
Package ‘RegParallel’
January 15, 2026

Type Package

Title Standard regression functions in R enabled for parallel
processing over large data-frames

Version 1.29.0

Maintainer Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Description In many analyses, a large amount of variables have to be tested indepen-
dently against the trait/endpoint of interest, and also adjusted for covariates and confounding fac-
tors at the same time. The major bottleneck in these is the amount of time that it takes to com-
plete these analyses. With RegParallel, a large number of tests can be performed simultane-
ously. On a 12-core system, 144 variables can be tested simultaneously, with 1000s of vari-
ables processed in a matter of seconds via 'nested' parallel processing. Works for logistic regres-
sion, linear regression, conditional logistic regression, Cox proportional hazards and survival mod-
els, and Bayesian logistic regression. Also caters for generalised linear models that utilise sur-
vey weights created by the 'survey' CRAN package and that utilise 'survey::svyglm'.

License GPL-3

Depends doParallel, foreach, parallel, iterators, data.table, stringr,
survival, arm, stats, utils, methods

Suggests RUnit, BiocGenerics, knitr, DESeq2, airway, magrittr,
Biobase, GEOquery, biomaRt, survminer, survey, rmarkdown

URL https://github.com/kevinblighe/RegParallel

biocViews DiseaseModel

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/RegParallel

git_branch devel

git_last_commit 151111c

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-15

Author Kevin Blighe [aut, cre],
Sarega Gurudas [ctb],
Jessica Lasky-Su [aut]

1

https://github.com/kevinblighe/RegParallel

2 bayesglmParallel

Contents
RegParallel-package . 2
bayesglmParallel . 2
clogitParallel . 5
coxphParallel . 7
glmParallel . 9
lmParallel . 12
RegParallel . 14
svyglmParallel . 20

Index 23

RegParallel-package RegParallel: Standard regression functions in R enabled for parallel
processing over large data-frames.

Description

In many analyses, a large amount of variables have to be tested independently against the trait/endpoint
of interest, and also adjusted for covariates and confounding factors at the same time. The major
bottleneck in these is the amount of time that it takes to complete these analyses. With RegParal-
lel, a large number of tests can be performed simultaneously. On a 12-core system, 144 variables
can be tested simultaneously, with 1000s of variables processed in a matter of seconds via ’nested’
parallel processing. Works for logistic regression, linear regression, conditional logistic regression,
Cox proportional hazards and survival models, and Bayesian logistic regression. Also caters for
generalised linear models that utilise survey weights created by the ’survey’ CRAN package and
that utilise ’survey::svyglm’.

bayesglmParallel Standard regression functions in R enabled for parallel processing
over large data-frames - Bayesian logistic regression

Description

This is a non-user function that is managed by RegParallel, the primary function.

Usage

bayesglmParallel(
data,
formula.list,
FUN,
variables,
terms,
startIndex,

bayesglmParallel 3

blocksize,
blocks,
APPLYFUN,
conflevel,
excludeTerms,
excludeIntercept)

Arguments

data A data-frame that contains all model terms to be tested. Variables that have all
zeros will, automatically, be removed. REQUIRED.

formula.list A list containing formulae that can be coerced to formula class via as.formula().
REQUIRED.

FUN Regression function. Must be of form, for example: function(formula, data)
glm(formula = formula, family = binomial, data = data). REQUIRED.

variables Vector of variable names in data to be tested independently. Each variable will
have its own formula in formula.list. REQUIRED.

terms Vector of terms used in the formulae in formula.list, excluding the primary vari-
able of interest. REQUIRED.

startIndex Starting column index in data object from which processing can commence.
REQUIRED.

blocksize Number of variables to test in each foreach loop. REQUIRED.

blocks Total number of blocks required to complete analysis. REQUIRED.

APPLYFUN The apply function to be used within each block during processing. Will be
one of: ’mclapply(...)’, system=linux/mac and nestedParallel=TRUE; ’parLap-
ply(cl, ...)’, system=windows and nestedParallel=TRUE; ’lapply(...)’, nested-
Parallel=FALSE. REQUIRED.

conflevel Confidence level for calculating odds or hazard ratios. REQUIRED.

excludeTerms Remove these terms from the final output. These will simply be grepped out.
REQUIRED.

excludeIntercept

Remove intercept terms from the final output. REQUIRED.

Details

This is a non-user function that is managed by RegParallel, the primary function.

Value

A data.table object.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

4 bayesglmParallel

Examples

options(scipen=10)
options(digits=6)

col <- 20000
row <- 20
mat <- matrix(

rexp(col*row, rate = .1),
ncol = col)

colnames(mat) <- paste0('gene', 1:ncol(mat))
rownames(mat) <- paste0('sample', 1:nrow(mat))

modelling <- data.frame(
cell = rep(c('B', 'T'), nrow(mat) / 2),
group = c(rep(c('treatment'), nrow(mat) / 2), rep(c('control'), nrow(mat) / 2)),
dosage = t(data.frame(matrix(rexp(row, rate = 1), ncol = row))),
mat,
row.names = rownames(mat))

data <- modelling[,1:5000]
variables <- colnames(data)[4:ncol(data)]
res6 <- RegParallel(

data = data,
formula = 'as.numeric(factor(cell)) ~ [*]:dosage',
FUN = function(formula, data)

bayesglm(formula = formula,
data = data,
prior.mean = 2),

FUNtype = 'bayesglm',
variables = variables,
blocksize = 500,
cores = 2,
nestedParallel = FALSE,
p.adjust = "none",
conflevel = 99,
excludeTerms = NULL,
excludeIntercept = FALSE

)

spot checks
m <- bayesglm(formula = as.numeric(factor(cell)) ~ gene1645:dosage, data = data, prior.mean = 2)
summary(m)
exp(cbind("Odds ratio" = coef(m), confint.default(m, level = 0.99)))
res6[which(res6$Variable == 'gene1645'),]

m <- bayesglm(formula = as.numeric(factor(cell)) ~ gene3664:dosage, data = data, prior.mean = 2)
summary(m)
exp(cbind("Odds ratio" = coef(m), confint.default(m, level = 0.99)))
res6[which(res6$Variable == 'gene3664'),]

clogitParallel 5

clogitParallel Standard regression functions in R enabled for parallel processing
over large data-frames - conditional logistic regression.

Description

This is a non-user function that is managed by RegParallel, the primary function.

Usage

clogitParallel(
data,
formula.list,
FUN,
variables,
terms,
startIndex,
blocksize,
blocks,
APPLYFUN,
conflevel,
excludeTerms)

Arguments

data A data-frame that contains all model terms to be tested. Variables that have all
zeros will, automatically, be removed. REQUIRED.

formula.list A list containing formulae that can be coerced to formula class via as.formula().
REQUIRED.

FUN Regression function. Must be of form, for example: function(formula, data)
glm(formula = formula, family = binomial, data = data). REQUIRED.

variables Vector of variable names in data to be tested independently. Each variable will
have its own formula in formula.list. REQUIRED.

terms Vector of terms used in the formulae in formula.list, excluding the primary vari-
able of interest. REQUIRED.

startIndex Starting column index in data object from which processing can commence.
REQUIRED.

blocksize Number of variables to test in each foreach loop. REQUIRED.
blocks Total number of blocks required to complete analysis. REQUIRED.
APPLYFUN The apply function to be used within each block during processing. Will be

one of: ’mclapply(...)’, system=linux/mac and nestedParallel=TRUE; ’parLap-
ply(cl, ...)’, system=windows and nestedParallel=TRUE; ’lapply(...)’, nested-
Parallel=FALSE. REQUIRED.

conflevel Confidence level for calculating odds or hazard ratios. REQUIRED.
excludeTerms Remove these terms from the final output. These will simply be grepped out.

REQUIRED.

6 clogitParallel

Details

This is a non-user function that is managed by RegParallel, the primary function.

Value

A data.table object.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Examples

options(scipen=10)
options(digits=6)

col <- 20000
row <- 20
mat <- matrix(

rexp(col*row, rate = .1),
ncol = col)

colnames(mat) <- paste0('gene', 1:ncol(mat))
rownames(mat) <- paste0('sample', 1:nrow(mat))

modelling <- data.frame(
cell = rep(c('B', 'T'), nrow(mat) / 2),
group = c(rep(c('treatment'), nrow(mat) / 2), rep(c('control'), nrow(mat) / 2)),
dosage = t(data.frame(matrix(rexp(row, rate = 1), ncol = row))),
mat,
row.names = rownames(mat))

data <- modelling[,1:500]
variables <- colnames(data)[4:ncol(data)]
res5 <- RegParallel(

data = data,
formula = 'as.integer(factor(group)) ~ [*] * strata(cell) + dosage',
FUN = function(formula, data)

clogit(formula = formula,
data = data,
ties = 'breslow',
singular.ok = TRUE),

FUNtype = 'clogit',
variables = variables,
blocksize = 200,
cores = 2,
nestedParallel = FALSE,
p.adjust = "none",
conflevel = 50,
excludeTerms = 'non-existent term',
excludeIntercept = FALSE

)

coxphParallel 7

spot checks
m <- clogit(formula = as.integer(factor(group)) ~ gene145 * strata(cell) + dosage, data = data, ties = 'breslow', singular.ok = TRUE)
summary(m)
exp(cbind("Odds ratio" = coef(m), confint.default(m, level = 0.5)))
res5[which(res5$Variable == 'gene145'),]

m <- clogit(formula = as.integer(factor(group)) ~ gene34 * strata(cell) + dosage, data = data, ties = 'breslow', singular.ok = TRUE)
summary(m)
exp(cbind("Odds ratio" = coef(m), confint.default(m, level = 0.5)))
res5[which(res5$Variable == 'gene34'),]

coxphParallel Standard regression functions in R enabled for parallel processing
over large data-frames - Cox proportional hazards regression.

Description

This is a non-user function that is managed by RegParallel, the primary function.

Usage

coxphParallel(
data,
formula.list,
FUN,
variables,
terms,
startIndex,
blocksize,
blocks,
APPLYFUN,
conflevel,
excludeTerms)

Arguments

data A data-frame that contains all model terms to be tested. Variables that have all
zeros will, automatically, be removed. REQUIRED.

formula.list A list containing formulae that can be coerced to formula class via as.formula().
REQUIRED.

FUN Regression function. Must be of form, for example: function(formula, data)
glm(formula = formula, family = binomial, data = data). REQUIRED.

variables Vector of variable names in data to be tested independently. Each variable will
have its own formula in formula.list. REQUIRED.

terms Vector of terms used in the formulae in formula.list, excluding the primary vari-
able of interest. REQUIRED.

8 coxphParallel

startIndex Starting column index in data object from which processing can commence.
REQUIRED.

blocksize Number of variables to test in each foreach loop. REQUIRED.

blocks Total number of blocks required to complete analysis. REQUIRED.

APPLYFUN The apply function to be used within each block during processing. Will be
one of: ’mclapply(...)’, system=linux/mac and nestedParallel=TRUE; ’parLap-
ply(cl, ...)’, system=windows and nestedParallel=TRUE; ’lapply(...)’, nested-
Parallel=FALSE. REQUIRED.

conflevel Confidence level for calculating odds or hazard ratios. REQUIRED.

excludeTerms Remove these terms from the final output. These will simply be grepped out.
REQUIRED.

Details

This is a non-user function that is managed by RegParallel, the primary function.

Value

A data.table object.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Examples

options(scipen=10)
options(digits=6)

col <- 20000
row <- 20
mat <- matrix(

rexp(col*row, rate = .1),
ncol = col)

colnames(mat) <- paste0('gene', 1:ncol(mat))
rownames(mat) <- paste0('sample', 1:nrow(mat))

modelling <- data.frame(
cell = rep(c('B', 'T'), nrow(mat) / 2),
group = c(rep(c('treatment'), nrow(mat) / 2), rep(c('control'), nrow(mat) / 2)),
dosage = t(data.frame(matrix(rexp(row, rate = 1), ncol = row))),
mat,
row.names = rownames(mat))

require(survival)
data <- modelling[,1:800]
variables <- colnames(data)[4:ncol(data)]
data$time <- c(100,200,400,300,200,250,600,1000,886,450,

c(100,200,400,300,200,250,600,1000,886,450)*1.5)
data$alive <- c(0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,1,1,1,1,1)

glmParallel 9

res4 <- RegParallel(
data = data,
formula = 'Surv(time, as.integer(alive)) ~ group * [*] + cell',
FUN = function(formula, data)

coxph(formula = formula,
data = data,
ties = 'breslow',
singular.ok = TRUE),

FUNtype = 'coxph',
variables = variables,
blocksize = 399,
cores = 2,
nestedParallel = FALSE,
p.adjust = "none",
conflevel = 97.5,
excludeTerms = c('group', 'cell'),
excludeIntercept = FALSE

)

spot checks
m <- coxph(formula = Surv(time, as.integer(factor(alive))) ~ group * gene12 + cell, data = data, ties = 'breslow', singular.ok = TRUE)
summary(m)
exp(cbind("Odds ratio" = coef(m), confint.default(m, level = 0.975)))
res4[which(res4$Variable == 'gene12'),]

m <- coxph(formula = Surv(time, as.integer(factor(alive))) ~ group * gene267 + cell, data = data, ties = 'breslow', singular.ok = TRUE)
summary(m)
exp(cbind("Odds ratio" = coef(m), confint.default(m, level = 0.975)))
res4[which(res4$Variable == 'gene267'),]

glmParallel Standard regression functions in R enabled for parallel processing
over large data-frames - generalised linear model

Description

This is a non-user function that is managed by RegParallel, the primary function.

Usage

glmParallel(
data,
formula.list,
FUN,
variables,
terms,
startIndex,
blocksize,
blocks,

10 glmParallel

APPLYFUN,
conflevel,
excludeTerms,
excludeIntercept)

Arguments

data A data-frame that contains all model terms to be tested. Variables that have all
zeros will, automatically, be removed. REQUIRED.

formula.list A list containing formulae that can be coerced to formula class via as.formula().
REQUIRED.

FUN Regression function. Must be of form, for example: function(formula, data)
glm(formula = formula, family = binomial, data = data). REQUIRED.

variables Vector of variable names in data to be tested independently. Each variable will
have its own formula in formula.list. REQUIRED.

terms Vector of terms used in the formulae in formula.list, excluding the primary vari-
able of interest. REQUIRED.

startIndex Starting column index in data object from which processing can commence.
REQUIRED.

blocksize Number of variables to test in each foreach loop. REQUIRED.

blocks Total number of blocks required to complete analysis. REQUIRED.

APPLYFUN The apply function to be used within each block during processing. Will be
one of: ’mclapply(...)’, system=linux/mac and nestedParallel=TRUE; ’parLap-
ply(cl, ...)’, system=windows and nestedParallel=TRUE; ’lapply(...)’, nested-
Parallel=FALSE. REQUIRED.

conflevel Confidence level for calculating odds or hazard ratios. REQUIRED.

excludeTerms Remove these terms from the final output. These will simply be grepped out.
REQUIRED.

excludeIntercept

Remove intercept terms from the final output. REQUIRED.

Details

This is a non-user function that is managed by RegParallel, the primary function.

Value

A data.table object.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

glmParallel 11

Examples

options(scipen=10)
options(digits=6)

col <- 20000
row <- 20
mat <- matrix(

rexp(col*row, rate = .1),
ncol = col)

colnames(mat) <- paste0('gene', 1:ncol(mat))
rownames(mat) <- paste0('sample', 1:nrow(mat))

modelling <- data.frame(
cell = rep(c('B', 'T'), nrow(mat) / 2),
group = c(rep(c('treatment'), nrow(mat) / 2), rep(c('control'), nrow(mat) / 2)),
dosage = t(data.frame(matrix(rexp(row, rate = 1), ncol = row))),
mat,
row.names = rownames(mat))

data <- modelling[,1:2000]
variables <- colnames(data)[4:ncol(data)]
res1 <- RegParallel(

data = data,
formula = 'factor(group) ~ [*] + (cell:dosage) ^ 2',
FUN = function(formula, data)

glm(formula = formula,
data = data,
family = binomial(link = 'logit'),
method = 'glm.fit'),

FUNtype = 'glm',
variables = variables,
blocksize = 700,
cores = 2,
nestedParallel = TRUE,
p.adjust = "none",
conflevel = 99,
excludeTerms = NULL,
excludeIntercept = TRUE

)

spot checks
m <- glm(factor(group) ~ gene265 + (cell:dosage) ^ 2, data=data, family=binomial)
summary(m)$coefficients
exp(cbind("Odds ratio" = coef(m), confint.default(m, level = 0.99)))
res1[which(res1$Variable == 'gene265'),]

m <- glm(factor(group) ~ gene1688 + (cell:dosage) ^ 2, data=data, family=binomial)
summary(m)$coefficients
exp(cbind("Odds ratio" = coef(m), confint.default(m, level = 0.99)))
res1[which(res1$Variable == 'gene1688'),]

12 lmParallel

###

data <- modelling[,1:500]
variables <- colnames(data)[4:ncol(data)]
res2 <- RegParallel(

data = data,
formula = '[*] ~ cell:dosage',
FUN = function(formula, data)

glm(formula = formula,
data = data,
family = gaussian,
method = 'glm.fit'),

FUNtype = 'glm',
variables = variables,
blocksize = 496,
cores = 2,
nestedParallel = TRUE,
p.adjust = "none",
conflevel = 90,
excludeTerms = NULL,
excludeIntercept = FALSE

)

spot checks
m <- glm(gene29 ~ cell:dosage, data=data, family=gaussian)
summary(m)$coefficients
exp(cbind("Odds ratio" = coef(m), confint.default(m, level = 0.90)))
res2[which(res2$Variable == 'gene29'),]

lmParallel Standard regression functions in R enabled for parallel processing
over large data-frames - linear model.

Description

This is a non-user function that is managed by RegParallel, the primary function.

Usage

lmParallel(
data,
formula.list,
FUN,
variables,
terms,
startIndex,
blocksize,
blocks,

lmParallel 13

APPLYFUN,
conflevel,
excludeTerms,
excludeIntercept)

Arguments

data A data-frame that contains all model terms to be tested. Variables that have all
zeros will, automatically, be removed. REQUIRED.

formula.list A list containing formulae that can be coerced to formula class via as.formula().
REQUIRED.

FUN Regression function. Must be of form, for example: function(formula, data)
glm(formula = formula, family=binomial, data = data). REQUIRED.

variables Vector of variable names in data to be tested independently. Each variable will
have its own formula in formula.list. REQUIRED.

terms Vector of terms used in the formulae in formula.list, excluding the primary vari-
able of interest. REQUIRED.

startIndex Starting column index in data object from which processing can commence.
REQUIRED.

blocksize Number of variables to test in each foreach loop. REQUIRED.

blocks Total number of blocks required to complete analysis. REQUIRED.

APPLYFUN The apply function to be used within each block during processing. Will be
one of: ’mclapply(...)’, system=linux/mac and nestedParallel=TRUE; ’parLap-
ply(cl, ...)’, system=windows and nestedParallel=TRUE; ’lapply(...)’, nested-
Parallel=FALSE. REQUIRED.

conflevel Confidence level for calculating odds or hazard ratios. REQUIRED.

excludeTerms Remove these terms from the final output. These will simply be grepped out.
REQUIRED.

excludeIntercept

Remove intercept terms from the final output. REQUIRED.

Details

This is a non-user function that is managed by RegParallel, the primary function.

Value

A data.table object.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

14 RegParallel

Examples

options(scipen=10)
options(digits=6)

col <- 20000
row <- 20
mat <- matrix(

rexp(col*row, rate = .1),
ncol = col)

colnames(mat) <- paste0('gene', 1:ncol(mat))
rownames(mat) <- paste0('sample', 1:nrow(mat))

modelling <- data.frame(
cell = rep(c('B', 'T'), nrow(mat) / 2),
group = c(rep(c('treatment'), nrow(mat) / 2), rep(c('control'), nrow(mat) / 2)),
dosage = t(data.frame(matrix(rexp(row, rate = 1), ncol = row))),
mat,
row.names = rownames(mat))

data <- modelling[,1:500]
variables <- colnames(data)[4:ncol(data)]
res3 <- RegParallel(

data = data,
formula = 'as.numeric([*]) ~ dosage ^ 3',
FUN = function(formula, data)

lm(formula = formula,
data = data),

FUNtype = 'lm',
variables = variables,
blocksize = 200,
cores = 2,
nestedParallel = FALSE,
p.adjust = "none",
conflevel = 99.999,
excludeTerms = NULL,
excludeIntercept = FALSE

)

spot checks
m <- lm(as.numeric(gene454) ~ dosage ^ 3, data=data)
summary(m)$coefficients
exp(cbind("Odds ratio" = coef(m), confint.default(m, level = 0.99999)))
res3[which(res3$Variable == 'gene454'),]

RegParallel Standard regression functions in R enabled for parallel processing
over large data-frames

RegParallel 15

Description

In many analyses, a large amount of variables have to be tested independently against the trait/endpoint
of interest, and also adjusted for covariates and confounding factors at the same time. The major
bottleneck in these is the amount of time that it takes to complete these analyses. With RegParal-
lel, a large number of tests can be performed simultaneously. On a 12-core system, 144 variables
can be tested simultaneously, with 1000s of variables processed in a matter of seconds via ’nested’
parallel processing. Works for logistic regression, linear regression, conditional logistic regression,
Cox proportional hazards and survival models, and Bayesian logistic regression. Also caters for
generalised linear models that utilise survey weights created by the ’survey’ CRAN package and
that utilise ’survey::svyglm’.

Usage

RegParallel(
data,
design = NULL,
formula,
FUN,
FUNtype,
variables,
blocksize = 500,
cores = 3,
nestedParallel = FALSE,
p.adjust = 'none',
conflevel = 95,
excludeTerms = NULL,
excludeIntercept = TRUE)

Arguments

data A data-frame that contains all model terms to be tested. Variables that have all
zeros will, automatically, be removed. REQUIRED.

design A survey design, created by survey::svydesign. DEFAULT = NULL. OPTIONAL.

formula A valid formula. Excluding the ’[*]’ term, which is reserved for RegParallel
and indicates the position in the formula for the variable of interest, must pass
as.formula() check. REQUIRED.

FUN Regression function. Must be of form, for example: function(formula, data)
glm(formula = formula, family=binomial, data = data). REQUIRED.

FUNtype Regression function type. Must be one of ’glm’, ’lm’, ’coxph’, ’clogit’, ’bayesglm’,
or ’glm.nb’. REQUIRED.

variables Vector of variable names in data to be tested independently. Each variable will
take the place of ’[*]’ in the supplied formula. REQUIRED.

blocksize Number of variables to test in each foreach loop. DEFAULT = 500. OP-
TIONAL.

cores CPU cores / threads. DEFAULT = 3. OPTIONAL.

16 RegParallel

nestedParallel In RegParallel, parallelisation initially occurs at the block level, ie., multiple
blocks of models are processed in parallel. If nestedParallel is enabled, a second
level of parallelisation occurs within each block in addition. Warning! - this
doubles the usage of cores. DEFAULT = FALSE. OPTIONAL.

p.adjust Method for adjusting p-values for false discovery rate. Must be one of ’holm’,
’hochberg’, ’hommel’, ’bonferroni’, ’BH’, ’BY’, ’fdr’, ’none’. See ?p.adjust for
further details. DEFAULT = ’none’. OPTIONAL

conflevel Confidence level for calculating odds or hazard ratios. DEFAULT = 95. OP-
TIONAL.

excludeTerms Remove these terms from the final output. These will simply be grepped out.
DEFAULT = NULL. OPTIONAL.

excludeIntercept

Remove intercept terms from the final output. DEFAULT = TRUE. OPTIONAL.

Details

In many analyses, a large amount of variables have to be tested independently against the trait/endpoint
of interest, and also adjusted for covariates and confounding factors at the same time. The major
bottleneck in these is the amount of time that it takes to complete these analyses. With RegParallel,
a large number of tests can be performed simultaneously. On a 12-core system, 144 variables can be
tested simultaneously, with 1000s of variables processed in a matter of seconds via ’nested’ parallel
processing. Works for logistic regression, linear regression, conditional logistic regression, Cox
proportional hazards and survival models, and Bayesian logistic regression.

Value

A data.table object.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Examples

options(scipen=10)
options(digits=6)

col <- 20000
row <- 20
mat <- matrix(

rexp(col*row, rate = .1),
ncol = col)

colnames(mat) <- paste0('gene', 1:ncol(mat))
rownames(mat) <- paste0('sample', 1:nrow(mat))

modelling <- data.frame(
cell = rep(c('B', 'T'), nrow(mat) / 2),
group = c(rep(c('treatment'), nrow(mat) / 2), rep(c('control'), nrow(mat) / 2)),
dosage = t(data.frame(matrix(rexp(row, rate = 1), ncol = row))),
mat,

RegParallel 17

row.names = rownames(mat))

data <- modelling[,1:2000]
variables <- colnames(data)[4:ncol(data)]
res1 <- RegParallel(

data = data,
formula = 'factor(group) ~ [*] + (cell:dosage) ^ 2',
FUN = function(formula, data)

glm(formula = formula,
data = data,
family = binomial(link = 'logit'),
method = 'glm.fit'),

FUNtype = 'glm',
variables = variables,
blocksize = 700,
cores = 2,
nestedParallel = TRUE,
#p.adjust = "bonferroni",
conflevel = 99,
excludeTerms = NULL,
excludeIntercept = TRUE

)

spot checks
m <- glm(factor(group) ~ gene265 + (cell:dosage) ^ 2, data=data, family=binomial)
summary(m)$coefficients
exp(cbind("Odds ratio" = coef(m), confint.default(m, level = 0.99)))
res1[which(res1$Variable == 'gene265'),]

m <- glm(factor(group) ~ gene1688 + (cell:dosage) ^ 2, data=data, family=binomial)
summary(m)$coefficients
exp(cbind("Odds ratio" = coef(m), confint.default(m, level = 0.99)))
res1[which(res1$Variable == 'gene1688'),]

###

data <- modelling[,1:500]
variables <- colnames(data)[4:ncol(data)]
res2 <- RegParallel(

data = data,
formula = '[*] ~ cell:dosage',
FUN = function(formula, data)

glm(formula = formula,
data = data,
family = gaussian,
method = 'glm.fit'),

FUNtype = 'glm',
variables = variables,
blocksize = 496,
cores = 2,
nestedParallel = TRUE,

18 RegParallel

p.adjust = "none",
conflevel = 90,
excludeTerms = NULL,
excludeIntercept = FALSE

)

spot checks
m <- glm(gene29 ~ cell:dosage, data=data, family=gaussian)
summary(m)$coefficients
exp(cbind("Odds ratio" = coef(m), confint.default(m, level = 0.90)))
res2[which(res2$Variable == 'gene29'),]

###

data <- modelling[,1:500]
variables <- colnames(data)[4:ncol(data)]
res3 <- RegParallel(

data = data,
formula = 'as.numeric([*]) ~ dosage ^ 3',
FUN = function(formula, data)

lm(formula = formula,
data = data),

FUNtype = 'lm',
variables = variables,
blocksize = 200,
cores = 2,
nestedParallel = FALSE,
p.adjust = "holm",
conflevel = 99.999,
excludeTerms = NULL,
excludeIntercept = FALSE

)

spot checks
m <- lm(as.numeric(gene454) ~ dosage ^ 3, data=data)
summary(m)$coefficients
exp(cbind("Odds ratio" = coef(m), confint.default(m, level = 0.99999)))
res3[which(res3$Variable == 'gene454'),]

###

require(survival)
data <- modelling[,1:800]
variables <- colnames(data)[4:ncol(data)]
data$time <- c(100,200,400,300,200,250,600,1000,886,450,

c(100,200,400,300,200,250,600,1000,886,450)*1.5)
data$alive <- c(0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,1,1,1,1,1)
res4 <- RegParallel(

data = data,

RegParallel 19

formula = 'Surv(time, as.integer(alive)) ~ group * [*] + cell',
FUN = function(formula, data)

coxph(formula = formula,
data = data,
ties = 'breslow',
singular.ok = TRUE),

FUNtype = 'coxph',
variables = variables,
blocksize = 399,
cores = 2,
nestedParallel = FALSE,
p.adjust = "hommel",
conflevel = 97.5,
excludeTerms = c('group', 'cell'),
excludeIntercept = FALSE

)

spot checks
m <- coxph(formula = Surv(time, as.integer(factor(alive))) ~ group * gene12 + cell, data = data, ties = 'breslow', singular.ok = TRUE)
summary(m)
exp(cbind("Hazards ratio" = coef(m), confint.default(m, level = 0.975)))
res4[which(res4$Variable == 'gene12'),]

m <- coxph(formula = Surv(time, as.integer(factor(alive))) ~ group * gene267 + cell, data = data, ties = 'breslow', singular.ok = TRUE)
summary(m)
exp(cbind("Hazards ratio" = coef(m), confint.default(m, level = 0.975)))
res4[which(res4$Variable == 'gene267'),]

###

data <- modelling[,1:500]
variables <- colnames(data)[4:ncol(data)]
res5 <- RegParallel(

data = data,
formula = 'as.integer(factor(group)) ~ [*] * strata(cell) + dosage',
FUN = function(formula, data)

clogit(formula = formula,
data = data,
ties = 'breslow',
singular.ok = TRUE),

FUNtype = 'clogit',
variables = variables,
blocksize = 200,
cores = 2,
nestedParallel = FALSE,
p.adjust = "fdr",
conflevel = 50,
excludeTerms = 'non-existent term',
excludeIntercept = FALSE

)

20 svyglmParallel

spot checks
m <- clogit(formula = as.integer(factor(group)) ~ gene145 * strata(cell) + dosage, data = data, ties = 'breslow', singular.ok = TRUE)
summary(m)
exp(cbind("Hazards ratio" = coef(m), confint.default(m, level = 0.5)))
res5[which(res5$Variable == 'gene145'),]

m <- clogit(formula = as.integer(factor(group)) ~ gene34 * strata(cell) + dosage, data = data, ties = 'breslow', singular.ok = TRUE)
summary(m)
exp(cbind("Hazards ratio" = coef(m), confint.default(m, level = 0.5)))
res5[which(res5$Variable == 'gene34'),]

###

data <- modelling[,1:5000]
variables <- colnames(data)[4:ncol(data)]
res6 <- RegParallel(

data = data,
formula = 'as.numeric(factor(cell)) ~ [*]:dosage',
FUN = function(formula, data)

bayesglm(formula = formula,
data = data,
prior.mean = 2),

FUNtype = 'bayesglm',
variables = variables,
blocksize = 500,
cores = 2,
nestedParallel = FALSE,
p.adjust = "fdr",
conflevel = 99,
excludeTerms = NULL,
excludeIntercept = FALSE

)

spot checks
m <- bayesglm(formula = as.numeric(factor(cell)) ~ gene1645:dosage, data = data, prior.mean = 2)
summary(m)
exp(cbind("Odds ratio" = coef(m), confint.default(m, level = 0.99)))
res6[which(res6$Variable == 'gene1645'),]

m <- bayesglm(formula = as.numeric(factor(cell)) ~ gene3664:dosage, data = data, prior.mean = 2)
summary(m)
exp(cbind("Odds ratio" = coef(m), confint.default(m, level = 0.99)))
res6[which(res6$Variable == 'gene3664'),]

svyglmParallel Standard regression functions in R enabled for parallel processing
over large data-frames - generalised linear model, with survey weights

svyglmParallel 21

Description

This is a non-user function that is managed by RegParallel, the primary function.

Usage

svyglmParallel(
data,
design,
formula.list,
FUN,
variables,
terms,
startIndex,
blocksize,
blocks,
APPLYFUN,
conflevel,
excludeTerms,
excludeIntercept)

Arguments

data A data-frame that contains all model terms to be tested. Variables that have all
zeros will, automatically, be removed. REQUIRED.

design A survey design, created by survey::svydesign. REQUIRED.
formula.list A list containing formulae that can be coerced to formula class via as.formula().

REQUIRED.
FUN Regression function. Must be of form, for example: function(formula, data)

glm(formula = formula, family = binomial, data = data). REQUIRED.
variables Vector of variable names in data to be tested independently. Each variable will

have its own formula in formula.list. REQUIRED.
terms Vector of terms used in the formulae in formula.list, excluding the primary vari-

able of interest. REQUIRED.
startIndex Starting column index in data object from which processing can commence.

REQUIRED.
blocksize Number of variables to test in each foreach loop. REQUIRED.
blocks Total number of blocks required to complete analysis. REQUIRED.
APPLYFUN The apply function to be used within each block during processing. Will be

one of: ’mclapply(...)’, system=linux/mac and nestedParallel=TRUE; ’parLap-
ply(cl, ...)’, system=windows and nestedParallel=TRUE; ’lapply(...)’, nested-
Parallel=FALSE. REQUIRED.

conflevel Confidence level for calculating odds or hazard ratios. REQUIRED.
excludeTerms Remove these terms from the final output. These will simply be grepped out.

REQUIRED.
excludeIntercept

Remove intercept terms from the final output. REQUIRED.

22 svyglmParallel

Details

This is a non-user function that is managed by RegParallel, the primary function.

Value

A data.table object.

Author(s)

Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Examples

require(survey)
data(nhanes)
design <- svydesign(id = ~ SDMVPSU,

strata = ~ SDMVSTRA,
weights = ~ WTMEC2YR,
nest = TRUE,
data = nhanes)

Index

bayesglmParallel, 2

clogitParallel, 5
coxphParallel, 7

data.table, 3, 6, 8, 10, 13, 16, 22

glmParallel, 9

lmParallel, 12

RegParallel, 14
RegParallel-package, 2

svyglmParallel, 20

23

	RegParallel-package
	bayesglmParallel
	clogitParallel
	coxphParallel
	glmParallel
	lmParallel
	RegParallel
	svyglmParallel
	Index

