
Package ‘posDemux’
January 16, 2026

Type Package

Title Positional combinatorial sequence demultiplexer

Encoding UTF-8

Version 0.99.4

Date 2025-11-05

Description Demultiplexing and filtering utilities intended for reads with
combinatorial barcodes (i.e. PETRI-seq and SPLiT-seq). The demultiplexer algorithm
uses the position of the segments to extract and compare the barcodes with the refer-
ence (whitelist).
A Shiny application is provided to interactively select cutoffs for which barcode
combinations to keep.

License AGPL (>= 3)

Depends R (>= 4.6.0)

Imports Biostrings, ggplot2, methods, assertthat, glue, magrittr,
dplyr, rlang, ShortRead, readr, shiny, purrr

LinkingTo Rcpp, Biostrings, IRanges, S4Vectors, XVector

biocViews SequenceMatching, Sequencing, Software, RNASeq

URL https://github.com/yaccos/posDemux

BugReports https://github.com/yaccos/posDemux/issues

RoxygenNote 7.3.3

Roxygen list(markdown = TRUE)

Suggests testthat, devtools, DNABarcodes, knitr, rmarkdown, tibble,
tidyr, BiocStyle, RefManageR, sessioninfo, DBI, chunked,
RSQLite, dbplyr

Config/testthat/edition 3

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/posDemux

git_branch devel

git_last_commit 6d9f3c2

1

https://github.com/yaccos/posDemux
https://github.com/yaccos/posDemux/issues

2 bc_to_freq_cutoff

git_last_commit_date 2025-11-05

Repository Bioconductor 3.23

Date/Publication 2026-01-15

Author Jakob Peder Pettersen [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3485-1634>),

Centre for new antibacterial strategies (CANS) [fnd]

Maintainer Jakob Peder Pettersen <jakobpeder.pettersen@gmail.com>

Contents

bc_to_freq_cutoff . 2
combinatorial_demultiplex . 4
create_freq_table . 5
create_summary_res . 7
filter_demultiplex_res . 9
freq_plot . 11
interactive_bc_cutoff . 13
posDemux . 14
row_match . 14
streaming_callbacks . 15
streaming_demultiplex . 17

Index 20

bc_to_freq_cutoff Convert between cutoff types

Description

There are at least two ways to specify the cutoff to use when selecting barcode combinations (cells)
for further analysis. One way is to specify the number of barcode combinations to keep, effectively
keeping a given number of barcode combinations with the highest frequencies. The other way
is to specify the frequency cutoff directly without regard to the number of barcode combination
to keep. In the former case, bc_to_freq_cutoff() is used to find the corresponding frequency
cutoff, whereas in the latter case freq_to_bc_cutoff() is used to find the corresponding barcode
cutoff.

Usage

bc_to_freq_cutoff(freq_table, cutoff)

freq_to_bc_cutoff(freq_table, cutoff)

https://orcid.org/0000-0002-3485-1634

bc_to_freq_cutoff 3

Arguments

freq_table The frequency table from create_freq_table(). In case the table is derived
from another source, it must be sorted in descending order of frequency.

cutoff Integer vector, the cutoff values to be converted.

Details

In the edge case of the barcode threshold being zero, the frequency cutoff is set to the maximum
frequency in the table plus one. This feature makes sure that the cutoff line is visible in the frequency
plot.

Value

Integer, the converted cutoff values.

Examples

library(purrr)
library(Biostrings)
input_fastq <- system.file(

"extdata", "PETRI-seq_forward_reads.fq.gz",
package = "posDemux")

reads <- readDNAStringSet(input_fastq, format = "fastq")
barcode_files <- system.file(

"extdata/PETRI-seq_barcodes", c(bc1 = "bc1.fa", bc2 = "bc2.fa",
bc3 = "bc3.fa"), package = "posDemux")

names(barcode_files) <- paste0("bc", 1L:3L)
barcode_index <- map(barcode_files, readDNAStringSet)
barcodes <- barcode_index[c("bc3", "bc2", "bc1")]
sequence_annotation <- c(UMI = "P", "B", "A", "B", "A", "B", "A")
segment_lengths <- c(7L, 7L, 15L, 7L, 14L, 7L, NA_integer_)
demultiplex_res <- posDemux::combinatorial_demultiplex(

reads, barcodes = barcodes, segments = sequence_annotation,
segment_lengths = segment_lengths)

filtered_res <- filter_demultiplex_res(demultiplex_res, allowed_mismatches = 1L)
freq_table <- create_freq_table(filtered_res$demultiplex_res$assigned_barcodes)

bc_cutoff <- c(100L, 204L, 50L, 655L)
freq_cutoff <- bc_to_freq_cutoff(freq_table, bc_cutoff)
Note: The reconstructed barcode cutoff is not equal to
the original due to ties in the frequency table
reconstructed_bc_cutoff <- freq_to_bc_cutoff(freq_table, freq_cutoff)
The frequency cutoff is still preserved through these conversions
reconstruced_freq_cutoff <- bc_to_freq_cutoff(

freq_table, reconstructed_bc_cutoff)

4 combinatorial_demultiplex

combinatorial_demultiplex

Combinatorial demultiplexer

Description

This function performs segmenting of sequences and combinatorial demultiplexing and segmenting
of sequences. The sequences have a structure as defined by the argument segments with corre-
sponding lengths in segment_lengths. As segmentation and extraction can take place from either
end, a single middle segment can be variadic in length. There are three types of segments: Adapter,
Barcode and Payload. The adapter is trimmed and ignored, the barcode is used for demultiplexing,
and the payload is kept after segmenting and demultiplexing and returned from the function. If
there are multiple payload segments, then each segment constitutes its own segment in a list. For
type stability reasons, such a list is returned also when there is zero or one payload segments. The
barcodes can be positioned at either end of the sequences, but no barcode can (for obvious reasons)
be variadic in length.

Usage

combinatorial_demultiplex(sequences, barcodes, segments, segment_lengths)

Arguments

sequences A XStringSet object, the sequences to be demultiplexed.

barcodes A list of XStringSet objects in the same order they appear in the sequences, the
barcodes to be used for demultiplexing. All of the barcodes in each XStringSet
must have the same length as specified by the segment_lengths argument and
be named. For computational reasons, the maximum possible length of an indi-
vidual barcode is 127.

segments Character vector showing the segments of the sequences from 5’ end to 3’ end.
The code applied is as follows:

• 'A': Adapter (often referred to as linker), is trimmed and ignored
• 'B': Barcode, used for demultiplexing
• 'P': Payload, sequence to be kept after trimming and demultiplexing (e.g.

cDNA or UMI).

If this vector is named, this will determine the names of the payload sets. Names
of the barcode sets will be determined by the names of the argument barcodes
(if any).

segment_lengths

Integer vector with the same length as segments, lengths of the segments pro-
vided in the same order as in segments. Up to one of the non-barcode segments
can have its length set to NA which means it is considered a variadic length seg-
ment.

create_freq_table 5

Details

If there are two barcodes both having the minimum number of mismatches the first one will be se-
lected. It is therefore important to choose the error tolerance to be equal or less than the redundancy
of the barcodes. All sequences are assumed to be long enough for all segments to be extracted.
Otherwise, an error is raised.

Value

A list with the following elements:

• assigned_barcodes: A character matrix with the names of the assigned barcodes as ele-
ments. The rows correspond to the sequences and the columns to the barcode segments.

• mismatches: An integer matrix with the number of mismatches between the assigned bar-
codes and the sequences. The rows correspond to the sequences and the columns to the bar-
code segments.

• payload: A list of XStringSet objects, each containing the results for a payload segment.

• barcodes: The barcodes argument passed into the function. It is included in order to ease
downstream processing.

Examples

library(purrr)
library(Biostrings)
sequence_annotation <- c(UMI = "P", "B", "A", "B", "A", "B", "A")
segment_lengths <- c(7L, 7L, 15L, 7L, 14L, 7L, NA_integer_)
barcode_files <- system.file(

"extdata/PETRI-seq_barcodes",
c(bc1 = "bc1.fa", bc2 = "bc2.fa", bc3 = "bc3.fa"),
package = "posDemux"
)

names(barcode_files) <- paste0("bc", 1L:3L)
barcode_index <- map(barcode_files, readDNAStringSet)

barcodes <- barcode_index[c("bc3", "bc2", "bc1")]
input_fastq <- system.file(

"extdata", "PETRI-seq_forward_reads.fq.gz", package = "posDemux")
reads <- readDNAStringSet(input_fastq, format = "fastq")
demultiplex_res <- combinatorial_demultiplex(

reads, barcodes = barcodes, segments = sequence_annotation,
segment_lengths = segment_lengths
)

create_freq_table Frequency table

6 create_freq_table

Description

Creates a sorted frequency table of each of the observed barcode combinations. This function
is indended to be used after running filter_demultiplex_res() and before creating frequency
plots, knee plots, or selecting the number of barcodes to include.

Usage

create_freq_table(assigned_barcodes)

Arguments

assigned_barcodes

A character or integer matrix, corresponding to the field assigned_barcodes
from combinatorial_demultiplex() or the field demultiplex_res$assigned_barcodes
from filter_demultiplex_res().

Value

A data frame where each row corresponds to a unique observed barcode combination. The rows
are sorted in descending order of frequency. The first columns specify the barcode assignment (e.g
bc3, bc2, bc1) and the last columns were the following:

• frequency: The number of reads with the barcode combination.

• cumulative_frequency: The cumulative frequency of the barcode combination counted
from the top.

• fraction: The fraction of reads with the barcode combination.

• cumulative_fraction: The cumulative fraction of the barcode combination counted from
the top.

Examples

library(purrr)
library(Biostrings)
input_fastq <- system.file(

"extdata", "PETRI-seq_forward_reads.fq.gz", package = "posDemux")
reads <- readDNAStringSet(input_fastq, format = "fastq")
barcode_files <- system.file(

"extdata/PETRI-seq_barcodes",
c(bc1 = "bc1.fa", bc2 = "bc2.fa", bc3 = "bc3.fa"),
package = "posDemux"
)

names(barcode_files) <- paste0("bc", 1L:3L)
barcode_index <- map(barcode_files, readDNAStringSet)
barcodes <- barcode_index[c("bc3", "bc2", "bc1")]
sequence_annotation <- c(UMI = "P", "B", "A", "B", "A", "B", "A")
segment_lengths <- c(7L, 7L, 15L, 7L, 14L, 7L, NA_integer_)
demultiplex_res <- posDemux::combinatorial_demultiplex(

reads, barcodes = barcodes, segments = sequence_annotation,
segment_lengths = segment_lengths
)

create_summary_res 7

filtered_res <- filter_demultiplex_res(demultiplex_res, allowed_mismatches = 1L)
freq_table <- create_freq_table(filtered_res$demultiplex_res$assigned_barcodes)

create_summary_res Create a summary of match filtering

Description

create_summary_res() is a helper function in order to create a summary of the demultiplexing
and following match filtering. It is not designed to be invoked directly, but its results will be re-
turned automatically from filter_demultiplex_res(). This returned object has it own method
for printing the result in a user-friendly manner.

Usage

create_summary_res(
retained,
barcodes,
assigned_barcodes,
allowed_mismatches,
mismatches

)

S3 method for class 'demultiplex_filter_summary'
print(x, ...)

Arguments

retained Logical vector with the same length as the number of reads in the input to the
demultiplexer. TRUE if the corresponding read is retained. Corresponds to the
field retained of the output of filter_demultiplex_res().

barcodes A list of XStringSet objects, the barcodes which were used for demultiplexing.
assigned_barcodes

Character matrix of the assigned barcodes only including the onces within the
mismatch threshold. Corresponds to of the field demultiplex_res$assigned_barcodes
of filter_demultiplex_res().

allowed_mismatches

Integer vector of length one or the same length as the number of barcode seg-
ments; the threshold Hamming distance. All reads having a number of mis-
matches above this number in any of the barcodes will be filtered away.

mismatches Integer matrix of the number of mismatches of each assigned barcode. Corre-
sponds to the field mismatches of combinatorial_demultiplex().

x An object of class demultiplex_filter_summary from create_summary_res().

... Ignored

8 create_summary_res

Details

Following a uniform distribution of barcodes, the expected number of barcode collisions (observed
barcodes combinations being composed of two or more features) is given by

N
(
1− e−λ − λe−λ

)
,

where N is the number of possible barcode combinations and λ is in this summary referred to as
the collision lambda:

λ =
n

N
,

where n is the number of features. However, n is unknown as we cannot know how many fea-
tures there were originally due to potential collisions. Utilizing the fact that the expected observed
number of barcodes is given by

N
(
1− e−λ

)
,

we can correct the estimate for λ from the known value of the observed barcode combinations, and
thus estimate the number of features and barcode collisions.

While each unique feature can be conceptually thought of as single cell with its transcripts, realistic
datasets have many features with relatively small numbers of reads which are artifacts and unlikely
to correspond to true cells.

Value

create_summary_res() returns a list of S3 class demultiplex_filter_summary providing diag-
nostics for the filtering process. It contains the the following fields:

• n_reads: The total number of reads in the dataset before filtering.

• n_removed: The number of reads removed because demultiplexing failed.

• n_barcode_sets: The number of barcode sets.

• n_barcode_combinations: The possible number of barcode combinations.

• n_unique_barcodes: The number of observed unique barcode combinations (i.e. features
which may be cells) detected after filtering mismatches.

• n_estimated_features: The estimated number of features having a detected combination
of barcodes. This number will always be greater or equal than n_unique_barcodes due to
barcode collisions.

• observed_collision_lambda: The ratio of observed barcode combinations divided by the
total number of possible barcode combinations.

• corrected_collision_lambda: The ratio of estimated number of features to the total num-
ber of possible barcode combinations.

• expected_collisions: The statistically expected number of barcode collisions or more pre-
cicely the expected number of observed barcodes which correspond to two or more features.

• barcode_summary: A list containing a summary for each barcode set. Each element contains
the following:

– width: The width (number of nucleotides) of the barcode set.
– n_barcodes: Number of query barcodes.
– n_allowed_mismatches: Number of allowed mismatches for the barcode set.

filter_demultiplex_res 9

– n_removed: Number of reads having too many mismatches for this barcode set.
– mismatch_frame: A data.frame with the two columns, n_mismatches and frequency

showing the number of reads for each of the allowed number of mismatches for the given
barcode set.

The print() method returns its output invisibly.

Examples

library(purrr)
library(Biostrings)
input_fastq <- system.file(

"extdata", "PETRI-seq_forward_reads.fq.gz", package = "posDemux")
reads <- readDNAStringSet(input_fastq, format = "fastq")
barcode_files <- system.file(

"extdata/PETRI-seq_barcodes",
c(bc1 = "bc1.fa", bc2 = "bc2.fa", bc3 = "bc3.fa"), package = "posDemux"
)

names(barcode_files) <- paste0("bc", 1L:3L)
barcode_index <- map(barcode_files, readDNAStringSet)
barcodes <- barcode_index[c("bc3", "bc2", "bc1")]
sequence_annotation <- c(UMI = "P", "B", "A", "B", "A", "B", "A")
segment_lengths <- c(7L, 7L, 15L, 7L, 14L, 7L, NA_integer_)
demultiplex_res <- posDemux::combinatorial_demultiplex(

reads, barcodes = barcodes, segments = sequence_annotation,
segment_lengths = segment_lengths
)

filtered_res <- filter_demultiplex_res(demultiplex_res, allowed_mismatches = 1L)
freq_table <- create_freq_table(filtered_res$demultiplex_res$assigned_barcodes)
print(filtered_res$summary_res)

This also works, but is usually not necessary to call directly
alternative_summary_res <- create_summary_res(

retained = filtered_res$retained, barcodes = barcodes,
assigned_barcodes = filtered_res$demultiplex_res$assigned_barcodes,
allowed_mismatches = 1L, mismatches = demultiplex_res$mismatches
)

filter_demultiplex_res

Filter demultiplexed reads

Description

Filters the demultiplexed reads from combinatorial_demultiplex() such that any read exceed-
ing the number of allowed mismatches for any of the barcodes is removed. The function gives
diagnostic information on the number of reads removed per barcode and the total number of reads
removed.

10 filter_demultiplex_res

Usage

filter_demultiplex_res(demultiplex_res, allowed_mismatches)

Arguments

demultiplex_res

Unprocessed output from combinatorial_demultiplex().
allowed_mismatches

Integer vector of length one or the same length as the number of barcode seg-
ments; the threshold Hamming distance. All reads having a number of mis-
matches above this number in any of the barcodes will be filtered away.

Details

The value of n_removed does not in general equal the sum of n_removed_per_barcode since a
read can have too many mismatches with multiple barcodes.

Value

A list with the following elements:

• demultiplex_res: The contents of the input argument demultiplex_res with the sequences
filtered.

• retained: Logical vector with the same length as the number of reads in the input. TRUE if
the corresponding read is retained. Useful for future filtering of paired-end reads.

• summary_res: Result of create_summary_res() called on the results of filtering.

See Also

create_summary_res()

Examples

library(purrr)
library(Biostrings)
input_fastq <- system.file(

"extdata", "PETRI-seq_forward_reads.fq.gz", package = "posDemux")
reads <- readDNAStringSet(input_fastq, format = "fastq")
barcode_files <- system.file(

"extdata/PETRI-seq_barcodes",
c(bc1 = "bc1.fa", bc2 = "bc2.fa", bc3 = "bc3.fa"), package = "posDemux"
)

names(barcode_files) <- paste0("bc", 1L:3L)
barcode_index <- map(barcode_files, readDNAStringSet)
barcodes <- barcode_index[c("bc3", "bc2", "bc1")]
sequence_annotation <- c(UMI = "P", "B", "A", "B", "A", "B", "A")
segment_lengths <- c(7L, 7L, 15L, 7L, 14L, 7L, NA_integer_)
demultiplex_res <- posDemux::combinatorial_demultiplex(

reads, barcodes = barcodes, segments = sequence_annotation,
segment_lengths = segment_lengths

freq_plot 11

)
filtered_res <- filter_demultiplex_res(demultiplex_res, allowed_mismatches = 1L)
freq_table <- create_freq_table(filtered_res$demultiplex_res$assigned_barcodes)
print(filtered_res$summary_res)

This also works, but is usually not necessary to call directly
alternative_summary_res <- create_summary_res(

retained = filtered_res$retained, barcodes = barcodes,
assigned_barcodes = filtered_res$demultiplex_res$assigned_barcodes,
allowed_mismatches = 1L, mismatches = demultiplex_res$mismatches
)

freq_plot Diagnostic plots from demultiplexing

Description

Diagnostic plots for determining the effect of the barcode cutoff. freq_plot() shows a histogram
or distribution plot of the number of reads for each barcode combination, whereas knee_plot()
shows the cumulative fraction of reads ranked by the frequency of the barcode combinations in
descending order.

Usage

freq_plot(
freq_table,
cutoff = NULL,
type = "histogram",
log_scale_x = TRUE,
log_scale_y = FALSE,
scale_by_reads = FALSE

)

knee_plot(freq_table, cutoff = NULL)

Arguments

freq_table The frequency table from create_freq_table().

cutoff Optional scalar numeric, the x-coordinate for drawing a vertical dashed line in
the plots in order to indicate the cutoff. Please note that this argument is in-
terpreted literally, meaning that in order to correctly display the same cutoff on
both type of plots, the cutoff value has to be transformed. In order to safely con-
vert between the two types of cutoffs, use the functions bc_to_freq_cutoff()
and freq_to_bc_cutoff().

type The type of frequency plot to make, either 'histogram' or 'density'.

log_scale_x Logical: Should a log scale be applied to the x-axis of the frequency plot?

log_scale_y Logical: Should a log scale be applied to the y-axis of the frequency plot?

12 freq_plot

scale_by_reads Logical: Should the y-axis of the plot be scaled by the number of reads on the
x-axis?

Value

A ggplot object which can be displayed immediately or further modified.

See Also

bc_to_freq_cutoff() freq_to_bc_cutoff()

Examples

library(purrr)
library(Biostrings)
input_fastq <- system.file(

"extdata", "PETRI-seq_forward_reads.fq.gz", package = "posDemux")
reads <- readDNAStringSet(input_fastq, format = "fastq")
barcode_files <- system.file(

"extdata/PETRI-seq_barcodes",
c(bc1 = "bc1.fa", bc2 = "bc2.fa", bc3 = "bc3.fa"),
package = "posDemux"
)

names(barcode_files) <- paste0("bc", 1L:3L)
barcode_index <- map(barcode_files, readDNAStringSet)
barcodes <- barcode_index[c("bc3", "bc2", "bc1")]
sequence_annotation <- c(UMI = "P", "B", "A", "B", "A", "B", "A")
segment_lengths <- c(7L, 7L, 15L, 7L, 14L, 7L, NA_integer_)
demultiplex_res <- posDemux::combinatorial_demultiplex(

reads, barcodes = barcodes, segments = sequence_annotation,
segment_lengths = segment_lengths)

filtered_res <- filter_demultiplex_res(demultiplex_res, allowed_mismatches = 1L)
freq_table <- create_freq_table(filtered_res$demultiplex_res$assigned_barcodes)

bc_cutoff <- 500L
Notice the bend (knee) of the curve
knee_plot(freq_table, cutoff = bc_cutoff)

Note that we must convert the cutoff when constructing the frequency plot
freq_cutoff <- bc_to_freq_cutoff(freq_table, bc_cutoff)

This is the most basic type of frequency plot which can be made,
but it is a bit hard to interpret whether a selected cutoff is sensible
freq_plot(

freq_table, cutoff = freq_cutoff, type = "histogram",
log_scale_x = FALSE, log_scale_y = FALSE, scale_by_reads = FALSE)

For most practical purposes, this is the most informative version
freq_plot(freq_table, cutoff = freq_cutoff, type = "density",

log_scale_x = TRUE, log_scale_y = FALSE,
scale_by_reads = TRUE)

interactive_bc_cutoff 13

interactive_bc_cutoff Interactive cutoff selection

Description

Returns an interactive Shiny application for determining cutoff from knee plot and barcode fre-
quency plot. The user will select the appropriate number of barcode combinations (i.e. distinct
cells) to keep for further analysis. Usually, this is done by aiming for the ’knee’ of the knee plot in
order to keep most reads, while at the same time removing barcode combinations which are either
artifacts or broken cells.

Usage

interactive_bc_cutoff(freq_table)

Arguments

freq_table The frequency table from create_freq_table().

Value

A shiny.appobj which launches when printed and returns the last selected cutoff (invisibly) when
it stops.

Examples

if (interactive()) {
library(purrr)
library(shiny)
library(Biostrings)
input_fastq <- system.file(

"extdata", "PETRI-seq_forward_reads.fq.gz", package = "posDemux")
reads <- readDNAStringSet(input_fastq, format = "fastq")
barcode_files <- system.file(

"extdata/PETRI-seq_barcodes",
c(bc1 = "bc1.fa", bc2 = "bc2.fa", bc3 = "bc3.fa"),
package = "posDemux"
)

names(barcode_files) <- paste0("bc", 1L:3L)
barcode_index <- map(barcode_files, readDNAStringSet)
barcodes <- barcode_index[c("bc3", "bc2", "bc1")]
sequence_annotation <- c(UMI = "P", "B", "A", "B", "A", "B", "A")
segment_lengths <- c(7L, 7L, 15L, 7L, 14L, 7L, NA_integer_)
demultiplex_res <- posDemux::combinatorial_demultiplex(

reads, barcodes = barcodes, segments = sequence_annotation,
segment_lengths = segment_lengths
)

filtered_res <- filter_demultiplex_res(
demultiplex_res, allowed_mismatches = 1L)

14 row_match

freq_table <- create_freq_table(
filtered_res$demultiplex_res$assigned_barcodes)

selection_app <- interactive_bc_cutoff(freq_table)
selected_bc_cutoff <- runApp(selection_app)

}

posDemux Utilities for segmented sequences with combinatorial barcoding

Description

Provides tools for handling reads with combinatorial barcodes, and multiple adapter regions. This
includes utilities for demultiplexing, sequence segmenting and filtering. The package is intended to
work with single-cell RNA-seq data with multiple barcoding (e.g. SPLiT-seq and PETRI-seq).

Author(s)

Jakob Peder Pettersen jakobpeder.pettersen@gmail.com

row_match Row matching of tables

Description

This function extends the functionality of %in% for finding which rows in the first argument exist in
the second.

Usage

row_match(x, table)

Arguments

x A matrix or data frame which rows to be matched. Typically, this will be a
matrix of assigned barcodes for each read.

table A matrix or data frame with the rows to be matched against. Typically, this will
be the top portion of a frequency table.

Details

As this function is intended to be used for data frames containing more than just the barcodes,
the intersection of the column names is used for matching. As opposed to base::match(), this
function is implemented more efficiently by converting each row into a numeric encoding before
matching.

For technical reasons, it is not permitted for the product of the number of the unique values of the
columns in table to exceed 232 − 1 ≈ 2.1 · 109.

mailto:jakobpeder.pettersen@gmail.com

streaming_callbacks 15

Value

Logical vector, for each row in x, is the same row found in table?

See Also

create_freq_table() for how frequency tables are constructed, combinatorial_demultiplex()
for more information on the matrix of assigned barcodes, and dplyr::inner_join() for a function
with similar functionality.

Examples

barcode_table <- data.frame(
read = c("seq_1", "seq_2", "seq_3", "seq_4"),
bc1 = c("A", "B", "C", "B"),
bc2 = c("A", "C", "A", "A")
)

freq_table <- data.frame(
bc1 = c("B", "B", "C", "A"),
bc2 = c("A", "C", "A", "A"),
frequency = c(200L, 100L, 50L, 10L)
)

freq_cutoff <- 100L

selected_freq_table <- freq_table[freq_table$frequency >= freq_cutoff,]

selected_rows <- row_match(barcode_table, selected_freq_table)
selected_barcode_table <- barcode_table[selected_rows,]

streaming_callbacks Suggested setup for FASTQ streaming

Description

Even though the user can define the arguments state_init, loader, and archiver for streaming_demultiplex(),
this approach is only recommended for advanced users. This functions defines a premade combi-
nations of these three arguments which should be suitable in most cases. The loader streams a
FASTQ file in chunks using ShortRead::FastqStreamer() and the archiver outputs a data frame
to file consisting of the read name (read), the sequences of all payloads (e.g. UMI), and barcode
assignments (c('bc3','bc2','bc1')).

Usage

streaming_callbacks(
input_file,
output_table_file,
chunk_size = 1e+06,

16 streaming_callbacks

verbose = TRUE,
min_width = NULL

)

Arguments

input_file The path to the FASTQ file to be used for demultiplexing.
output_table_file

The path to which the output barcode table will be written.

chunk_size Integer, the number of reads to process in each chunk.

verbose Logical scalar: Should the progress be displayed?

min_width Optional integer scalar: Minimum width of the sequences to keep. For reads
which are shorter than this, a warning it emitted and the reads are removed and
ignored and thus not appear in any statistics. The data loader is not supposed to
be used as a length filter, so this option is more like an escape hatch for being
able to deal with sequences which have not been properly filtered beforehand.

Details

If the read names have any spaces in them, the loader will only keep the portion of the read name
preceding the first space. This is due to the Illumina platform’s behavior of encoding the sequencing
direction (forward or reverse) past the space. Keeping the read names with the space is usually not
desirable as it makes the resulting barcode table more confusing and makes it more difficult to group
the forward and reverse reads together afterwards.

Value

A list with the following elements, all of which are intended to be used as the corresponding argu-
ments to streaming_demultiplex():

• state_init

• loader

• archiver

Examples

library(purrr)
library(Biostrings)
input_fastq <- system.file(

"extdata", "PETRI-seq_forward_reads.fq.gz", package = "posDemux")
output_barcode_table <- tempfile(pattern = "barcode_table", fileext = ".txt")

callbacks <- streaming_callbacks(
input_file = input_fastq, output_table_file = output_barcode_table,
chunk_size = 10000, verbose = TRUE)

barcode_files <- system.file(
"extdata/PETRI-seq_barcodes",
c(bc1 = "bc1.fa", bc2 = "bc2.fa", bc3 = "bc3.fa"),
package = "posDemux"

streaming_demultiplex 17

)
names(barcode_files) <- paste0("bc", 1L:3L)
barcode_index <- map(barcode_files, readDNAStringSet)
barcodes <- barcode_index[c("bc3", "bc2", "bc1")]
sequence_annotation <- c(UMI = "P", "B", "A", "B", "A", "B", "A")
segment_lengths <- c(7L, 7L, 15L, 7L, 14L, 7L, NA_integer_)
streaming_summary_res <- streaming_demultiplex(

state_init = callbacks$state_init, loader = callbacks$loader,
archiver = callbacks$archiver, barcodes = barcodes, allowed_mismatches = 1L,
segments = sequence_annotation, segment_lengths = segment_lengths
)

streaming_demultiplex Demultiplexing with streaming

Description

This function provides an interface to combinatorial_demultiplex() and filter_demultiplex_res()
such that reads are streamed in chunks instead having to load everything at once, hence reducing
memory consumption. It accepts two functions which are called once per chunk: A data loader
function for producing the sequences of the chunk and an archiver writing the results to file.

Usage

streaming_demultiplex(
state_init,
loader,
archiver,
barcodes,
allowed_mismatches,
segments,
segment_lengths

)

Arguments

state_init The initial state to pass into loader.

loader Function loading the reads. It has the signature f(state), where state is a
user-defined object which is initialized to be state_init and for the subsequent
iterations taken as the state field of the output of archiver. Its return value is
a list with the following fields:

• state: The state to be passed into archiver.
• sequences: A XStringSet object, the sequences to be demultiplexed in

the current chunk.
• should_terminate: A scalar logical. If TRUE, the demultiplexing process

terminates and the final results are returned. Notice that this termination
happens before the sequences of the final call to loader are demultiplexed.

18 streaming_demultiplex

archiver Function taking care of archiving the demultiplexed results. Its arguments are:
• state: The state of the process returned by loader.
• filtered_res: The output from running combinatorial_demultiplex()

and filter_demultiplex_res() on the data expect that the field summary_res
is missing.

Its output is a state object fed into the next call to loader.
barcodes A list of XStringSet objects in the same order they appear in the sequences, the

barcodes to be used for demultiplexing. All of the barcodes in each XStringSet
must have the same length as specified by the segment_lengths argument and
be named. For computational reasons, the maximum possible length of an indi-
vidual barcode is 127.

allowed_mismatches

Integer vector of length one or the same length as the number of barcode seg-
ments; the threshold Hamming distance. All reads having a number of mis-
matches above this number in any of the barcodes will be filtered away.

segments Character vector showing the segments of the sequences from 5’ end to 3’ end.
The code applied is as follows:

• 'A': Adapter (often referred to as linker), is trimmed and ignored
• 'B': Barcode, used for demultiplexing
• 'P': Payload, sequence to be kept after trimming and demultiplexing (e.g.

cDNA or UMI).
If this vector is named, this will determine the names of the payload sets. Names
of the barcode sets will be determined by the names of the argument barcodes
(if any).

segment_lengths

Integer vector with the same length as segments, lengths of the segments pro-
vided in the same order as in segments. Up to one of the non-barcode segments
can have its length set to NA which means it is considered a variadic length seg-
ment.

Details

The data loader decides the size of each chunk. While this framework does not provide any re-
striction on the state object, the loader and archiver must be written such that the state objects
they return are compatible. Since the data loader alone decides when to terminate, bad termina-
tions crieria can cause a runaway loop. Usually, it will be useful to have a progress tracker of how
many reads are demultiplexed. The framework itself does not implement this, so it is typically
implemented into the archiver or loader.

For technical reasons, it is not possible to do streaming when the number of possible barcode com-
binations exceeds 232 − 1 ≈ 2.1 · 109.

Value

A list with three elements:

• freq_table: The frequency table for all reads, akin to the output of create_freq_table().
• summary_res: The summary result of match filtering of all reads per create_summary_res().
• state_final: The final state object returned from loader.

streaming_demultiplex 19

See Also

filter_demultiplex_res(), combinatorial_demultiplex(), create_freq_table(), and create_summary_res()
for the underlying processing.

Examples

library(purrr)
library(Biostrings)
input_fastq <- system.file(

"extdata", "PETRI-seq_forward_reads.fq.gz", package = "posDemux")
output_barcode_table <- tempfile(pattern = "barcode_table", fileext = ".txt")

callbacks <- streaming_callbacks(
input_file = input_fastq, output_table_file = output_barcode_table,
chunk_size = 10000, verbose = TRUE)

barcode_files <- system.file(
"extdata/PETRI-seq_barcodes",
c(bc1 = "bc1.fa", bc2 = "bc2.fa", bc3 = "bc3.fa"),
package = "posDemux"
)

names(barcode_files) <- paste0("bc", 1L:3L)
barcode_index <- map(barcode_files, readDNAStringSet)
barcodes <- barcode_index[c("bc3", "bc2", "bc1")]
sequence_annotation <- c(UMI = "P", "B", "A", "B", "A", "B", "A")
segment_lengths <- c(7L, 7L, 15L, 7L, 14L, 7L, NA_integer_)
streaming_summary_res <- streaming_demultiplex(

state_init = callbacks$state_init, loader = callbacks$loader,
archiver = callbacks$archiver, barcodes = barcodes, allowed_mismatches = 1L,
segments = sequence_annotation, segment_lengths = segment_lengths
)

Index

∗ internal
posDemux, 14

%in%, 14

base::match(), 14
bc_to_freq_cutoff, 2
bc_to_freq_cutoff(), 11, 12

combinatorial_demultiplex, 4
combinatorial_demultiplex(), 6, 7, 9, 10,

15, 17–19
create_freq_table, 5
create_freq_table(), 3, 11, 13, 15, 18, 19
create_summary_res, 7
create_summary_res(), 10, 18, 19

dplyr::inner_join(), 15

filter_demultiplex_res, 9
filter_demultiplex_res(), 6, 7, 17–19
freq_plot, 11
freq_to_bc_cutoff (bc_to_freq_cutoff), 2
freq_to_bc_cutoff(), 11, 12

ggplot, 12

interactive_bc_cutoff, 13

knee_plot (freq_plot), 11

posDemux, 14
posDemux-package (posDemux), 14
print.demultiplex_filter_summary

(create_summary_res), 7

row_match, 14

shiny.appobj, 13
ShortRead::FastqStreamer(), 15
streaming_callbacks, 15
streaming_demultiplex, 17
streaming_demultiplex(), 15, 16

XStringSet, 4, 5, 7, 17, 18

20

	bc_to_freq_cutoff
	combinatorial_demultiplex
	create_freq_table
	create_summary_res
	filter_demultiplex_res
	freq_plot
	interactive_bc_cutoff
	posDemux
	row_match
	streaming_callbacks
	streaming_demultiplex
	Index

