
Package ‘h5vc’
April 23, 2025

Type Package

Title Managing alignment tallies using a hdf5 backend

Version 2.42.0

Author Paul Theodor Pyl

Maintainer Paul Theodor Pyl <paul.theodor.pyl@gmail.com>

Description This package contains functions to interact with tally data from NGS experi-
ments that is stored in HDF5 files.

License GPL (>= 3)

VignetteBuilder knitr

Depends grid, gridExtra, ggplot2

LinkingTo Rhtslib (>= 1.99.1)

Imports rhdf5, reshape, S4Vectors, IRanges, Biostrings, Rsamtools (>=
2.13.1), methods, GenomicRanges, abind, BiocParallel,
BatchJobs, h5vcData, GenomeInfoDb

Suggests knitr, locfit, BSgenome.Hsapiens.UCSC.hg19, biomaRt,
BSgenome.Hsapiens.NCBI.GRCh38, RUnit, BiocGenerics, rmarkdown

SystemRequirements GNU make

git_url https://git.bioconductor.org/packages/h5vc

git_branch RELEASE_3_21

git_last_commit 4cf0334

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-04-23

Contents
h5vc-package . 2
applyTallies . 3
batchTallies . 4
binGenome . 6

1

2 h5vc-package

binnedAFs . 7
callVariants . 8
callVariantsFisher . 12
callVariantsSingle . 14
Coverage . 17
geom_h5vc . 18
getSampleData . 19
h5dapply . 21
h5readBlock . 24
helpers . 25
mergeTallies . 27
mergeTallyFiles . 28
mismatchPlot . 29
mutationSpectra . 31
plotMutationSpectrum . 33
prepareForHDF5 . 34
prepareTallyFile . 35
tallyBAM . 36
tallyRanges . 37
writeReference . 39
writeToTallyFile . 40

Index 42

h5vc-package Managing alignment tallies using a hdf5 backend

Description

This package contains functions to interact with tally data from NGS experiments that is stored in
HDF5 files. For detail see vignettes shipped with this package.

Details

Package: h5vc
Type: Package
Version: 1.0.4
Date: 2013-10-11
License: GPL (>= 3)

This package is desgned to facilitate the analysis of genomics data through tallies stored in a HDF5
file. Within a HDF5 file the tally is simply a table of bases times genomic positions listing for each
position the count of each base observed as a mismatch in the sample at any given position. Strand
and sample are additional dimension in this array, which leads to a 4D-array called ’Counts’. The
total coverage is stored in a separate array of 3 dimensions (Sample x Strand x Genomic Position)

applyTallies 3

called ’Coverages’, there is a 3 dimensional ’Deletions’ array and a 1D-vector encoding the refer-
ence base (’Reference’). Those 4 arrays are stored as datasets within a HDF5 tally file in which the
group-structure of the tally file encodes for the organisatorial levels of ’Study’ and ’Chromosome’.
For details on the layout of HDF5 files visit (http://www.hdfgroup.org), a short description is given
in the vignettes.

Creating those HDF5 tally files can be accomplished from within R or through a Python script
that will generate a tally file from a set of .bam files. The workflow is described in the vignettes
h5vc.creating.tallies and h5vc.creating.tallies.within.R.

Author(s)

Paul Pyl Maintainer: Paul Pyl pyl@embl.de

applyTallies Preparing the results of tallyBAM for writing to an HDF5 tally file

Description

This function tallies a set of bam files and prepares the data for writing to an HDF5 tally file.

Usage

applyTallies(bamfiles, chrom, start, stop, q=25, ncycles = 0, max.depth=1000000, prepForHDF5 = TRUE, reference = NULL)

Arguments

bamfiles A character vector of filenames of the bam files that should be tallies. Note
that for writing to an HDF5 file the order of this vector must match the order of
the Column field in the sampledata object that corresponds to the dataset - see
setSampleData for details.

prepForHDF5 Boolean flag to specify whether the data shall be structured for compatibility
with the HDF5 tally file format. See the details section of this manual page.

reference A DNAString object containing the reference sequence corresponding to the
region that is described in the counts array – if this is NULL a consensus vote will
be used to estimate the reference at any given position, this means you cannot
detect variants with AF >= 0.5 anymore

chrom Chromosome in which to tally

start First position of the tally

stop Last position of the tally

q quality cut-off for considering a base call

ncycles number of sequencing cycles form the front and back of the read that should be
considered unreliable - used for stratifying the nucleotide counts

max.depth only tally a position if there are less than this many reads overlapping it - can
prevent long runtimes in unreliable regions

4 batchTallies

Details

This is a wrapper function for applying tallyBAM to a set of bam files specified in the bamfiles
argument. If prepForHDF5 is not true the result is equivalent to calling tallyBAM with lapply
on the file names, otherwise the resulting data structure has the same layout as the return value
of h5readBlock and can be written to an HDF5 tally file directly. The order or samples along
the sample dimension is the same as the order of the file names (i.e. the order of the bamfiles
argument).

Value

A list with slots containing the Counts,Coverages,Deletions and Reference datasets for the given
sample if prepForHDF5 is true, a list of 3D-arrays (Nucleotide x Strand x Position) otherwise.

Author(s)

Paul Pyl

Examples

library(h5vc)
library(BSgenome.Hsapiens.UCSC.hg19)
files <- c("NRAS.AML.bam","NRAS.Control.bam")
bamFiles <- file.path(system.file("extdata", package = "h5vcData"), files)
chrom = "1"
startpos <- 115247090
endpos <- 115259515
theData <- applyTallies(bamFiles, reference = Hsapiens[["chr1"]][startpos:endpos], chr = chrom, start = startpos, stop = endpos, ncycles = 10)
str(theData)

batchTallies Tallying bam files in parallel using BatchJobs on high performance
compute clusters (HPC)

Description

These function tally a set of bam files in blocks spanning a specified region and write the results to
an HDF5 tally file; uses BatchJobs for parallel computation on HPCs

Usage

batchTallyParam(
bamFiles,
destination,
group,
chrom, start, stop,
blocksize = 100000,
registryDir = tempdir(),
resources = list("queue" = "research-rh6", "memory"="4000", "ncpus"="4", walltime="90:00"),

batchTallies 5

q=25, ncycles = 0, max.depth=1000000,
reference = NULL,
sleep = 5

)

batchTallies(confList = batchTallyParam())

rerunBatchTallies(confList, tryCollect = TRUE)

collectTallies(blocks, confList, registries)

Arguments

bamFiles A character vector of filenames of the bam files that should be tallies. Note
that for writing to an HDF5 file the order of this vector must match the order of
the Column field in the sampledata object that corresponds to the dataset - see
setSampleData for details.

reference A DNAString object containing the reference sequence corresponding to the re-
gion that is to be tallied – if this is NULL a consensus vote will be used to estimate
the reference at any given position, this means you cannot detect variants with
AF >= 0.5 anymore – especially when tallying more than one bamFile you really
should specify this

destination Filename of the HDF5 tally file that will be written to – this needs to contain all
the groups and datasets already – see prepareTallyFile for details

group Location within the tally file where the data will be written – e.g. "/ExampleStudy/22"

chrom Chromosome in which to tally

start First position of the tally

stop Last position of the tally

q quality cut-off for considering a base call

ncycles number of sequencing cycles form the front and back of the read that should be
considered unreliable - used for stratifying the nucleotide counts

max.depth only tally a position if there are less than this many reads overlapping it - can
prevent long runtimes in unreliable regions

blocksize Size of the blocks in bases that the tallying will be performed in, this influences
the number of jobs send to the cluster

registryDir Directory in which the registries created by BatchJobs wil be held, this can be
temporary since we delete them when we are done

resources A named list specifying the resource requirements of the cluster jobs, this must
contain names for the fields specified in the cluster configuration file – see the
documentation of BatchJobs for details

confList A configuration list as returned by a call to batchTallyParam()

sleep Number of seconds to sleep before checking if blocks are finshed, increase this
if you have large blocks and find the output of batchTallies to verbose

tryCollect Boolean flag specifying whether the rerunBatchTallies function should try to
collect data from the specified registries before re-submitting.

6 binGenome

blocks data.frame defining blocks to tally in, result of a cal to defineBlocks

registries A list mapping registry IDs to the work paths of the corresponding registries

Details

This is a wrapper function for applying tallyBAM to a set of bam files specified in the bamFiles
argument. The order or samples along the sample dimension is the same as the order of the file
names (i.e. the order of the bamfiles argument). The function uses BatchJobs to dispatch tallying
in blocks along the genome to a HPC and collects the results and writes them into the HDF5 tally
file specified in the destination parameter.

rerunBatchTallies can be used to re-submit failed blocks.

collectTallies can be used to manually collect tally data from the registries created by batchTallies

Value

[None] – prints progress messages along the way.

Author(s)

Paul Pyl

Examples

Not run:
library(h5vc)
files <- c("NRAS.AML.bam","NRAS.Control.bam")
bamFiles <- file.path(system.file("extdata", package = "h5vcData"), files)
chrom = "1"
startpos <- 115247090
endpos <- 115259515
batchTallies(batchTallyParam(bamFiles, chrom, startpos, endpos))

End(Not run)

binGenome Function for binning a genome.

Description

Function for generating a GRanges representation of a binning of the genome given in the reference
object.

Usage

binGenome(reference, binsize = 1e+06, chroms = seqnames(reference))

binnedAFs 7

Arguments

reference A BSgenome object.

binsize Size of bins along the genome.

chroms Which chromosomes to use, defaults to all chromosome described as seqnames
of the reference object.

Details

This function creates a GRanges object that represents bins of size binsize along the genome
represented by the reference object.

Value

A GRanges object that represents bins of size binsize along the genome represented by the reference
object, includes special handling of chromosomes shorter than binsize and the last bin of each
chromosome.

Author(s)

Paul Theodor Pyl

See Also

defineBlocks

Examples

library(BSgenome.Hsapiens.NCBI.GRCh38)
bins <- binGenome(Hsapiens, binsize = 100e6, chroms = c("1","2","3","X","MT"))
bins

binnedAFs Estimate allelic frequency distributions in bins along the genome

Description

This function is used to give estimates of the ditribution of observed allelic freuqencies in a regions
of the genome, use in conjunction with h5dapply

Usage

binnedAFs(data, sampledata, normalise = TRUE, binWidth = 0.05, minCov = 10, minCount = 2)

8 callVariants

Arguments

data A list object returned by a call to h5dapply or h5readBlock.

sampledata Sample metadata describing the cohort, can be extracted from an HDF5 tally file
using the getSampleData function.

normalise Boolean flag to specify whether the counts or percentages of observed allelic
frequencies should be returned.

binWidth Width of bins in allelic frequency space, defaults to 0.05.

minCov Minimum required coverage for a position to be considered.

minCount Minimum required number of mismatches for a position to be considered.

Value

A matrix of AF bins times samples.

Author(s)

Paul Theodor Pyl

Examples

library(h5vc)
tallyFile <- system.file("extdata", "example.tally.hfs5", package = "h5vcData")
sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")
afs <- h5dapply(

filename = tallyFile,
group = "/ExampleStudy/16",
names = c("Counts", "Coverages"),
range = c(29e6, 29.05e6),
blocksize = 1e4,
FUN = binnedAFs,
sampledata = sampleData

)
afs[[3]]

callVariants Variant calling

Description

These functions implement various attempts at variant calling.

callVariants 9

Usage

callVariantsPaired(data, sampledata, cl = vcConfParams())

vcConfParams(
minStrandCov = 5,
maxStrandCov = 200,
minStrandAltSupport = 2,
maxStrandAltSupportControl = 0,
minStrandDelSupport = minStrandAltSupport,
maxStrandDelSupportControl = maxStrandAltSupportControl,
minStrandInsSupport = minStrandAltSupport,
maxStrandInsSupportControl = maxStrandAltSupportControl,
minStrandCovControl = 5,
maxStrandCovControl = 200,
bases = 5:8,
returnDataPoints = TRUE,
annotateWithBackground = TRUE,
mergeCalls = TRUE,
mergeAggregator = mean,
pValueAggregator = max

)

Arguments

data A list with elements Counts (a 4d integer array of size [1:12, 1:2, 1:k, 1:n]),
Coverage (a 3d integer array of size [1:2, 1:k, 1:n]), Deletions (a 3d integer
array of size [1:2, 1:k, 1:n]), Reference (a 1d integer vector of size [1:n]) –
see Details.

sampledata A data.frame with k rows (one for each sample) and columns Type, Column
and (SampleGroup or Patient). The tally file should contain this information
as a group attribute, see getSampleData for an example.

cl A list with parameters used by the variant calling functions. Such a list can be
produced, for instance, by a call to vcConfParams.

minStrandCov Minimum coverage per strand in the case sample.

maxStrandCov Maximum coverage per strand in the case sample.
minStrandCovControl

Minimum coverage per strand in the control sample.
maxStrandCovControl

Maximum coverage per strand in the control sample.
minStrandAltSupport

Minimum support for the alternative allele per strand in the case sample. This
should be 1 or higher.

maxStrandAltSupportControl

Maximum support for the alternative allele per strand in the control sample. This
should usually be 0.

10 callVariants

minStrandDelSupport

Minimum support for the deletion per strand in the case sample. This should be
1 or higher.

maxStrandDelSupportControl

Maximum support for the deletion per strand in the control sample. This should
usually be 0.

minStrandInsSupport

Minimum support for the insertion per strand in the case sample. This should
be 1 or higher.

maxStrandInsSupportControl

Maximum support for the insertion per strand in the control sample. This should
usually be 0.

bases Indices for subsetting in the bases dimension of the Counts array, 5:8 extracts
only those calls made in the middle one of the sequencing cycle bins.

returnDataPoints

Boolean flag to specify that a data.frame with the variant calls should be re-
turned, otherwise only position are returned as a numeric vector. If returnDataPoints
== FALSE only the variant positions are returned.

annotateWithBackground

Boolean flag to specify that the background mismatch / deletion frequency esti-
mated from all control samples in the cohort should be added to the output. A
simple binomial test will be performed as well. Only usefull if returnDataPoints
== TRUE

mergeCalls Boolean flag to specify that adjacent calls should be merged where appropriate
(used by callDeletionsPaired). Only usefull applied if returnDataPoints
== TRUE

mergeAggregator

Aggregator function for merging adjacent calls, defaults to mean, which means
that a deletion larger than 1bp will be annotated with the means of the counts
and coverages

pValueAggregator

Aggregator function for combining the p-values of adjacent calls when merging,
defaults to max. Is only applied if annotateWithBackground == TRUE

Details

data is a list of datasets which has to at least contain the Counts and Coverages for variant calling
respectively Deletions for deletion calling. This list will usually be generated by a call to the
h5dapply function in which the tally file, chromosome, datasets and regions within the datasets
would be specified. See ?h5dapply for specifics. In order for callVariantsPaired to return the
correct locations of the variants there must be the h5dapplyInfo slot present in data as well. This
is itself a list (being automatically added by h5dapply and h5readBlock respectively) and contains
the slots Group (location in the HDF5 file) and Blockstart, which are used to set the chromosome
and the genomic positions of variants.

vcConfParams is a helper function that builds a set of variant calling parameters as a list. This list
is provided to the calling functions e.g. callVariantsPaired and influences their behavior.

callVariants 11

callVariantsPaired implements a simple pairwise variant callign approach applying the filters
specified in cl, and might additionally computes an estimate of the background mismatch rate (the
mean mismatch rate of all samples labeled as ’Control’ in the sampledata and annotate the calls
with p-values for the binom.test of the observed mismatch counts and coverage at each of the
samples labeled as ’Case’.

Value

The result is either a list of positions with SNVs / deletions or a data.frame containing the calls
themselves which might contain annotations. Adjacent calls might be merged and calls might be
annotated with p-values depending on configuration parameters.

When the configuration parameter returnDataPoints is FALSE the functions return the positions of
potential variants as a list containing one integer vector of positions for each sample, if no positions
were found for a sample the list will contain NULL instead. In the case of returnDatapoints
== TRUE the functions return either NULL if no poisitions were found or a data.frame with the
following slots:

Chrom The chromosome the potential variant / deletion is on

Start The starting position of the variant / deletion

End The end position of the variant / deletions (equal to Start for SNVs and single
basepair deletions)

Sample The Case sample in which the variant was observed

altAllele The alternate allele for SNVs (skipped for deletions, would be "-")

refAllele The reference allele for SNVs (skipped for deletions since the tally file might
not contain all the information necessary to extract it)

caseCountFwd Support for the variant in the Case sample on the forward strand

caseCountRev Support for the variant in the Case sample on the reverse strand
caseCoverageFwd

Coverage of the variant position in the Case sample on the forward strand
caseCoverageRev

Coverage of the variant position in the Case sample on the reverse strand
controlCountFwd

Support for the variant in the Control sample on the forward strand
controlCountRev

Support for the variant in the Control sample on the reverse strand
controlCoverageFwd

Coverage of the variant position in the Control sample on the forward strand
controlCoverageRev

Coverage of the variant position in the Control sample on the reverse strand

If the annotateWithBackground option is set the following extra columns are returned

backgroundFrequencyFwd

The averaged frequency of mismatches / deletions at the position of all samples
of type Control on the forward strand

12 callVariantsFisher

backgroundFrequencyRev

The averaged frequency of mismatches / deletions at the position of all samples
of type Control on the reverse strand

pValueFwd The p.value of the test binom.test(caseCountFwd, caseCoverageFwd, p =
backgroundFrequencyFwd, alternative = "greater")

pValueRev The p.value of the test binom.test(caseCountRev, caseCoverageRev, p =
backgroundFrequencyRev, alternative = "greater")

The function callDeletionsPaired merges adjacent single-base deletion calls if the option mergeCalls
is set to TRUE, in that case the counts and coverages (e.g. caseCountFwd) are aggregated using the
function supplied in the mergeAggregator option of the configuration list (defaults to mean) and the
p-values pValueFwd and pValueFwd (if annotateWithBackground is TRUE), are aggregated using
the function supplied in the pValueAggregator option (defaults to max).

Author(s)

Paul Pyl

Examples

library(h5vc) # loading library
tallyFile <- system.file("extdata", "example.tally.hfs5", package = "h5vcData")
sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")
position <- 29979629
windowsize <- 1000
vars <- h5dapply(# Calling Variants

filename = tallyFile,
group = "/ExampleStudy/16",
blocksize = 500,
FUN = callVariantsPaired,
sampledata = sampleData,
cl = vcConfParams(returnDataPoints=TRUE),
names = c("Coverages", "Counts", "Reference", "Deletions"),
range = c(position - windowsize, position + windowsize)

)
vars <- do.call(rbind, vars) # merge the results from all blocks by row
vars # We did find a variant

callVariantsFisher Paired variant calling using fisher tests

Description

This function implements a simple paired variant calling strategy based on the fisher test

Usage

callVariantsPairedFisher(data, sampledata, pValCutOff = 0.05, minCoverage = 5, mergeDels = TRUE, mergeAggregator = mean)

callVariantsFisher 13

Arguments

data A list with elements Counts (a 4d integer array of size [1:12, 1:2, 1:k, 1:n]),
Coverage (a 3d integer array of size [1:2, 1:k, 1:n]), Reference (a 1d integer
vector of size [1:n]) – see Details.

sampledata A data.frame with k rows (one for each sample) and columns Type, Column
and (Group or Patient). The tally file should contain this information as a
group attribute, see getSampleData for an example.

pValCutOff Maximum allowed p-Value for the fisher test on contingency matrix matrix(c(caseCounts,
caseCoverage, controlCounts, controlCoverage), nrow=2).

minCoverage Required coverage in both sample for a call to be made

mergeDels Boolean flag specifying whether adjacent deletions should be merged
mergeAggregator

Which function to use for aggregating the values associated with adjacent dele-
tions that are being merged

Details

data is a list which has to at least contain the Counts, Coverages and Reference datasets. This list
will usually be generated by a call to the h5dapply function in which the tally file, chromosome,
datasets and regions within the datasets would be specified. See h5dapply for specifics.

callVariantsPairedFisher implements a simple pairwise variant callign approach based on us-
ing the fisher.test on the following contingency matrix:

caseSupport caseCoverage - caseSupport
conttrolSupport controlCoverage - controlSupport

The results are filtered by pValCutOff and minCoverage.

Value

The return value is a data.frame with the following slots:

Chrom The chromosome the potential variant is on

Start The starting position of the variant

End The end position of the variant

Sample The Case sample in which the variant was observed

refAllele The reference allele

altAllele The alternate allele

caseCount Support for the variant in the Case sample

caseCoverage Coverage of the variant position in the Case sample

controlCount Support for the variant in the Control sample
controlCoverage

Coverage of the variant position in the Control sample

pValue The p.value of the fisher.test

14 callVariantsSingle

Author(s)

Paul Pyl

Examples

library(h5vc) # loading library
tallyFile <- system.file("extdata", "example.tally.hfs5", package = "h5vcData")
sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")
position <- 29979629
windowsize <- 2000
vars <- h5dapply(# Calling Variants

filename = tallyFile,
group = "/ExampleStudy/16",
blocksize = 1000,
FUN = callVariantsPairedFisher,
sampledata = sampleData,
pValCutOff = 0.1,
names = c("Coverages", "Counts", "Reference"),
range = c(position - windowsize, position + windowsize),
verbose = TRUE

)
vars <- do.call(rbind, vars)
vars

callVariantsSingle Single sample variant calling

Description

A simple single sample variant calling function (calling SNVs and deletions)

Usage

callVariantsSingle(data, sampledata, samples = sampledata$Sample, errorRate = 0.001, minSupport = 2, minAF = 0.05, minStrandSupport = 1, mergeDels = TRUE, aggregator = mean)

Arguments

data A list with elements Counts (a 4d integer array of size [1:12, 1:2, 1:k, 1:n]),
Coverage (a 3d integer array of size [1:2, 1:k, 1:n]), Deletions (a 3d integer
array of size [1:2, 1:k, 1:n]), Reference (a 1d integer vector of size [1:n]) –
see Details.

sampledata A data.frame with k rows (one for each sample) and columns Column and
(Sample. The tally file should contain this information as a group attribute, see
getSampleData for an example.

samples The samples on which variants should be called, by default all samples specified
in sampledata are used

errorRate The expected error rate of the sequencing technology that was used, for illumina
this should be 1/1000

callVariantsSingle 15

minSupport minimal support required for a position to be considered variant

minAF minimal allelic frequency for an allele at a position to be cosidered a variant
minStrandSupport

minimal per-strand support for a position to be considered variant

mergeDels Boolean flag to specify that adjacent deletion calls should be merged

aggregator Aggregator function for merging statistics of adjacent deletion calls, defaults to
mean, which means that a deletion larger than 1bp will be annotated with the
means of the counts and coverages etc.

Details

data is a list of datasets which has to at least contain the Counts and Coverages for variant calling
respectively Deletions for deletion calling (if Deletions is not present no deletion calls will be
made). This list will usually be generated by a call to the h5dapply function in which the tally
file, chromosome, datasets and regions within the datasets would be specified. See h5dapply for
specifics.

callVariantsSingle implements a simple single sample variant callign approach for SNVs and
deletions (if Deletions is a dataset present in the data parameter. The function applies three
essential filters to the provided data, requiring:

- minSupport total support for the variant at the position - minStrandSupport support for the
variant on each strand - an allele freqeuncy of at least minAF (for pure diploid samples this can be
set relatively high, e.g. 0.3, for calling potentially homozygous variants a value of 0.8 or higher
might be used)

Calls are annotated with the p-Value of a binom.test of the present support and coverage given the
error rate provided in the errorRate parameter, no filtering is done on this annotation.

Adjacent deletion calls are merged based in the value of the mergeDels parameter and their statistics
are aggregated with the function supplied in the aggregator parameter.

Value

This function returns a data.frame containing annotated calls with the following slots:

Chrom The chromosome the potential variant / deletion is on

Start The starting position of the variant / deletion

End The end position of the variant / deletions (equal to Start for SNVs and single
basepair deletions)

Sample The sample in which the variant was called

altAllele The alternate allele for SNVs (deletions will have a "-" in that slot)

refAllele The reference allele for SNVs (deletions will have the deleted sequence here as
extracted from the Reference dataset, if the tally file contains a sparse repre-
sentation of the reference, i.e. only positions with mismatches show a reference
value the missing values are substituted with "N"’s. It is strongly suggested
to write the whole reference into the tally file prior to deletion calling - see
writeReference for details)

SupFwd Support for the variant in the sample on the forward strand

16 callVariantsSingle

SupRev Support for the variant in the sample on the reverse strand

CovFwd Coverage of the variant position in the sample on the forward strand

CovRev Coverage of the variant position in the sample on the reverse strand

AF_Fwd Allele frequency of the variant in the sample on the forward strand

AF_Rev Allele frequency of the variant in the sample on the reverse strand

Support Total Support of the variant - i.e. SupFwd + SupRev

Coverage Total Coverage of the variant position - i.e. CovFwd + CovRev

AF Total allele frequency of the variant, i.e. Support / Coverage

fBackground Background frequency of the variant in all samples but the one the variant is
called in

pErrorFwd Probablity of the observed support and coverage given the error rate on the for-
ward strand

pErrorRev Probablity of the observed support and coverage given the error rate on the re-
verse strand

pError Probablity of the observed support and coverage given the error rate on both
strands combined

pError Coverage of the variant position in the Control sample on the forward strand

pStrand p-Value of a fisher.test on the contingency matrix matrix(c(CovFwd,CovRev,SupFwd,SupRev),
nrow = 2) at this position - low values could indicate strand bias

Author(s)

Paul Pyl

Examples

library(h5vc) # loading library
tallyFile <- system.file("extdata", "example.tally.hfs5", package = "h5vcData")
sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")
position <- 29979629
windowsize <- 1000
vars <- h5dapply(# Calling Variants

filename = tallyFile,
group = "/ExampleStudy/16",
blocksize = 500,
FUN = callVariantsSingle,
sampledata = sampleData,
names = c("Coverages", "Counts", "Reference", "Deletions"),
range = c(position - windowsize, position + windowsize)

)
vars <- do.call(rbind, vars) # merge the results from all blocks by row
vars # We did find a variant

Coverage 17

Coverage Coverage analysis

Description

Functions to do analyses based on coverage

Usage

binnedCoverage(data, sampledata, gccount = FALSE)

Arguments

data A list with element Coverage (a 3d integer array of size [1:2, 1:k, 1:n])

sampledata A data.frame with k rows (one for each sample) and columns Type, Column
and (SampleGroup or Patient). The tally file should contain this information
as a group attribute, see getSampleData for an example.

gccount Boolean flag to specify whether the gc count of the bin should be reported as
well, Reference must be a slot in the data object

Details

Explanations:

This computes the per sample coverage in a given bin (determined by the width of data). This
feature is not implemented yet!

Value

Returns a data.frame with columns containing the coverage with the current bin for all samples
provided in sampledata. The binsize is determined by the blocksize argument given to h5dapply
when this function is run directly on a tally file.

Author(s)

Paul Pyl

Examples

loading library and example data
library(h5vc)
tallyFile <- system.file("extdata", "example.tally.hfs5", package = "h5vcData")
sampleData <- getSampleData(tallyFile, "/ExampleStudy/22")
data <- h5dapply(# extractting coverage binned at 1000 bases

filename = tallyFile,
group = "/ExampleStudy/22",
blocksize = 1000,
FUN = binnedCoverage,
sampledata = sampleData,

18 geom_h5vc

gccount = TRUE,
names = c("Coverages", "Reference"),
range = c(38900000,39000000)

)
data <- do.call(rbind, data)
rownames(data) <- NULL
head(data)

geom_h5vc geom_h5vc

Description

Plotting function that returns a ggplot2 layer representing the specified dataset for the specified
samples in the region [positon - windowsize, position + windowsize].

Usage

geom_h5vc(data, sampledata, samples=sampledata$Sample, windowsize, position, dataset, ...)

Arguments

data The data to be plotted. Returned by h5dapply. Must be centered on position,
extend by windowsize in each direction and contain a slot named like the dataset
argument

sampledata The sampledata for the cohort represented by data. Returned by getSampleData

samples A character vector listing the names of samples to be plotted, defaults to all
samples as described in sampledata

windowsize Size of the window in which to plot on each side. The total interval that is plotted
will be [position-windowsize,position+windowsize]

position The position at which the plot shall be centered

dataset The slot in the data argument that should be plotted

... Paramteters to be passed to the internally used geom_rect, see geom_rect for
details

Details

Creates a ggplot layer centered on position using the specified dataset from list data, annotating
it with sample information provided in the data.frame sampledata and showing all samples listed in
sample. The resulting plot uses ggplot2’s geom_rect to draw boxes representing the values from
dataset. The x-axis is the position and will span the interval [positon - windowsize, position
+ windowsize]. The x-axis is centered at 0 and additional layers to be added to the plot should be
centered at 0 also.

Ths function allows for fast creation of overview plots similar to mismatchPlot (without the stack-
ing of tracks). The example below shows how one can create a plot showing the coverage and
number of mismatches per position (but not the alternative allele) for a given region.

getSampleData 19

Value

A ggplot layer object containing the plot of the specified dataset, this can be used like any other
ggplot layer, i.e. it may be added to another plot.

Author(s)

Paul Pyl

Examples

loading library and example data
library(h5vc)
library(ggplot2)
tallyFile <- system.file("extdata", "example.tally.hfs5", package = "h5vcData")
sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")
position <- 29979629
windowsize <- 30
samples <- sampleData$Sample[sampleData$Patient == "Patient8"]
data <- h5dapply(

filename = tallyFile,
group = "/ExampleStudy/16",

blocksize = windowsize * 3, #choose blocksize larger than range so that all needed data is collected as one block
names = c("Coverages", "Counts", "Deletions"),
range = c(position - windowsize, position + windowsize)

)[[1]]
Summing up all mismatches irrespective of the alternative allele
data$CountsAggregate = colSums(data$Counts)
Simple overview plot showing number of mismatches per position
p <- ggplot() +
geom_h5vc(data=data, sampledata=sampleData, windowsize = 35, position = 500, dataset = "Coverages", fill = "gray") +
geom_h5vc(data=data, sampledata=sampleData, windowsize = 35, position = 500, dataset = "CountsAggregate", fill = "#D50000") +
facet_wrap(~ Sample, ncol = 2)
print(p)

getSampleData Reading and writing sample data from / to a tally file

Description

These functions allow reading and writing of sample data to the HDF5-based tally files. The sample
data is stored as group attribute.

Usage

getSampleData(filename, group)
setSampleData(filename, group, sampleData, largeAttributes = FALSE, stringSize = 64)

20 getSampleData

Arguments

filename The name of a tally file

group The name of a group within that tally file, e.g. /ExampleStudy/22

sampleData A data.frame with k rows (one for each sample) and columns Type, Column
and (SampleGroup or Patient. Additional column will be added as well but are
not required.)

largeAttributes

HDF5 limits the size of attributes to 64KB, if you have many samples setting
this flag will write the attributes in a separate dataset instead. getSampleData is
aware of this and automatically chooses the dataset-stored attributes if they are
present

stringSize Maximum length for string attributes (number of characters) - default of 64 char-
acters should be fine for most cases; This has to be specified since we do not
support variable length strings as of now.

Details

The returned data.frame contains information about the sample ids, sample columns in the sample
dimension of the dataset. The type of sample must be one of c("Case","Control") to be used
with the provided SNV calling function. Additional relevant per-sample information may be stored
here.

Note that the following columns are required in the sample data where the rows represent samples
in the cohort:

Sample: the sample id of the corresponding sample

Column: the index within the genomic position dimension of the corresponding sample, be aware
that getSampleData and setSampleData automatically add / remove 1 from this value since inter-
nally the tally files store the dimension 0-based whereas within R we count 1-based.

Patient the patient id of the corresponding sample

Type the type of sample

Value

sampledata A data.frame with k rows (one for each sample) and columns Type, Column
and (SampleGroup or Patient).

Author(s)

Paul Pyl

Examples

loading library and example data
library(h5vc)
We make a copy of the file to tmp here, this is only needed if we want to keep the original intact.
tallyFile <- tempfile()
stopifnot(file.copy(system.file("extdata", "example.tally.hfs5", package = "h5vcData"), tallyFile))

h5dapply 21

sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")
sampleData
modify the sample data
sampleData$AnotherColumn <- paste(sampleData$Patient, "Modified")
write to tallyFile
setSampleData(tallyFile, "/ExampleStudy/16", sampleData)
re-load and check if it worked
sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")
sampleData

h5dapply h5dapply

Description

This is the central function of the h5vc package, allows an apply operation along common dimen-
sions of datasets in a tally file.

Usage

S4 method for signature 'numeric'
h5dapply(..., blocksize, range)
S4 method for signature 'GRanges'
h5dapply(..., group, range)
S4 method for signature 'IRanges'
h5dapply(..., range)

Arguments

blocksize The size of the blocks in which to process the data (integer)

... Further parameters to be handed over to FUN

range The range along the specified dimensions which should be processed, this allows
for limiting the apply to a specific region or set of samples, etc. - optional (de-
faults to the whole chromosome); This can be a GRanges, IRanges or numerical
vector of length 2 (i.e [start, stop])

group The group (location) within the HDF5 file, note that when range is numeric or
IRanges this has to point to the location of the chromosome, e.g. /ExampleTally/Chr7.
When range is a GRanges object, the chromosome information is encoded in the
GRanges directly and group should only point to the root-group of the study, i.e.
/ExampleTally

Details

Additional function parameters are:

filename The name of a tally file to process

group The name of a group in that tally file

22 h5dapply

FUN The function to apply to each block, defaults to function(x) x, which returns the data as is
(a list of arrays)

names The names of the datasets to extract, e.g. c("Counts","Coverages") - optional (defaults
to all datasets)

dims The dimension to apply along for each dataset in the same order as names, these should
correspond to compatible dimensions between the datsets. - optional (defaults to the genomic
position dimension)

samples Character vector of sample names - must match contents of sampleData stored in the
tallyFile

sampleDimMap A list mapping dataset names to their respective sample dimensions - default
provides values for "Counts", "Coverages", "Deletions" and "Reference"

verbose Boolean flag that controls the amount of messages being printed by h5dapply

BPPARAM BPPARAM object to be passed to the bplapply call used to apply FUN to the blocks
- see BiocParallel documentation for details; if this is NULL a normal lapply will be used
instead of bplapply.

This function applys parameter FUN to blocks along a specified axis within the tally file, group and
specified datasets. It creates a list of arrays (one for each dataset) and processes that list with the
function FUN.

This is by far the most essential and powerful function within this package since it allows the user
to execute their own analysis functions on the tallies stored within the HDF5 tally file.

The supplied function FUN must have a parameter data or ... (the former is the expected be-
haviour), which will be supplied to FUN from h5dapply for each block. This structure is a list
with one slot for each dataset specified in the names argument to h5dapply containing the array
corresponding to the current block in the given dataset. Furthemore the slot h5dapplyInfo is re-
served and contains another list with the following content:

Blockstart is an integer specifying the starting position of the current block (in the dimension
specified by the dims argument to h5dapply)

Blockend is an integer specifying the end position of the current block (in the dimension specified
by the dims argument to h5dapply)

Datasets Contains a data.frame as it is returned by h5ls listing all datasets present in the other
slots of data with their group, name, dimensions, number of dimensions (DimCount) and the di-
mension that is used for splitting into blocks (PosDim)

Group contains the name of the group as specified by the group argument to h5dapply

Value

A list with one entry per block, which is the result of applying FUN to the datasets specified in the
parameter names within the block.

Author(s)

Paul Pyl

h5dapply 23

Examples

loading library and example data
library(h5vc)
tallyFile <- system.file("extdata", "example.tally.hfs5", package = "h5vcData")
sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")
check the available samples and sampleData
print(sampleData)
data <- h5dapply(#extracting coverage using h5dapply

filename = tallyFile,
group = "/ExampleStudy/16",
blocksize = 1000,
FUN = function(x) rowSums(x$Coverages),
names = c("Coverages"),
range = c(29000000,29010000),
verbose = TRUE
)

coverages <- do.call(rbind, data)
colnames(coverages) <- sampleData$Sample[order(sampleData$Column)]
coverages
#Subsetting by Sample
sampleData <- sampleData[sampleData$Patient == "Patient5",]
data <- h5dapply(#extracting coverage using h5dapply

filename = tallyFile,
group = "/ExampleStudy/16",
blocksize = 1000,
FUN = function(x) rowSums(x$Coverages),
names = c("Coverages"),
range = c(29000000,29010000),
samples = sampleData$Sample,
verbose = TRUE
)

coverages <- do.call(rbind, data)
colnames(coverages) <- sampleData$Sample[order(sampleData$Column)]
coverages
#Using GRanges and IRanges
library(GenomicRanges)
library(IRanges)
granges <- GRanges(
c(rep("16", 10), rep("22", 10)),
ranges = IRanges(

start = c(seq(29000000,29009000, 1000), seq(39000000,39009000, 1000)),
width = 1000

))
data <- h5dapply(#extracting coverage using h5dapply

filename = tallyFile,
group = "/ExampleStudy",
blocksize = 1000,
FUN = function(x) rowSums(x$Coverages),
names = c("Coverages"),
range = granges,
verbose = TRUE
)

24 h5readBlock

lapply(data, function(x) do.call(rbind, x))

h5readBlock h5readBlock

Description

A simple access function for extracting a single block of data from a tally file, use h5dapply for
applying functions on multiple blocks / extracting multiple blocks form a tally file.

Usage

h5readBlock(filename, group, names, dims, range, samples = NULL, sampleDimMap = .sampleDimMap, verbose = FALSE)

Arguments

filename The name of a tally file to process

group The name of a group in that tally file

names The names of the datasets to extract, e.g. c("Counts","Coverages") - optional
(defaults to all datasets)

dims The dimension in which the block shall be extracted for each dataset in the same
order as names, these should correspond to compatible dimensions between the
datsets. - optional (defaults to the genomic position dimension)

range The range along the specified dimensions which should be extracted

samples Character vector of sample names - must match contents of sampleData stored
in the tallyFile

sampleDimMap A list mapping dataset names to their respective sample dimensions - default
provides values for "Counts", "Coverages", "Deletions" and "Reference"

verbose Boolean flag that controls the amount of messages being printed by h5dapply

Details

This function extracts a block along the dimensions specified in dims (default: genomic position)
from the datasets specified in names and returns it. The block is defined by the parameter range.

The function returns a list with one slot for each dataset specified in the names argument to
containing the array corresponding to the specified block in the given dataset. Furthemore the slot
h5dapplyInfo is reserved and contains another list with the following content:

Blockstart is an integer specifying the starting position of the current block (in the dimension
specified by the dims argument to h5dapply)

Blockend is an integer specifying the end position of the current block (in the dimension specified
by the dims argument to h5dapply)

Datasets Contains a data.frame as it is returned by h5ls listing all datasets present in the other
slots of data with their group, name, dimensions, number of dimensions (DimCount) and the di-
mension that is used for splitting into blocks (PosDim)

Group contains the name of the group as specified by the group argument to h5dapply

helpers 25

Value

A list with one entry per dataset and an additional slot h5dapplyInfo containing auxiliary infor-
mation.

Author(s)

Paul Pyl

Examples

library(h5vc) # loading the library
tallyFile <- system.file("extdata", "example.tally.hfs5", package = "h5vcData")
data <- h5readBlock(#extracting coverage, deletions and reference using h5dreadBlock

filename = tallyFile,
group = "/ExampleStudy/16",
names = c("Coverages", "Deletions", "Reference"),
range = c(29000000,29010000),
verbose = TRUE

)
str(data)
sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")
#Subsetting by Sample
sampleData <- sampleData[sampleData$Patient == "Patient8",]
data <- h5readBlock(#extracting coverage, deletions and reference using h5dreadBlock

filename = tallyFile,
group = "/ExampleStudy/16",
names = c("Coverages", "Deletions", "Reference"),
range = c(29000000,29010000),
samples = sampleData$Sample,
verbose = TRUE

)
str(data)

helpers helper functions

Description

These functions are helpers for dealing with tally data stored in HDF5 files.

Usage

formatGenomicPosition(x, unit = "Mb", divisor = 1000000, digits = 3,
nsmall = 1)
encodeDNAString(ds)
defineBlocks(start, stop, blocksize)
getChromSize(tallyFile, group, dataset = "Reference", posDim = 1)

26 helpers

Arguments

x Numerical genomic position

unit Which unit to convert the position to

divisor divisor corresponding to the unit, i.e. ’Mb’ -> 1e6, ’Kb’ -> 1e3

digits number of digits to keep

nsmall nsmall parameter to the format function

ds A DNAString object to be encoded in the HDF5 tally file specific encoding of
nucleotides.

start first position

stop last position

blocksize size of blocks

tallyFile Tally file to work on

group Group within tallyFile that we want to find the chromosome size for

dataset Datset to extract chromosome size from - default is "Reference"

posDim Which dimension of the dataset describes the genomic position

Details

formatGenomicPosition: Helps formatting genomic positions for annotating axes in mismatch plots
etc.

encodeDNAString: This translates a DNAString object into a comaptible encoding that can be
written to a HDF5 based tally file in the Reference dataset. Since the Python script for generating
tallies only sets the Reference dataset in positions where mismatches exists updating the Reference
dataset becomes necessary if one would like to perform analysis involving sequence context (GC-
bias, mutationSpectrum, etc.)

defineBlocks: This function returns a data.frame with the columns Start and End for blocks of
size blocksize spanning the interval [start, stop].

getChromSize: This function is a helper to quickly look-up the chromosome size of a given group
and tally file.

Value

formatGenomicPosition: formatted genomic position, e.g. "123.4 Mb"

encodeDNAString: A numeric vector encoding the nucleotide sequence provided in ds according
to the scheme c("A"=0,"C"=1,"G"=2,"T"=3).

defineBlocks: A data.frame with the columns Start and End for blocks of size blocksize span-
ning the interval [start, stop].

getChromSize: Returns a numeric that is the size of the chromosome.

Author(s)

Paul Pyl

mergeTallies 27

Examples

formatGenomicPosition(123456789)
library(Biostrings)
lapply(DNAStringSet(c("simple"="ACGT", "movie"="GATTACA")), encodeDNAString)
getChromSize(system.file("extdata", "example.tally.hfs5", package="h5vcData"), "/ExampleStudy/16")

mergeTallies Merging the prepared results from multiple bam file tallies into one
block that can be written to the HDF5 tally file

Description

This function merges a set of tallies that have been processed with prepareForHDF5 into one block
of data.

Usage

mergeTallies(tallies)

Arguments

tallies A list of prepared talies, i.e. a list of lists with slots for the datasets "Counts",
"Coverage", "Deletions" and "Reference" in each sub-list

Details

This function merges tallies from a set of bam files / samples, note that the order of samples in the
sample column will be the same as the order of samples in the provided list, so ake sure this matches
your sampledata.

Value

A list with slots containing the Counts,Coverages,Deletions and Reference datasets for the sam-
ples given in tallies. Each of the slots contains an array with the contents of the provided sub-lists
merged along the "sample" axis. The Reference slot os filled from the first element of tallies and
it is up to the user to make sure that the tallies provided for merging have compatible references.

Author(s)

Paul Pyl

28 mergeTallyFiles

Examples

library(h5vc)
library(BSgenome.Hsapiens.UCSC.hg19)
files <- c("NRAS.AML.bam","NRAS.Control.bam")
bamFiles <- file.path(system.file("extdata", package = "h5vcData"), files)
chrom = "1"
startpos <- 115247090
endpos <- 115259515
theData <- lapply(bamFiles, function(bamf){ tallyBAM(bamf, chrom, startpos, endpos) })
str(theData)
reference <- getSeq(BSgenome.Hsapiens.UCSC.hg19, "chr1", startpos, endpos)
theMergedData <- mergeTallies(lapply(theData, prepareForHDF5, reference))
str(theMergedData)

mergeTallyFiles Merging multiple tally files into one

Description

Function to merge multiple tally files by genomic position (i.e. gluing samples together)

Usage

mergeTallyFiles(inputFiles, destFile, destGroup, blockSize = 1e6, sampleDims = c(), positionDims = c())

Arguments

inputFiles A list mapping input file names to the groups within them from which the data
shall be taken (e.g. "example.tally.hfs5" -> "/ExampleStudy/16")

destFile Name of the file that should be created

destGroup Group within destFile that will hold the merged data

blockSize Size of the blocks in bases that the merging will be performed in

sampleDims List mapping dataset names to their respective sample dimension, e.g. "Counts"
-> 2 - has the standard datasets included by default

positionDims List mapping dataset names to their respective position dimension, e.g. "Counts"
-> 4 - has the standard datasets included by default

Details

This function merges tally data from a list of tally files into a new destination file.

Value

[None] – prints progress messages along the way.

mismatchPlot 29

Author(s)

Paul Pyl

Examples

Not run:
mergeTallyFiles{ # merging a file to itself, i.e. "doubling" it

list(
"example.tally.hfs5" = "/ExampleStudy/16",
"example.tally.hfs5" = "/ExampleStudy/16"

),
"test.merge.hfs5",
"/MergedStudy/16"}

End(Not run)

mismatchPlot mismatchPlot

Description

Plotting function that returns a ggplot2 object representing the mismatches and coverages of the
specified samples in the specified region.

Usage

mismatchPlot(data, sampledata, samples=sampledata$Sample, windowsize = NULL, position = NULL, range = NULL, plotReference = TRUE, refHeight=8, printReference = TRUE, printRefSize = 2, tickSpacing = c(10,10))

Arguments

data The data to be plotted. Returned by h5dapply or h5readBlock.

sampledata The sampledata for the cohort represented by data. Returned by getSampleData

samples A character vector listing the names of samples to be plotted, defaults to all
samples as described in sampledata

windowsize Size of the window in which to plot on each side. The total interval that is plotted
will be [position-windowsize,position+windowsize]

position The position at which the plot shall be centered

range Integer vector of two elements specifying a range of coordinates to be plotted,
use either position + windowsize or range; if both are provided range overwrites
position and windowsize.

plotReference This boolean flag specifies if a reference track should be plotted, only takes ef-
fect if there is a slot named Reference in the data object passed to the function

refHeight Height of the reference track in coverage units (default of 8 = reference track is
as high as 8 reads coverage would be in the plot of a sample.)

30 mismatchPlot

printReference Boolean parameter to indicate whether a text representation of the reference
should be overlayed to the reference track, can only be true if plotReference
is true.

printRefSize Size parameter of the geom_text layer used to print the reference. This value is
unitless and needs to be manually optimised for a given plot.

tickSpacing Integer vector of two elements, specifying the spacing of ticks along the x and y
axes respectively.

Details

If position and windowsize are specified this function creates a plot centered on position using
the coverage and mismatch counts stored in data, annotating it with sample information provided
in the data.frame sampledata and showing all samples listed in sample. If range is specified, the
plot will cover the positions from range[1] to range[2]. The difference between specifying range
or position plus windowsize lies only in the labelling of the x-axis and the coordinate system used
on the x-axis. In the former case the coordinate system is that of genomic coordinates as specified
in range, when using the latter the x-axis coordinates go from -windowsize through +windowsize
and position 0 is marked with the calue provided in the position parameter. Furthermore when a
position and windowsize are provided two black lines marking the center position are drawn (this
is usefull for visualising SNVs)

If neither range, nor position and windowsize are specified the function will try to extract the
information from the data object. If data is the return value of a call to h5dapply or h5readBlock
this will work automagically.

The plot has the genomic position on the x-axis. The y-axis encodes values where positive values
are on the forward strand and negative values on the reverse. The coverage is shown in grey,
deletions in purple and the mismatches in the colors specified in the legend. Note that for each
possible mismatch there is an additional color for low-quality counts (coming from the first and last
sequencing cycles), so e.g. C is filled dark red and C_lq light red.

If data is the result of a call to h5dapply representing multiple blocks of data as defined in the
range parameter to h5dapply then the plot will contain the mismatchPlots of each of the ranges
plotted next to each other.

Value

A ggplot object containing the mismatch plot, this can be used like any other ggplot object, i.e.
additional layers and styles my be applied by simply adding them to the plot.

Author(s)

Paul Pyl

Examples

loading library and example data
library(h5vc)
tallyFile <- system.file("extdata", "example.tally.hfs5", package = "h5vcData")
sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")
position <- 29979628

mutationSpectra 31

windowsize <- 30
samples <- sampleData$Sample[sampleData$Patient == "Patient8"]
data <- h5readBlock(

filename = tallyFile,
group = "/ExampleStudy/16",
names = c("Coverages", "Counts", "Deletions", "Reference"),
range = c(position - windowsize, position + windowsize)

)
#Plotting with position and windowsize
p <- mismatchPlot(

data = data,
sampledata = sampleData,
samples = samples,
windowsize = windowsize,
position = position

)
print(p)
#plotting with range and modified tickSpacing and refHeight
p <- mismatchPlot(

data = data,
sampledata = sampleData,
samples = samples,
range = c(position - windowsize, position + windowsize),
tickSpacing = c(20, 5),
refHeight = 5

)
print(p)
#plotting without specfiying range or position
p <- mismatchPlot(

data = data,
sampledata = sampleData,
samples = samples

)
print(p)
#Plotting multiple regions (with small overlaps)
library(IRanges)
dataList <- h5dapply(

filename = tallyFile,
group = "/ExampleStudy/16",
names = c("Coverages", "Counts", "Deletions", "Reference"),

range = IRanges(start = seq(position - windowsize, position + windowsize, 20), width = 30)
)
p <- mismatchPlot(

data = dataList,
sampledata = sampleData,
samples = samples

)
print(p)

mutationSpectra Mutation spectrum analyses

32 mutationSpectra

Description

These functions help in analyses of mutation spectra

Usage

mutationSpectrum(variantCalls, tallyFile, study, context = 1)

Arguments

variantCalls A data.frame object that can be the output of a call to a callVariantsPaired
or callDeletionsPaired function. The following columns are required: -
altAllele - refAllele - Sample - Start - End - Chrom

tallyFile filename of a tally file matching the variant calls

study the study id used in the tally file

context An integer specifying the size of the context that should be considered (i.e. the
length of the prefix and suffix of the variant call)

Details

This function takes a set of variant calls (SNVs/Deletions) and a tallyFile as well as a context
size and tabulates the number of observed mutations stratified by type (refAllele->altAllele) and
sequence context (i.e. the prefix and suffix of size context around the variant position in the
genome)

bases serves to map character representations to numeric encoding of bases

variantCalls is an example dataset of variant calls created by running callVariantsPaired on
the example.tally.hfs5 file.

Value

A table listing the counts of mutations stratified by allele, sequence context and sample.

Author(s)

Paul Pyl

Examples

library(h5vc)
tallyFile <- system.file("extdata", "example.tally.hfs5", package = "h5vcData")
data("example.variants", package = "h5vcData")
head(mutationSpectrum(variantCalls, tallyFile, "/ExampleStudy"))

plotMutationSpectrum 33

plotMutationSpectrum Plotting a mutation spectrum

Description

This function generates a mutation spectrum plot from a mutation spectrum returned by a call to
mutationSPectrum

Usage

plotMutationSpectrum(ms, plotCounts = TRUE)

Arguments

ms A mutation spectrum as returned by mutationSpectrum

plotCounts Boolean flag specifying whether ms contains one row per variant (default) or
already contains summarized counts per type of mutation

Details

The plot is inspired by the one shown in figure 1b of Signatures of mutational processes in
human cancer -- Alexandrov et. al.

Value

A ggplot object containing the mutation spectrum plot

Author(s)

Paul Pyl

Examples

library(h5vc)
tallyFile <- system.file("extdata", "example.tally.hfs5", package = "h5vcData")
data("example.variants", package = "h5vcData")
plotMutationSpectrum(mutationSpectrum(variantCalls, tallyFile, "/ExampleStudy"))

34 prepareForHDF5

prepareForHDF5 Preparing the results of tallyBAM for writing to an HDF5 tally file

Description

This function prepares the resulting array of a call to tallyBAM for writing to an HDF5 tally file.

Usage

prepareForHDF5(counts, reference)

Arguments

counts An array as produced by a call to tallyBAM

reference A DNAString object containing the reference sequence corresponding to the
region that is described in the counts array – if this is NULL a consensus vote will
be used to estimate the reference at any given position, this means you cannot
detect variants with AF >= 0.5 anymore

Details

This function performs the neccessary transformation to the array returned by tallyBAM to be
compatible with the HDF5 tally file data structure.

Value

A list with slots containing the Counts,Coverages,Deletions and Reference datasets for the given
sample.

Author(s)

Paul Pyl

Examples

library(h5vc)
library(BSgenome.Hsapiens.UCSC.hg19)
files <- c("NRAS.AML.bam","NRAS.Control.bam")
bamFiles <- file.path(system.file("extdata", package = "h5vcData"), files)
chrom = "1"
startpos <- 115247090
endpos <- 115259515
theData <- lapply(bamFiles, function(bamf){

tallyBAM(file = bamf, chr = chrom, start = startpos, stop = endpos, ncycles = 10)
})
reference <- getSeq(BSgenome.Hsapiens.UCSC.hg19, "chr1", startpos, endpos)
theData <- lapply(theData, prepareForHDF5, reference)
str(theData)

prepareTallyFile 35

prepareTallyFile prepareTallyFile

Description

Functions for preparing an HDF5 file for storing tally data and / or modifying an existing file

Usage

prepareTallyFile(filename, study, chrom, chromlength, nsamples, maxsamples = nsamples, chunkSize = 50000, sampleChunkSize = nsamples, compressionLevel = 9, referenceFillValue = 5)
resizeCohort(filename, study, chrom, newNumberOfSamples, dimmap = .sampleDimMap, force = FALSE)

Arguments

filename Filename of the HDF5 file that should store the tallies
study Study identifier which will be used in structuring the file
chrom Chromosome for which the structure should be generated
chromlength The length of the chromosom, this will be the size of genomic position dimen-

sion
nsamples Number of samples that will be stored in the file
maxsamples Maximum Number of samples that can be stored in the file, this relatesto the

maxdim property of HDF5 datasets, which is used to specify possible re-sizing
of datasets after creation - see http:://www.hdfgroup.org for details

chunkSize The size of the chunks used in HDF5 storage, this is specified along the genomic
position dimension, by default chunks will always be all data from all samples
with the given width along the genomic position dimension

compressionLevel

Compression level to use in the HDF5 file, defaults to 9 (highest), use lower
numbers to improve access time at the cost of disk space usage

sampleChunkSize

Size of the HDF5 chunks along the sample dimension, the dafault value is the
whole dataset, i.e. all samples. For larger datasets where the typical use-case
is to extract only data corresponding to a specific sample and genomic position,
smaller values of sampleChunkSize should be used.

referenceFillValue

Default value to be used for the Reference dataset, this is set to 5 by default,
which corresponds to the nucleotide N

newNumberOfSamples

New cohort size, this must be smaller than the value of maxsamples that was
provided when the file was created

dimmap A list mapping dataset names to the dimension in which the samples are stored
(e.g. "Counts" -> 2)

force Boolean parameter that controls whether a shrinking operation (i.e. newNum-
berOfSamples is smaller than the current number of samples) should be per-
formed or throw an error. Shrinking will result in data loss.

36 tallyBAM

Details

prepareTallyFile prepares (and creates if neccessary) an HDF5 file for storing the datasets that
are associated with a tally. It creates the required groups and datasets (filled with 0’s). resizeCohortResizes
the datasets to a new number of samples, this is limited by the value of maxsamples that was pro-
vided in the initial call to prepareTallyFile

Value

Returns TRUE on success

Author(s)

Paul Pyl

Examples

prepareTallyFile(file.path(tempdir(), "test.tally.hfs5"), "SomeStudy", "ChromosomeB", 1e6, 20)

tallyBAM tallyBAM

Description

Function for creating tallies from bam files.

Usage

tallyBAM(file, chr, start, stop, q=25, ncycles = 0, max.depth=1000000, verbose=FALSE, reference = NULL)

Arguments

file filename of the BAM file that should be tallies

chr Chromosome in which to tally

start First position of the tally

stop Last position of the tally

q quality cut-off for considering a base call

ncycles number of sequencing cycles form the front and back of the read that should be
considered unreliable

max.depth only tally a position if there are less than this many reads overlapping it - can
prevent long runtimes in unreliable regions

verbose should additional information be printed

reference DNAString object holding the reference sequence of the region being tallies, if
this is NULL (the default) the raw tally is returned, otherwise prepareForHDF5
is called with the raw tally and the reference and the prepared tally is returned
instead

tallyRanges 37

Details

This function tallies nucleotides and deletion counts in the specified region of a given BAM file.
The results can be processed with the prepareForHDF5 function.

This function was adapted from the bam2R function provided by the deepSNV package.

Value

An array object with dimensions [stop - start + 1, 18, 2] which represent positions times nu-
cleotides (4 bases + deletions + insertions times three for early, middle and late sequencing cycles)
times strands.

Author(s)

Paul Pyl

Examples

library(h5vc)
files <- c("NRAS.AML.bam","NRAS.Control.bam")
bamFiles <- file.path(system.file("extdata", package = "h5vcData"), files)
chrom = "1"
startpos <- 115247090
endpos <- 115259515
theData <- lapply(bamFiles, function(bamf){

tallyBAM(file = bamf, chr = chrom, start = startpos, stop = endpos, ncycles = 10)
})
str(theData)
print(theData[[1]][,,,9491]) #position 9491 of the pileup

tallyRanges Tallying function with a GRanges interface.

Description

Functions for tallying bam files in genomic intervals provided as GRanges objects, special version
of the function for direct writing or computation on a cluster exist.

Usage

tallyRanges(bamfiles, ranges, reference, q = 25, ncycles = 10, max.depth = 1e+06)
tallyRangesToFile(tallyFile, study, bamfiles, ranges, reference, samples = NULL, q = 25, ncycles = 0, max.depth=1e6)
tallyRangesBatch(tallyFile, study, bamfiles, ranges, reference, q = 25, ncycles = 10, max.depth=1e6, regID = "Tally", res = list("ncpus" = 2, "memory" = 24000, "queue"="research-rh6"), written = c(), wrfile = "written.jobs.RDa", waitTime = Inf)

38 tallyRanges

Arguments

bamfiles Character vector giving the locations of the bam files to be tallied
ranges A GRanges object describing the ranges that tallies shalle be generated in, e.g.

the result of a call to binGenome or a set of exon or gene annotations provided
by a TxDB object.

reference BSgenome object describing the reference genome that the alignments were made
against.

samples The indices (within the HDF5 datasets) corresponding to the samples that the
data represents. You can use this option to write sub-sets of samples from a
cohort.

q Read alignment quality cut-off.
ncycles Number of cycles from the front and back of the reads that should be considered

unreliable for mismatch detection
max.depth Maximum depth of coverage to consider
tallyFile Filename of the HDF5 tally file that the data shall be written to
study The location within the HDF5 file that corresponds to the HDF5-group repre-

senting the study we are working on.
regID Identifier for a BatchJobs registry which will be used to store and organise the

cluster jobs used for parallelisation of the work.
res Resource list specifying the compute resources to be requested for each of the

cluster jobs.
written Numerical vector indicating the Job IDs of jobs whose results have already been

written to the tally file, this can be used to resume writing after a crash.
wrfile Filename for a file to store the IDs of already written jobs in, can be used to

resume writing after a crash.
waitTime How long shall the function wait on cluster jobst to finish, before giving up.

Default is wait forever.

Details

tallyRanges returns the tallies corresponding to the specifed ranges, tallyToFile performs the
same task but writes the results to the tally file directly. tallyRangesBatch uses the BatchJobs
package to set up cluster jobs for tallying and collects and writes the results of those jobs to the tally
file. It is important to have a properly configured cluster (inlcuding a .BatchJobs.R as well as a
template file). See the documentation of BatchJobs for that information.

Value

For tallyRanges the return value is a list of lists, where the top level corresponds to the ranges
provided as an input to the function and each element is a list of the datasets in compatible format,
that can directly be written to an HDF5 file using the writeToTallyFile function. The other two
function perform the writing directly and return

Author(s)

Paul Theodor Pyl

writeReference 39

Examples

suppressPackageStartupMessages(library("h5vc"))
suppressPackageStartupMessages(library("rhdf5"))
files <- list.files(system.file("extdata", package = "h5vcData"), "Pt.*bam$")
bamFiles <- file.path(system.file("extdata", package = "h5vcData"), files)
suppressPackageStartupMessages(require(BSgenome.Hsapiens.NCBI.GRCh38))
suppressPackageStartupMessages(require(GenomicRanges))
dnmt3a <- read.table(system.file("extdata", "dnmt3a.txt", package = "h5vcData"), header=TRUE, stringsAsFactors = FALSE)
dnmt3a <- with(dnmt3a, GRanges(seqname, ranges = IRanges(start = start, end = end)))
dnmt3a <- reduce(dnmt3a)
require(BiocParallel)
register(MulticoreParam())
theData <- tallyRanges(bamFiles, ranges = dnmt3a[1:3], reference = Hsapiens)
str(theData)

writeReference Filling the Reference dataset in a tally file from a DNAString

Description

Function to fill the Reference dataset of a tally file from a DNAString object

Usage

writeReference(tallyFile, group, dnastring, blocksize = 1000000, verbose = TRUE)

Arguments

tallyFile filename of a tally file matching the variant calls

group The group that the Reference dataset is located in

dnastring A DNAString object containing the new reference sequence

blocksize The size of blocks in which to process the reference (higher values imply higher
memory consumption)

verbose Boolean flag to specify if diagnostic messages should be printed

Details

This function takes a tally file, a location within it (the group argument) and a reference sequence
as a DNAString object, encodes the reference in the appropriate way and writes it to the location
in the tally file in blocks of size specified in blocksize. The reference will be written to a dataset
with the path paste(group, "Reference", sep = "/") within the tally file. The dataset itself must
exists and have the correct dimensions to hold the sequence specified in dnastring.

Value

Returns TRUE on success.

40 writeToTallyFile

Author(s)

Paul Pyl

Examples

library(h5vc)
library(rhdf5)
library(Biostrings)
filename = file.path(tempdir(), "write.ref.test.hfs5")
prepareTallyFile(filename=filename,study="SomeStudy",chrom="Foo",chromlength=8,nsamples=1)
writeReference(filename, group = "/SomeStudy/Foo", dnastring = DNAString("GATTACCA"))
h5dump(filename)$SomeStudy$Foo$Reference

writeToTallyFile Writing data to an HDF5 tally file

Description

This function is used to write the results of a call to tallyRanges to an HDF5 tally file.

Usage

writeToTallyFile(theData, file, study, ranges, samples = NULL)

Arguments

theData A list of lists of datasets as returned by a call to e.g. tallyRanges

file The target filename

study The location of the Group (within the HDF5 file) representing the study the data
belongs to.

ranges A GRanges object defining the ranges that the elements of theData correspond
to

samples The indexes of the samples that the data corresponds to, this can be extracted
from the ’Column’-field in the sample metadata and is used to write data corre-
sponding to subsets of the cohort samples. The default (NULL) indicates that all
samples are present and will be written.

Author(s)

Paul Theodor Pyl

writeToTallyFile 41

Examples

suppressPackageStartupMessages(library("h5vc"))
suppressPackageStartupMessages(library("rhdf5"))
files <- list.files(system.file("extdata", package = "h5vcData"), "Pt.*bam$")
bamFiles <- file.path(system.file("extdata", package = "h5vcData"), files)
suppressPackageStartupMessages(require(BSgenome.Hsapiens.NCBI.GRCh38))
suppressPackageStartupMessages(require(GenomicRanges))
dnmt3a <- read.table(system.file("extdata", "dnmt3a.txt", package = "h5vcData"), header=TRUE, stringsAsFactors = FALSE)
dnmt3a <- with(dnmt3a, GRanges(seqname, ranges = IRanges(start = start, end = end)))
dnmt3a <- reduce(dnmt3a)
require(BiocParallel)
register(MulticoreParam())
theData <- tallyRanges(bamFiles, ranges = dnmt3a[1:3], reference = Hsapiens)
chrom <- "2"
chromlength <- 250e6
study <- "/DNMT3A"
tallyFile <- file.path(tempdir(), "DNMT3A.tally.hfs5")
if(file.exists(tallyFile)){

file.remove(tallyFile)
}
if(prepareTallyFile(tallyFile, study, chrom, chromlength, nsamples = length(files))){

h5ls(tallyFile)
}else{

message(paste("Preparation of:", tallyFile, "failed"))
}
writeToTallyFile(theData, tallyFile, study = "/DNMT3A", ranges = dnmt3a[1:3])

Index

applyTallies, 3

bam2R, 37
bases (mutationSpectra), 31
BatchJobs, 38
batchTallies, 4
batchTallyParam (batchTallies), 4
binGenome, 6, 38
binnedAFs, 7
binnedCoverage (Coverage), 17
binom.test, 15
bplapply, 22

callDeletionsPaired (callVariants), 8
callVariants, 8
callVariantsFisher, 12
callVariantsPaired (callVariants), 8
callVariantsPairedFisher

(callVariantsFisher), 12
callVariantsSingle, 14
collectTallies (batchTallies), 4
Coverage, 17

defineBlocks, 7
defineBlocks (helpers), 25

encodeDNAString (helpers), 25

fisher.test, 13, 16
formatGenomicPosition (helpers), 25

geom_h5vc, 18
geom_rect, 18
getChromSize (helpers), 25
getSampleData, 13, 19

h5dapply, 13, 15, 21, 24
h5dapply,GRanges-method (h5dapply), 21
h5dapply,IRanges-method (h5dapply), 21
h5dapply,numeric-method (h5dapply), 21
h5ls, 22, 24

h5readBlock, 4, 24
h5vc (h5vc-package), 2
h5vc-package, 2
helpers, 25

mergeTallies, 27
mergeTallyFiles, 28
mismatchPlot, 18, 29
mutationSpectra, 31
mutationSpectrum, 33
mutationSpectrum (mutationSpectra), 31

plotMutationSpectrum, 33
prepareForHDF5, 34, 36, 37
prepareTallyFile, 5, 35

rerunBatchTallies (batchTallies), 4
resizeCohort (prepareTallyFile), 35

setSampleData, 3, 5
setSampleData (getSampleData), 19

tallyBAM, 4, 6, 34, 36
tallyRanges, 37, 40
tallyRangesBatch (tallyRanges), 37
tallyRangesToFile (tallyRanges), 37

variantCalls (mutationSpectra), 31
vcConfParams (callVariants), 8

writeReference, 15, 39
writeToTallyFile, 38, 40

42

	h5vc-package
	applyTallies
	batchTallies
	binGenome
	binnedAFs
	callVariants
	callVariantsFisher
	callVariantsSingle
	Coverage
	geom_h5vc
	getSampleData
	h5dapply
	h5readBlock
	helpers
	mergeTallies
	mergeTallyFiles
	mismatchPlot
	mutationSpectra
	plotMutationSpectrum
	prepareForHDF5
	prepareTallyFile
	tallyBAM
	tallyRanges
	writeReference
	writeToTallyFile
	Index

