AbstractTopDownSet'
colData(object)

S4 replacement method for signature 'AbstractTopDownSet'
colData(object, ...) <- value

S4 method for signature 'AbstractTopDownSet,AbstractTopDownSet'
combine(x, y)

https://codeberg.org/sgibb/topdownr/
https://codeberg.org/sgibb/topdownr/
https://codeberg.org/sgibb/topdownr/issues/

4 AbstractTopDownSet-class

S4 method for signature 'AbstractTopDownSet'
conditionData(object, ...)

S4 replacement method for signature 'AbstractTopDownSet'
conditionData(object, ...) <- value

S4 method for signature 'AbstractTopDownSet'
conditionNames(object)

S4 method for signature 'AbstractTopDownSet'
dim(x)

S4 method for signature 'AbstractTopDownSet'
dimnames(x)

S4 method for signature 'AbstractTopDownSet'
removeEmptyConditions(object)

S4 method for signature 'AbstractTopDownSet'
rowViews(object, ...)

S4 method for signature 'AbstractTopDownSet'
show(object)

S4 method for signature 'AbstractTopDownSet'
summary (object, what = c("rows"”, "columns"), ...)

S4 method for signature 'AbstractTopDownSet'
updateConditionNames(
object,
sampleColumns = c("Mz", "AgcTarget”, "EtdReagentTarget”, "EtdActivation”,
"CidActivation”, "HcdActivation”, "UvpdActivation"),
verbose = interactive()

S4 method for signature 'AbstractTopDownSet'
updateMedianInjectionTime(

object,
by = list(Mz = object$Mz, AgcTarget = object$AgcTarget)
)
Arguments
i,] numeric, logical or character, indices specifying elements to extract or re-
place.
drop logical, currently ignored.
value replacment value.

name character name of an (non)existing column in colData.

AbstractTopDownSet-class 5

object, x AbstractTopDownSet
y AbstractTopDownSet
what character, specifies whether "rows” or "columns” should be summarized.

sampleColumns character, column names of the colData() used to define a sample (technical

replicate). This is used to add the Sample column (used for easier aggregation,

etc.).
verbose logical, verbose output?
by list, grouping information.
arguments passed to internal/other methods.
Details

This class just provides a common interface. It is not intended for direct use by the user. Please see
TopDownSet for an example usage of its child class.

Value

This is an Abstract/VIRTUAL class to provide a common interface for TopDownSet and NCBSet. It
is not possible to create an AbstractTopDownSet object.

Methods

(by generic)

x[1i: Subset operator.

For i numeric, logical or character vectors or empty (missing) or NULL are supported.
Subsetting is done on the fragment/bond (row) level. character indices could be names
(e.g. c("al”, "b1", "c1", "c2", "c3")) or types (e.g. c("c", "x")) of the fragments for
TopDownSet objects, or names of the bonds (e.g. c("bond@@1")) for NCBSet objects.

j could be a numeric or logical vector and subsetting is done on the condition/run (column)
level.

x[[i: Subset operator.

i could be a numeric or logical vector and subsetting is done on the condition/run (column)
level.

“[[* (x=AbstractTopDownSet, i = ANY, j =missing) <- value: Setter for a column in
the colData slot.

The [[<- operator is used to add/replace a single column of the colData DataFrame.

$: Accessor for columns in the colData slot.

The $ simplifies the accession of a single column of the colData. It is identical to the [[
operator.

*$" (AbstractTopDownSet) <- value: Setter for a column in the colData slot.

The $<- operator is used to add/replace a single column of the colData DataFrame. It is
identical to the [[<- operator.

assayData(AbstractTopDownSet): Accessor for the assay slot.

Returns a Matrix::dgCMatrix that stores the intensity/coverage information of AbstractTop-
DownSet object.

AbstractTopDownSet-class

colData(AbstractTopDownSet): Accessor for the colData slot.

Returns a S4Vectors::DataFrame that stores metadata for the conditons/runs (columns) of the
AbstractTopDownSet object.

colData(AbstractTopDownSet) <- value: Setter for the colData slot.

Replaces metadata for the conditons/runs (columns) of the AbstractTopDownSet object.
combine(x = AbstractTopDownSet, y = AbstractTopDownSet): Combine AbstractTopDownSet
objects.

combine allows to combine two or more AbstractTopDownSet objects. Please note that it

uses the default sampleColumns to define technical replicates (see readTopDownFiles()).and

the default by argument to group ion injection times for the calculation of the median time

(see updateMedianInjectionTime()). Both could be modified after combine by calling
updateConditionNames() (with modified sampleColumns argument) and updateMedianInjectionTime()
(with modified by argument).

conditionData(AbstractTopDownSet): Accessor for the colData slot.

An alias for colData.

conditionData(AbstractTopDownSet) <- value: Setter for the colData slot.
An alias for colData<-.

conditionNames (AbstractTopDownSet): Accessor for condition names.

Returns a character with names for the conditions/runs (columns).

dim(AbstractTopDownSet): Accessor for dimensions.

Returns a numeric with number of fragments/bonds (rows) and conditions/runs (columns).

dimnames (AbstractTopDownSet): Accessor for dimension names.
Returns a 1ist with names for the fragments/bonds (rows) and for the conditions/runs (columns).

removeEmptyConditions(AbstractTopDownSet): Remove empty conditions/runs.

Removes conditions/runs (columns) without any intensity/coverage information from the Ab-
stractTopDownSet object. It returns a modified AbstractTopDownSet object.
rowViews(AbstractTopDownSet): Accessor for the rowViews slot.

Depending on the implementation it returns an FragmentViews object for TopDownSet objects

or an Biostrings::XStringViews object for NCBSet objects.

summary (AbstractTopDownSet): Summary statistics.

Returns amatrix with some statistics: number of fragments, total/min/first quartile/median/mean/third
quartile/maximum of intensity values.

updateConditionNames(AbstractTopDownSet): Update condition names.

Updates condition names based on sampleColumns from conditionData/colData. Columns
with just identical entries are ignored. This method will create/update the colData(object) $Sample
column that identifies technical replicates and could be used in other methods.

updateMedianInjectionTime (AbstractTopDownSet): Update median ion injection times.

Recalculates median ion injection times by a user given grouping variable (default: Mz, Agc-
Target). This is useful if you acquire new data and the ion injection time differs across
the runs. Use the by argument to provide a list/data.frame of grouping variables, e.g.
by=colData(object)[, c("Mz", "AgcTarget"”, "File")].

AbstractTopDownSet-class 7

Slots
rowViews Biostrings::XStringViews, information about fragments/bonds (name, type, sequence,
mass, charge), see Biostrings::XStringViews and FragmentViews for details.

colData S4Vectors::DataFrame, information about the MS2 experiments and the fragmentation
conditions.

assay Matrix::dgCMatrix, intensity/coverage values of the fragments/bonds. The rows correspond
to the fragments/bonds and the columns to the condition/run. It just stores values that are
different from zero.

files character, files that were imported.

processing character, log messages.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

» TopDownSet and NCBSet which both implement/use this interface. These manual pages also
provide some example code.

* FragmentViews (and Biostrings::XStringViews) for the row view interface.

* Matrix::dgCMatrix for technical details about the intensity/coverage storage.

Examples

Because AbstractTopDownSet is a VIRTUAL class we could not create any

object of it. Here we demonstrate the usage with an TopDownSet that

implements the AbstractTopDownSet interface. See ~?"TopDownSet-class”™ for
more details an further examples.

Example data
data(tds, package="topdownr")

tds

head (summary (tds))
Accessing slots
rowViews(tds)
colData(tds)
head(assayData(tds))
Accessing colData
tds$Mz
tds$FilterString

Subsetting

First 100 fragments
tds[1:100]

createExperimentsFragmentOptimisation

All c fragments

tds["c"]
Just ¢ 152
tds["c152"]

Condition 1 to 10

tds[, 1:10]

createExperimentsFragmentOptimisation

Create fragment optimisation experiment

Description

This function is used to create a tree-like 1ist of all combinations of a user-given set of MS1 and
TMS?2 settings for an fragment optimisation experiment. The list could be written to an Orbitrap
Fusion Lumos method xml file using writeMethodXmls().

Usage

createExperimentsFragmentOptimisation(

ms1,

groupBy = c("AgcTarget”, "replication”),
nMs2perMs1 = 10,
scanDuration = 0,
replications = 2,
randomise = TRUE

Arguments

ms1

groupBy

nMs2perMs1

scanDuration

replications

randomise

data.frame, MS1 settings.
further named arguments with data. frames containing the TMS?2 settings.

character, group experiments by columns in the TMS2 data.frames. The
columns have to be present in all data. frames. Each group will be written to
its own XML file.

integer, how many TMS2 scans should be run after a MS1 scan?

double, if greater than zero (e.g. scanDuration=0.5) the Start/EndTimeMin
are overwritten with a duration of scanDuration. If scanDuration is zero
(default) Start/EndTimeMin are not overwritten.

integer, number of replications.

logical, should the TMS2 scan settings randomised?

createExperimentsFragmentOptimisation

Value

list, able to be written via xm12: :as_xml_document ()

See Also

writeMethodXmls(), expandMsiConditions(), expandTms2Conditions()

Examples

build experiments within R

ms1 <- expandMs1Conditions(
FirstMass=400,
LastMass=1200,
Microscans=as.integer(10)

targetMz <- cbind(mz=c(560.6, 700.5, 933.7), z=rep(1, 3))
common <- list(

OrbitrapResolution="R120K",

IsolationWindow=1,

MaxITTimeInMS=200,

Microscans=as.integer(40),

AgcTarget=c(1e5, 5e5, 1e6)

cid <- expandTms2Conditions(
MassList=targetMz,
common,
ActivationType="CID",
CIDCollisionEnergy=seq(7, 35, 7)

hcd <- expandTms2Conditions(
MassList=targetMz,
common,
ActivationType="HCD",
HCDCollisionEnergy=seq(7, 35, 7)

etd <- expandTms2Conditions(
MassList=targetMz,
common,
ActivationType="ETD",
ETDReactionTime=as.double(1:2)

)

etcid <- expandTms2Conditions(
MassList=targetMz,
common,
ActivationType="ETD",
ETDReactionTime=as.double(1:2),
ETDSupplementalActivation="ETciD",
ETDSupplementalActivationEnergy=as.double(1:2)

)

uvpd <- expandTms2Conditions(

createExperimentsFragmentOptimisation

MassList=targetMz,
common,
ActivationType="UVPD"

exps <- createExperimentsFragmentOptimisation(
ms1=ms1, cid, hcd, etd, etcid, uvpd,
groupBy=c("AgcTarget"”, "replication"), nMs2perMs1=1@, scanDuration=0.5,
replications=2, randomise=TRUE

use different settings for CID
cid560 <- expandTms2Conditions(
MassList=cbind(560.6, 1),
common,
ActivationType="CID",
CIDCollisionEnergy=seq(7, 21, 7)
)
cid700 <- expandTms2Conditions(
MassList=cbind(700.5, 1),
common,
ActivationType="CID",
CIDCollisionEnergy=seq(21, 35, 7)

exps <- createExperimentsFragmentOptimisation(
ms1=ms1, cid560, cid700,
groupBy=c("AgcTarget"”, "replication”), nMs2perMs1=10, scanDuration=0.5,
replications=2, randomise=TRUE

use a CSV (or excel) file as input

myCsvContent <- "

ActivationType, ETDReactionTime, UVPDActivationTime

UVPD, , 1000

ETD, 1000,

myCsvSettings <- read.csv(text=myCsvContent, stringsAsFactors=FALSE)
myCsvSettings

ActivationType ETDReactionTime UVPDActivationTime

#1 UVPD NA 1000

2 ETD 1000 NA

exps <- createExperimentsFragmentOptimisation(
ms1 = data.frame(FirstMass=500, LastMass=1000),
TMS2
myCsvSettings,
other arguments
groupBy="ActivationType"

createTngFusionMethFiles 11

createTngFusionMethFiles
Windows specific functions.

Description

The functions runXmlMethodChanger and runScanHeadsman call XmlMethodChanger.exe and
ScanHeadsman. exe with the corresponding arguments. This only work on Windows (maybe on
Linux + wine as well but that was never tested).

Usage
createTngFusionMethFiles(
template,
xml = list.files(pattern = ".*x\\.xml$"),
executable = "XmlMethodChanger.exe",
verbose = interactive()
)
runXmlMethodChanger (
template,
xml = list.files(pattern = ".*x\\.xml$"),
executable = "XmlMethodChanger.exe",
verbose = interactive()
)
runScanHeadsman(path = ".", executable = "ScanHeadsman.exe")
Arguments
template character, path to template .meth file.
xml character, vector of path to . xml files.
executable character, path to the XmlMethodChanger.exe or ScanHeadsman.exe exe-
cutable.
verbose logical, if TRUE a progress bar is shown.
path character, path to the directory containing the . raw files.
Details

runXmlMethodChanger applies ‘XmlMethodChanger.exe’ on all given XML files generated with
writeMethodXmls() to create .meth files from a template.

runScanHeadsman calls ScanHeadsman . exe on a given directory containing . raw files. ScanHeadsman . exe
extracts the method and scan header data into . experiments.csv and . txt files, respectively.

Value

Nothing. Used for its side effects.

12 expandMs | Conditions

References

XmlMethodChanger source code: https://github.com/thermofisherlsms/meth-modifications/

ScanHeadsman source code: https://bitbucket.org/caetera/scanheadsman

See Also
writeMethodXmls()

Examples

Not run:

runXmlMethodChanger (templateMeth="TMS2IndependentTemplate24@Extended.meth”,
modificationXml=1list.files(pattern="*method.*\\.xml$"),
executable="..\\XmlMethodChanger.exe")

End(Not run)
Not run:

runScanHeadsman("raw”, executable="..\\ScanHeadsman.exe")

End(Not run)

expandMsiConditions Expand MS Conditions

Description

Create a data.frame of all possible combinations of the given arguments. It ensures that just
arguments are applied that yield a valid MethodModification.xml file.

Usage

expandMs1Conditions(..., family = "Calcium", version = "3.2")

expandTms2Conditions(
ActivationType = c("CID"”, "HCD", "ETD", "UVPD"),

L

MasslList = NULL,

family = "Calcium”,
version = "3.2"
)
Arguments
further named arguments, used to create the combination of conditions.
family character, currently just Calcium is supported
version character, currently 3.1, 3.2 (default), 3.3 are supported

ActivationType character, ActivationType for TMS2, either CID, HCD, ETD, or UVPD.

FragmentViews-class 13

MassList matrix, 2 columns (mass, z) for targeted mass list, or NULL (default) to not
overwrite targeted mass.

Value

data. frame with all possible combinations of conditions/settings.

See Also

validMs1Settings()
validTms2Settings(), expand.grid()

Examples

expandMs1Conditions(FirstMass=100, LastMass=400)
expandTms2Conditions(

ActivationType="CID",

OrbitrapResolution="R120K",

IsolationWindow=1,

MaxITTimeInMS=200,

Microscans=as.integer(40),

AgcTarget=c(1e5, 5e5, 1eb6),

CIDCollisionEnergy=c(NA, seq(7, 35, 7)),

MassList=cbind(mz=c(560.6, 700.5, 933.7), z=rep(1, 3))

FragmentViews-class The FragmentViews class

Description

The FragmentViews class is a basic container for storing a set of views (start/end locations) on the
same peptides/protein sequence. Additionally it keeps information about mass, type and charge of
the fragments.

Usage

FragmentViews(
sequence,
mass,
type,
z =1L,
start = NULL,
end = NULL,
width = NULL,
names = NULL,

metadata = list()

14

FragmentViews-class

S4 method for signature 'FragmentViews,FragmentViews'

combine(x, y)

S4 method for signature 'FragmentViews'

mz(object,

S4 method for signature 'FragmentViews'

show(object)

Arguments

sequence
mass
type

z

start

end

width

names
metadata

object, x,y

Details

character/ Biostrings:: AAString, complete protein/peptide sequence.

double, mass of the fragments, same length as start/end/width.

character, type of the fragments, same length as start/end/width‘.

integer, charge of the fragments, length one or same length as start/end/width*.

integer, start positions of the fragments. At least two of start/end/width* has
to be given.

integer, end positions of the fragments. At least two of start/end/width‘ has
to be given.

integer, width positions of the fragments. At least two of start/end/width*
has to be given.

character, names of the fragments, same length as start/end/width*.
list, metadata like modifications.
FragmentViews

arguments passed to internal/other methods.

FragmentViews extends Biostrings::XStringViews. In short it combines an IRanges::IRanges object
to store start/end location on a sequence, an Biostrings::AAString object.

Value

An FragmentViews object.

Functions

* FragmentViews(): Constructor

In general it is not necessary to call the constructor manually. See readTopDownFiles()

instead.

Coercion

as(object, "data.frame"): Coerce an FragmentViews object into a data. frame.

NCBSet-class 15

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

Biostrings:: XStringViews

Examples

Constructor

fv <- FragmentViews("ACE", start=1, width=1:3, names=paste@("b"”, 1:3),
mass=c(72.04439, 232.07504, 361.11763),
type="b", z=1)

fv

Coercion to data.frame
as(fv, "data.frame")
as(fv, "data.frame")

NCBSet-class The NCBSet class

Description

The NCBSet class is a container for a top-down proteomics experiment similar to the TopDownSet
but instead of intensity values it just stores the information if a bond is covered by a N-terminal
(encoded as 1), a C-terminal (encoded as 2) and/or bidirectional fragments (encoded as 3).

Usage

S4 method for signature 'NCBSet'
bestConditions(

object,

n = ncol(object),

minN = OL,

maximise = c(”"fragments”, "bonds"),

S4 method for signature 'NCBSet'
fragmentationMap(
object,
nCombinations = 10,
cumCoverage = TRUE,
maximise = c(”"fragments”, "bonds"),
labels = colnames(object),
alphalntensity = TRUE,

16 NCBSet-class

)

S4 method for signature 'NCBSet'
show(object)

S4 method for signature 'NCBSet'

summary(object, what = c("conditions”, "bonds"), ...)
Arguments
object NCBSet
n integer, max number of combinations/iterations.
minN integer, stop if there are less than minN additional fragments
maximise character, optimisation targeting for the highest number of "fragments” (de-

fault) or "bonds".
nCombinations integer, number of combinations to show (0 to avoid plotting them at all).
cumCoverage logical, if TRUE (default) cuamulative coverage of combinations is shown.
labels character, overwrite x-axis labels.
alphalntensity logical, if TRUE (default) the alpha level of the color is used to show the
colData(object)$AssignedIntensity. If FALSE the alpha is set to 1.
what character, specifies whether "conditions” (columns; default) or "bonds”
(rows) should be summarized.

arguments passed to internal/other methods. added.

Value

An NCBSet object.

Methods (by generic)

¢ bestConditions(NCBSet): Best combination of conditions.
Finds the best combination of conditions for highest coverage of fragments or bonds. If there
are two (or more conditions) that would add the same number of fragments/bonds the one with
the highest assigned intensity is used. Use n to limit the number of iterations and combina-
tions that should be returned. If minN is set at least minN fragments have to be added to the
combinations. The function returns a 7-column matrix. The first column contains the index
(Index) of the condition (column number). The next columns contain the newly added num-
ber of fragments or bonds (FragmentsAddedToCombination, BondsAddedToCombination),
the fragments or bonds in the condition (FragmentsInCondition, BondsInCondition), and
the cumulative coverage fragments or bonds (FragmentCoverage, BondCoverage).

* fragmentationMap(NCBSet): Plot fragmentation map.
Plots a fragmentation map of the Protein. Use nCombinations to add another plot with
nCombinations combined conditions. If cumCoverage is TRUE (default) these combinations
increase the coverage cumulatively.

* summary(NCBSet): Summary statistics.
Returns amatrix with some statistics: number of fragments, total/min/first quartile/median/mean/third
quartile/maximum of intensity values.

NCBSet-class 17

Slots

rowViews Biostrings::XStringViews, information about bonds (name, start, end, width, sequence),
see Biostrings::XStringViews for details.

colData S4Vectors::DataFrame, information about the MS2 experiments and the fragmentation
conditions.

assay Matrix::dgCMatrix, coverage values of the bonds. The rows correspond to the bonds and
the columns to the condition/run. It just stores values that are different from zero. If a bond is
covered by an N-terminal fragment its encoded with 1, by an C-terminal fragmentl with 2 and
by both fragment types/bidirectional by 3 respectively.

files character, files that were imported.

processing character, log messages.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

* An NCBSet is generated from an TopDownSet object.
* Biostrings::XStringViews for the row view interface.

* Matrix::dgCMatrix for technical details about the coverage storage.

Examples

Example data
data(tds, package="topdownr")

Aggregate technical replicates
tds <- aggregate(tds)

Coercion into an NCBSet object
ncb <- as(tds, "NCBSet")

nch

head (summary(ncb))
Accessing slots
rowViews(ncb)
colData(ncb)

head(assayData(ncb))

Accessing colData
ncb$Mz

Subsetting

First 100 bonds
ncb[1:100]

18

Just bond 152
ncb["bond152"]

Condition 1 to 10
ncb[, 1:10]

Plot fragmentation map
fragmentationMap(ncb)

readTopDownFiles

readTopDownFiles Read top-down files.

Description

It creates an TopDownSet object and is its only constructor.

Usage
readTopDownFiles(
path,
pattern = " .x",

type = C("a”, "b”, ch, ”X”, nyn, "Z”),

modifications = c("Carbamidomethyl”, "Acetyl"”, "Met-loss"),

customModifications = data.frame(),
adducts = data.frame(),
neutrallLoss = PSMatch::defaultNeutrallLoss(),

sequenceOrder = c("original”, "random”, "inverse"),
tolerance = 5e-06,

redundantIonMatch = c("remove"”, "closest”),
redundantFragmentMatch = c("remove”, "closest"”),

dropNonInformativeColumns = TRUE,

sampleColumns = c("Mz", "AgcTarget”, "EtdReagentTarget”, "EtdActivation”,

"CidActivation”, "HcdActivation”, "UvpdActivation"),
conditions = "ScanDescription”,
verbose = interactive()

)
Arguments
path character, path to directory that contains the top-down files.
pattern character, a filename pattern, the default . * means all files.
type character, type of fragments, currently a-c and x-z are supported, see PSMatch: : calculateFragments(
for details.
modifications character, unimod names of modifications that should be applied. Currenlty

just Acetyl (Unimod:1 but just protein N-term), Carbamidomethyl (Unimod:4)
and Met-loss (Unimod:765) are supported. Met-loss removes M (if followed by

readTopDownFiles 19

A,C,G,P S, T,or V; (see also http://www.unimod.org/modifications_view.php?editid1=1,
http://www.unimod.org/modifications_view.php?editid1=4, and http://www.unimod.org/modifications_vi
for details)). Use NULL to disable all modifications.

customModifications
data.frame, with 4 columns, namely: mass, name, location, variable, see de-
tails section.

adducts data.frame, with 3 columns, namely: mass, name, to, see details section.

neutralloss list, neutral loss that should be applied, see PSMatch: : calculateFragments()
and PSMatch: :defaultNeutrallLoss() for details.

sequenceOrder character, order of the sequence before fragment calculation and matching is
done. "original” doesn’t change anything. "inverse" reverse the sequence
and "random” arranges the amino acid sequence at random.

tolerance double, tolerance in ppm that is used to match the theoretical fragments with
the observed ones.
redundantIonMatch

character, a mz could be matched to one, two or more fragments. If it is
matched against more than one fragment the match could be "remove”d or the
match to the "closest” fragment could be chosen.

redundantFragmentMatch
character, one or more mz could be matched to the same fragment, these
matches could be "remove"”d or the match to the "closest"” mz is chosen.
dropNonInformativeColumns
logical, should columns with just one identical value across all runs be removed?

sampleColumns character, column names of the colData() used to define a sample (technical
replicate). This is used to add the Sample column (used for easier aggregation,
etc.).

conditions character/numeric, one of:

e "ScanDescription” (default): create condition IDs based on the given
"Scan Description" parameter (set automatically by createExperimentsFragmentOptimisation()

e "FilterString": create condition IDs based on mass labels in the Filter-
String column (included for backward-compatibilty, used in writeMethodXmls()
prior version 1.5.2 in Dec 2018).

* A single numeric value giving the number of conditions.

verbose logical, verbose output?

Details

readTopDownFiles reads and processes all top-down files, namely:

» .fasta (protein sequence)
e .mzML (spectra)
* .experiments.csv (method/fragmentation conditions)

e . txt (scan header information)

20 readTopDownFiles

customModifications: additional to the provided unimod modifications available through the

modifications argument customModifications allow to apply user-definied modifications to

the output of PSMatch: :calculateFragments(). The customModifications argument takes a

data. frame with the mass to add, the name of the modification, the location (could be the position

of the amino acid or "N-term"/"C-term"), whether the modification is always seen (variable=FALSE)

or both, the modified and unmodified amino acid are present (variable=TRUE), e.g. for Activation

(which is available viamodification="Acetyl"”)data.frame(mass=42.010565, name="Acetyl"”,
location="N-term”, variable=FALSE) or variable one (that could be present or not): data.frame(mass=365.132,
name="Custom”, location=10, variable=TRUE)

If the customModifications data. frame contains multiple columns the modifications are applied
from row one to the last row one each time.

adducts: Thermo’s Xtract allows some mistakes in deisotoping, mostly it allows +/- C13-C12 and
+/- H+. The adducts argument takes a data.frame with the mass to add, the name that should
assign to these new fragments and an information to whom the modification should be applied, e.g.
for H+ on z, data. frame(mass=1.008, name="zpH", to="z").

Please note: The adducts are added to the output of PSMatch: :calculateFragments(). That has
some limitations, e.g. neutral loss calculation could not be done in topdownr-package. If neutral loss
should be applied on adducts you have to create additional rows, e.g.: data. frame(mass=c(1.008,
1.008), name=c("cpH", "cpH_"), to=c("c", "c_")).

Value

A TopDownSet object.

See Also

PSMatch: :calculateFragments(), PSMatch: :defaultNeutrallLoss()

Examples

if (require("topdownrdata”)) {

add H+ to z and no neutral loss of water

tds <- readTopDownFiles(
topdownrdata: : topDownDataPath("myoglobin™),
Use an artifical pattern to load just the fasta
file and files from m/z == 1211, ETD reagent
target 1e6 and first replicate to keep runtime
of the example short
pattern=".*fasta.gz$[1211_.*1e6_1",
adducts=data.frame(mass=1.008, name="zpH", to="z"),
neutrallLoss=PSMatch: :defaultNeutralloss(

disableWaterLoss=c("Cterm”, "D", "E", "S", "T")),

tolerance=25e-6

tds 21

tds TopDownSet Example Data

Description

An example data set for topdownr. It is just a subset of the myoglobin dataset available in topdownrdata::topdownrdata-
package.

Usage

tds

Format

A TopDownSet with 14901 fragments (1949 rows, 351 columns).

Details

It was created as follows:

tds <- readTopDownFiles(
topdownrdata: : topDownDataPath("myoglobin”),
Use an artifical pattern to load just the fasta
file and files from m/z == 1211, ETD reagent
target 1e6 and first replicate to keep runtime
of the example short
pattern=".xfasta.gz$|1211_.*1e6_1",
adducts=data.frame(mass=1.008, name="zpH", to="z"),
neutrallLoss=PSMatch: :defaultNeutrallLoss(

disableWaterLoss=c("Cterm”, "D", "E", "S", "T")),

tolerance=25e-6)

Source

Subset taken from the topdownrdata::topdownrdata-package package.

topdownr-deprecated Deprecated functions in topdownr

Description

These functions are provided for compatibility with older versions of ‘MyPkg’ only, and will be
defunct at the next release.

22 TopDownSet-class

Details

The following functions are deprecated and will be made defunct; use the replacement indicated
below:

e defaultMs1Settings: expandMsiConditions() in combination with createExperimentsFragmentOptimisation(

e defaultMs2Settings: expandTms2Conditions() in combination with createExperimentsFragmentOptimisation

TopDownSet-class The TopDownSet class

Description

The TopDownSet class is a container for a whole top-down proteomics experiment.

Usage

S4 method for signature 'TopDownSet'
aggregate(x, by = x$Sample, ...)

S4 method for signature 'TopDownSet,TopDownSet'
combine(x, y)

S4 method for signature 'TopDownSet'
filterCv(object, threshold, by = object$Sample, ...)

S4 method for signature 'TopDownSet'

filterInjectionTime(
object,
maxDeviation = log2(3),
keepTopN = 2,

by = object$Sample,

)

S4 method for signature 'TopDownSet'
filterIntensity(object, threshold, relative = TRUE, ...)

S4 method for signature 'TopDownSet'
filterNonReplicatedFragments(object, minN = 2, by = object$Sample, ...)

S4 method for signature 'TopDownSet'
normalize(object, method = "TIC", ...)

S4 method for signature 'TopDownSet,missing'
plot(x, y, ..., verbose = interactive())

TopDownSet-class 23

S4 method for signature 'TopDownSet'
show(object)

S4 method for signature 'TopDownSet'

summary(object, what = c("conditions”, "fragments"), ...)
Arguments

X, object TopDownSet

by list, grouping variable, in general it refers to technical

y missing, not used.

threshold double, threshold variable.

maxDeviation double, maximal allowed deviation in the 1og2 injection time in ms in compar-
ison to the median ion injection time.

keepTopN integer, how many technical replicates should be kept?

relative logical, if relative is TRUE all fragments with intensity below threshold *
max(intensity) per fragment are removed, otherwise all fragments below threshold
are removed.

minN numeric, if less than minN of a fragment are found across technical replicates it
is removed.

method character, normalisation method, currently just "TIC" for Total Jon Current
normalisation of the scans/conditions (column-wise normalisation) is supported.

verbose logical, verbose output?

what character, specifies whether "conditions” (columns; default) or "fragments”

(rows) should be summarized.

arguments passed to internal/other methods. replicates (that’s why the default is
the "Sample"” column in colData).

Details
See vignette("”analysis"”, package="topdownr"”) for a detailed example how to work with
TopDownSet objects.

Value

An TopDownSet object.

Methods (by generic)

* aggregate(TopDownSet): Aggregate conditions/runs.

Aggregates conditions/runs (columns) in an TopDownSet object by a user-given value (default
is the "Sample” column of colData which has the same value for technical replicates). It
combines intensity values and numeric metadata of the grouped conditions/runs (columns) by
mean and returns a reduced TopDownSet object.

24

Slots

TopDownSet-class

combine(x = TopDownSet, y = TopDownSet): Combine TopDownSet objects.

combine allows to combine two or more TopDownSet objects. Please note that it uses the
default sampleColumns to define technical replicates (see readTopDownFiles()).and the de-
fault by argument to group ion injection times for the calculation of the median time (see

updateMedianInjectionTime()). Both could be modified after combine by calling updateConditionNames()

(with modified sampleColumns argument) and updateMedianInjectionTime() (with mod-
ified by argument).

filterCv(TopDownSet): Filter by CV.

Filtering is done by coefficient of variation across technical replicates (defined by the by argu-
ment). All fragments below a given threshold are removed. The threshold is the maximal
allowed CV in percent (sd/mean * 100 < threshold).
filterInjectionTime(TopDownSet): Filter by ion injection time.

Filtering is done by maximal allowed deviation and just the technical keepTopN replicates
with the lowest deviation from the median ion injection time are kept.
filterIntensity(TopDownSet): Filter by intensity.

Filtering is done by removing all fragments that are below a given (absolute/relative) intensity
threshold.

filterNonReplicatedFragments(TopDownSet): Filter by non-replicated fragments.
Filtering is done by removing all fragments that don’t replicate across technical replicates.
normalize(TopDownSet): Normalise.

Applies Total /on Current normalisation to a TopDownSet object. The normalisation ist done
per scans/conditions (column-wise normalisation).

plot(x = TopDownSet, y = missing): Plotting.

Plots an TopDownSet object. The function returns a 1ist of ggplot objects (one item per

condtion). Use pdf or another non-interactive device to plot the list of ggplot objects (see
example section).

summary (TopDownSet): Summary statistics.

Returns amatrix with some statistics: number of fragments, total/min/first quartile/median/mean/third

quartile/maximum of intensity values.

rowViews FragmentViews, information about fragments (name, type, sequence, mass, charge), see

FragmentViews for details.

colData S4Vectors::DataFrame, information about the MS2 experiments and the fragmentation

conditions.

assay Matrix::dgCMatrix, intensity values of the fragments. The rows correspond to the fragments

and the columns to the condition/run. It just stores values that are different from zero.

files character, files that were imported.

tolerance double, tolerance in ppm that were used for matching the experimental mz values to

the theoretical fragments.

redundantMatching character, matching strategies for redundant ion/fragment matches. See

redundantIonMatch and redundantFragmentMatch in readTopDownFiles() for details.

processing character, log messages.

TopDownSet-class 25

Coercion

‘as(object, "MSnSet"): Coerce an TopDownSet object into an MSnbase::MSnSet object.
‘as(object, "NCBSet"): Coerce an TopDownSet object into an NCBSet object.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

» FragmentViews for the row view interface.
e Matrix::dgCMatrix for technical details about the intensity storage.

* ?vignette(”analysis”, package="topdownr") for a full documented example of an anal-
ysis using topdownr.

Examples

Example data
data(tds, package="topdownr")

tds
head(summary(tds))

Accessing slots
rowViews(tds)
colData(tds)
head(assayData(tds))

Accessing colData
tds$Mz
tds$FilterString

Subsetting

First 100 fragments
tds[1:100]

All c fragments
tds["c"]

Just c 152
tds["c152"]

Condition 1 to 10
tds[, 1:10]

Filtering
Filter all intensities that don't have at least 10 % of the highest
intensity per fragment.

26 validMs1Settings

tds <- filterIntensity(tds, threshold=0.1)

Filter all conditions with a CV above 30 % (across technical replicates)
tds <- filterCv(tds, threshold=30)

Filter all conditions with a large deviation in injection time
tds <- filterInjectionTime(tds, maxDeviation=log2(3), keepTopN=2)

Filter all conditions where fragments don't replicate
tds <- filterNonReplicatedFragments(tds)

Normalise by TIC
tds <- normalize(tds)

Aggregate technical replicates
tds <- aggregate(tds)

head(summary(tds))

Coercion
as(tds, "NCBSet")

if (require("MSnbase")) {
as(tds, "MSnSet")
3
Not run:
plot a single condition
pseudo-code (replace topdownset with your object)
plot(topdownset[,1])

plot the whole object

pdf ("topdown-spectra.pdf”, paper="a4r"”, width=12)

pseudo-code (replace topdownset with your object)
plot (topdownset)

dev.off()

End(Not run)

validMs1Settings List valid MS settings

Description

These functions list settings for MS1 or TMS2 that are supported by Thermo’s XmIMethodChanger.

Usage

validMs1Settings(family = "Calcium”, version = "3.2")

validTms2Settings(

writeMethodXmls 27

type - C(”All”, ”TMSZ”, ”ETD”’ HCIDH’ HHCDH, ”UVPD"),

family = "Calcium”,
version = "3.2"
)
Arguments
family character, currently just Calcium is supported
version character, currently 3.1, 3.2 (default), 3.3 are supported
type character, type of activation.
Value

matrix with three columns:

* name: element name
* class: expected R class of the value
* type: MS/ActivationType, e.g. MS1/TMS2/ETD/...

Examples

validMs1Settings()
validTms2Settings()
validTms2Settings("TMS2")
validTms2Settings("ETD")
validTms2Settings(c("TMS2", "ETD"))

writeMethodXmls Create Orbitrap Fusion Lumos method.xml files.

Description

This function is used to create Orbitrap Fusion Lumos method files from a tree-like 1ist experiment
generated by e.g. createExperimentsFragmentOptimisation().

Usage
writeMethodXmls(exps, pattern = "method-%s.xml"”, verbose = interactive())
Arguments
exps list, generated by e.g. createExperimentsFragmentOptimisation()
pattern character, file name pattern for the method.xml files.

verbose logical, verbose output?

28 writeMethodXmls

Details

* exps: anamed tree-like 1ist object generated by e.g. createExperimentsFragmentOptimisation().
Its names are used as filename.

* pattern: The file name pattern used to name different method files. It must contain a "%s"
that is replaced by the conditions defined in groupBy.

DEFUNCT options:

* ms1Settings: A 1list of MS1 settings. This has to be a named 1ist. Valid MS1 settings are:
c("FirstMass"”, "LastMass"”, "Microscans”, "MaxITTimeInMS", "AgcTarget")

* ms2Settings: A list of MS2 settings. This has to be a named 1ist. Valid MS2 settings are:
c("ActivationType"”, "IsolationWindow”, "EnableMultiplexIons”, "EnableMSXIds",
"MaxNoOfMultiplexIons”, "OrbitrapResolution”, "AgcTarget”, "MinAgcTarget”, "MaxITTimeInMS",
"Microscans”, "ETDReactionTime", "ETDReagentTarget"”, "MaximumETDReagentInjectionTime",
"UselnternalCalibratedETD", "ETDSupplementalActivationEnergy”, "ETDSupplementalActivation”)

* groupBy: The groupBy parameter is used to split methods into different files. Valid entries
are all settings that could be used in ms2Settings and "replication”.

* massLabeling: The Orbitrap Fusion devices seems not to respect the start and end times of
the runs given in the method.xml files. That’s why it is nearly impossible to identify the run
with its conditions based on the timings. If massLabeling is TRUE (default) the mass values
given in mz are rounded to the first decimal place and the second to fourth decimal place is
used as numeric identifier.

Author(s)
Sebastian Gibb <mail@sebastiangibb.de>, Pavel V. Shliaha <pavels@bmb.sdu.dk>

See Also

createExperimentsFragmentOptimisation()

Examples

ms1 <- expandMs1Conditions(FirstMass=400, LastMass=1200, Microscans=as.integer(10))

targetMz <- cbind(mz=c(560.6, 700.5, 933.7), z=rep(1, 3))
common <- list(

OrbitrapResolution="R120K",

IsolationWindow=1,

MaxITTimeInMS=200,

Microscans=as.integer(40),

AgcTarget=c(1e5, 5e5, 1e6)

cid <- expandTms2Conditions(
MassList=targetMz,
common,
ActivationType="CID",
CIDCollisionEnergy=seq(7, 35, 7)
)

hcd <- expandTms2Conditions(

writeMethodXmls

MassList=targetMz,

common,

ActivationType="HCD",
HCDCollisionEnergy=seq(7, 35, 7)

etd <- expandTms2Conditions(
MassList=targetMz,
common,
ActivationType="ETD",
ETDReagentTarget=c(1e6, 5e6, 1e7),
ETDReactionTime=c(2.5, 5, 10, 15, 30, 50),
ETDSupplementalActivation=c(”None"”, "ETciD"”, "EThcD"),
ETDSupplementalActivationEnergy=seq(7, 35, 7)

)

exps <- createExperimentsFragmentOptimisation(msi=ms1, cid, hcd, etd,
groupBy=c("AgcTarget"”, "replication"), nMs2perMs1=10, scanDuration=0.5,
replications=2, randomise=TRUE

)
writeMethodXmls(exps=exps)

29

Index

x datasets coerce, TopDownSet,NCBSet-method
tds, 21 (TopDownSet-class), 22
* deprecated colData (AbstractTopDownSet-class), 3
topdownr-deprecated, 21 colData(), 5, 19
* package colData,AbstractTopDownSet-method
topdownr-deprecated, 21 (AbstractTopDownSet-class), 3
topdownr-package, 2 colData<- (AbstractTopDownSet-class), 3
[,AbstractTopDownSet,ANY, ANY, ANY-method colData<-,AbstractTopDownSet-method
(AbstractTopDownSet-class), 3 (AbstractTopDownSet-class), 3
[[,AbstractTopDownSet,ANY,missing,-method combine (AbstractTopDownSet-class), 3
(AbstractTopDownSet-class), 3 combine,AbstractTopDownSet,AbstractTopDownSet-method
[[,AbstractTopDownSet,ANY,missing-method (AbstractTopDownSet-class), 3
(AbstractTopDownSet-class), 3 combine,FragmentViews,FragmentViews-method
[[<-,AbstractTopDownSet,ANY,missing, -method (FragmentViews-class), 13
(AbstractTopDownSet-class), 3 combine,FragmentViews-method
[[<-,AbstractTopDownSet,ANY,missing-method (FragmentViews-class), 13
(AbstractTopDownSet-class), 3 combine, TopDownSet, TopDownSet-method
$,AbstractTopDownSet-method (TopDownSet-class), 22
(AbstractTopDownSet-class), 3 conditionData
$<-,AbstractTopDownSet-method (AbstractTopDownSet-class), 3
(AbstractTopDownSet-class), 3 conditionData,AbstractTopDownSet-method
(AbstractTopDownSet-class), 3
conditionData<-

AbstractTopDownSet, 5, 6
AbstractTopDownSet-class, 3
aggregate, TopDownSet-method
(TopDownSet-class), 22
assayData,AbstractTopDownSet-method
(AbstractTopDownSet-class), 3

(AbstractTopDownSet-class), 3
conditionData<-,AbstractTopDownSet-method

(AbstractTopDownSet-class), 3
conditionNames

(AbstractTopDownSet-class), 3
conditionNames,AbstractTopDownSet-method
. (AbstractTopDownSet-class), 3
bestConditions (NCBSet-class), 15 createExperimentsFragmentOptimisation,
bestConditions,NCBSet-method 8

(NCBSet-class), 15 createExperimentsFragmentOptimisation(),
Biostrings: :AAString, 14 19,22,27, 28

Biostrings: :XStringViews, 6, 7, 14, 15, 17 createTngFusionMethFiles, 11

coerce,FragmentViews,data. frame-method dim,AbstractTopDownSet-method
(FragmentViews-class), 13 (AbstractTopDownSet-class), 3

coerce, TopDownSet ,MSnSet-method dimnames,AbstractTopDownSet-method
(TopDownSet-class), 22 (AbstractTopDownSet-class), 3

30

INDEX

expand.grid(), 13
expandMs1Conditions, 12
expandMs1Conditions(), 9, 22
expandTms2Conditions
(expandMs1Conditions), 12
expandTms2Conditions(), 9, 22

filterCv (TopDownSet-class), 22
filterCv,TopDownSet-method
(TopDownSet-class), 22
filterInjectionTime (TopDownSet-class),
22
filterInjectionTime, TopDownSet-method
(TopDownSet-class), 22
filterIntensity (TopDownSet-class), 22
filterIntensity, TopDownSet-method
(TopDownSet-class), 22
filterNonReplicatedFragments
(TopDownSet-class), 22

filterNonReplicatedFragments, TopDownSet-method

(TopDownSet-class), 22
fragmentationMap (NCBSet-class), 15
fragmentationMap,NCBSet-method

(NCBSet-class), 15
FragmentViews, 6, 7, 14, 24, 25
FragmentViews (FragmentViews-class), 13
FragmentViews-class, 13

IRanges: :IRanges, /4

Matrix::dgCMatrix, 5,7, 17,24, 25

MSnbase: :MSnSet, 25

mz,FragmentViews-method
(FragmentViews-class), 13

NCBSet, 3, 5-7, 16, 25

NCBSet-class, 15

normalize, TopDownSet-method
(TopDownSet-class), 22

plot,TopDownSet,missing-method
(TopDownSet-class), 22

PSMatch: :calculateFragments(), 18-20

PSMatch: :defaultNeutrallLoss(), 19, 20

readTopDownFiles, 18

readTopDownFiles(), 6, 14, 24

removeEmptyConditions
(AbstractTopDownSet-class), 3

31

removeEmptyConditions,AbstractTopDownSet-method

(AbstractTopDownSet-class), 3
rowViews (AbstractTopDownSet-class), 3
rowViews,AbstractTopDownSet-method

(AbstractTopDownSet-class), 3
runScanHeadsman

(createTngFusionMethFiles), 11
runXmlMethodChanger

(createTngFusionMethFiles), 11

S4Vectors: :DataFrame, 6, 7, 17, 24
show, AbstractTopDownSet-method
(AbstractTopDownSet-class), 3
show, FragmentViews-method
(FragmentViews-class), 13
show,NCBSet-method (NCBSet-class), 15
show, TopDownSet-method
(TopDownSet-class), 22
summary,AbstractTopDownSet-method
(AbstractTopDownSet-class), 3
summary,NCBSet-method (NCBSet-class), 15
summary, TopDownSet-method
(TopDownSet-class), 22

tds, 21

topdownr (topdownr-package), 2
topdownr-deprecated, 21
topdownr-package, 2, 20
topdownrdata: : topdownrdata-package, 2/
TopDownSet, 3, 5-7, 15,17, 18, 21, 23-25
TopDownSet-class, 22

updateConditionNames
(AbstractTopDownSet-class), 3
updateConditionNames(), 6, 24

updateConditionNames,AbstractTopDownSet-method

(AbstractTopDownSet-class), 3
updateMedianInjectionTime

(AbstractTopDownSet-class), 3
updateMedianInjectionTime(), 6, 24

updateMedianInjectionTime,AbstractTopDownSet-method

(AbstractTopDownSet-class), 3

updateMedianInjectionTime, TopDownSet-method

(AbstractTopDownSet-class), 3

validMs1Settings, 26
validMs1Settings(), I3
validTms2Settings (validMs1Settings), 26
validTms2Settings(), I3

32 INDEX

writeMethodXmls, 27
writeMethodXmls(), 8, 9, 11, 12, 19

xml2::as_xml_document(), 9

	topdownr-package
	AbstractTopDownSet-class
	createExperimentsFragmentOptimisation
	createTngFusionMethFiles
	expandMs1Conditions
	FragmentViews-class
	NCBSet-class
	readTopDownFiles
	tds
	topdownr-deprecated
	TopDownSet-class
	validMs1Settings
	writeMethodXmls
	Index

