| vsclust-package | VSClust provides a powerful method to run variance-sensitive clustering |
| artificial_clusters | Synthetic/artificial data comprising 5 clusters |
| averageCond | Calculate mean over replicates |
| calcBHI | Calculate "biological homogeneity index" |
| ClustComp | Function to run clustering with automatic fuzzifier settings (might become obsolete) |
| cvalidate.xiebeni | Xie Beni Index of clustering object |
| determine_fuzz | Determine individual fuzzifier values |
| enrichSTRING_API | Enrichment Analysis via STRING REST API |
| estimClust.plot | Plotting results from estimating the cluster number |
| estimClustNum | Wrapper for estimation of cluster number |
| mfuzz.plot | Plotting vsclust results |
| optimalClustNum | Determine optimal cluster number from validity index |
| pcaWithVar | Visualize using principal component analysis (both loadings and scoring) including the variance from the replicates |
| PrepareForVSClust | Functions for running VSClust analysis |
| PrepareSEForVSClust | Wrapper for statistical analysis for SummarizedExperiment object |
| protein_expressions | Data from a typical proteomics experiment |
| runClustWrapper | Wrapper for running cluster analysis |
| runFuncEnrich | Functional Enrichment with STRING |
| runVSClustApp | Run VSClust as Shiny app |
| SignAnalysis | Unpaired statistical testing |
| SignAnalysisPaired | Paired statistical testing |
| SwitchOrder | arrange cluster member numbers from largest to smallest |
| vsclust | VSClust provides a powerful method to run variance-sensitive clustering |
| vsclust_algorithm | Run the vsclust clustering algorithm |