
Package ‘basilisk’
June 12, 2025

Version 1.21.5

Date 2025-05-19

Title Freezing Python Dependencies Inside Bioconductor Packages

Depends reticulate

Imports utils, methods, parallel, dir.expiry

Suggests knitr, rmarkdown, BiocStyle, testthat, callr

biocViews Infrastructure

Description Installs a self-
contained conda instance that is managed by the R/Bioconductor installation machinery.
This aims to provide a consistent Python environment that can be used reliably by Bioconduc-
tor packages.
Functions are also provided to enable smooth interoperability of multiple Python environ-
ments in a single R session.

License GPL-3

RoxygenNote 7.3.2

StagedInstall false

VignetteBuilder knitr

BugReports https://github.com/LTLA/basilisk/issues

Encoding UTF-8

git_url https://git.bioconductor.org/packages/basilisk

git_branch devel

git_last_commit e93af07

git_last_commit_date 2025-05-19

Repository Bioconductor 3.22

Date/Publication 2025-06-12

Author Aaron Lun [aut, cre, cph],
Vince Carey [ctb]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

https://github.com/LTLA/basilisk/issues

2 BasiliskEnvironment-class

Contents
BasiliskEnvironment-class . 2
basiliskStart . 3
clearExternalDir . 6
configureBasiliskEnv . 7
createLocalBasiliskEnv . 8
destroyOldVersions . 9
getBasiliskFork . 10
getExternalDir . 11
getPythonBinary . 12
getSystemDir . 13
isWindows . 13
listPackages . 14
lockExternalDir . 15
obtainEnvironmentPath . 16
PyPiLink . 16
setupBasiliskEnv . 17
useBasiliskEnv . 19
useSystemDir . 20

Index 21

BasiliskEnvironment-class

The BasiliskEnvironment class

Description

The BasiliskEnvironment class provides a simple structure containing all of the information to
construct a basilisk environment. It is used by basiliskStart to perform lazy installation.

Constructor

BasiliskEnvironment(envname, pkgname, packages) will return a BasiliskEnvironment object,
given:

• envname, string containing the name of the environment. Environment names starting with an
underscore are reserved for internal use.

• pkgname, string containing the name of the package that owns the environment.

• packages, character vector containing the names of the required Python packages from PyPI.
see setupBasiliskEnv for requirements.

• channels, deprecated and ignored.

• pip, appended to packages. Provided for back-compatibility only.

• paths, character vector containing relative paths to Python packages to be installed via pip.
These paths are interpreted relative to the system directory of pkgname, i.e., they are appended
to the output of system.file to obtain absolute paths for setupBasiliskEnv. Thus, any
Python package vendored into the R package should be stored in the inst directory of the
latter’s source.

basiliskStart 3

Author(s)

Aaron lun

Examples

BasiliskEnvironment("my_env1", "AaronPackage",
packages=c("scikit-learn=1.6.1", "pandas=2.2.3"))

basiliskStart Start and stop basilisk-related processes

Description

Creates a basilisk process in which Python operations (via reticulate) can be safely performed with
the correct versions of Python packages.

Usage

basiliskStart(
env,
full.activation = NA,
fork = getBasiliskFork(),
shared = getBasiliskShared(),
testload = NULL

)

basiliskStop(proc)

basiliskRun(
proc = NULL,
fun,
...,
env,
full.activation = NA,
persist = FALSE,
fork = getBasiliskFork(),
shared = getBasiliskShared(),
testload = NULL

)

Arguments

env A BasiliskEnvironment object specifying the basilisk environment to use.
Alternatively, a string specifying the path to an environment, though this should
only be used for testing purposes.

full.activation

Deprecated and ignored.

fork Logical scalar indicating whether forking should be performed on non-Windows
systems, see getBasiliskFork. If FALSE, a new worker process is created using
communication over sockets.

4 basiliskStart

shared Logical scalar indicating whether basiliskStart is allowed to load a shared
Python instance into the current R process, see getBasiliskShared.

testload Deprecated and ignored.

proc A process object generated by basiliskStart.

fun A function to be executed in the basilisk process, see “Constraints on user-
defined functions”.

... Further arguments to be passed to fun.

persist Logical scalar indicating whether to pass a persistent store to fun. If TRUE, fun
should accept a store argument.

Details

These functions ensure that any Python operations in fun will use the environment specified by
envname. This avoids version conflicts in the presence of other Python instances or environ-
ments loaded by other packages or by the user. Thus, basilisk clients are not affected by (and
if shared=FALSE, do not affect) the activity of other R packages.

It is good practice to call basiliskStop once computation is finished to terminate the process.
Any Python-related operations between basiliskStart and basiliskStop should only occur via
basiliskRun. Calling reticulate functions directly will have unpredictable consequences, Simi-
larly, it would be unwise to interact with proc via any function other than the ones listed here.

If proc=NULL in basiliskRun, a process will be created and closed automatically. This may be
convenient in functions where persistence is not required. Note that doing so requires specification
of pkgname and envname.

Value

basiliskStart returns a process object, the exact nature of which depends on fork and shared.
This object should only be used in basiliskRun and basiliskStop.

basiliskRun returns the output of fun(...), possibly executed inside the separate process.

basiliskStop stops the process in proc.

Choice of process type

• If shared=TRUE and no Python version has already been loaded, basiliskStart will load
Python directly into the R session from the specified environment. Similarly, if the existing
environment is the same as the requested environment, basiliskStart will use that directly.
This mode is most efficient as it avoids creating any new processes, but the use of a shared
Python configuration may prevent non-basilisk packages from working correctly in the same
session.

• If fork=TRUE, no Python version has already been loaded and we are not on Windows, basiliskStart
will create a new process by forking. In the forked process, basiliskStart will load the spec-
ified environment for operations in Python. This is less efficient as it needs to create a new
process but it avoids forcing a Python configuration on other packages in the same R session.

• Otherwise, basiliskStart will create a parallel socket process containing a separate R ses-
sion. In the new process, basiliskStart will load the specified environment for Python
operations. This is the least efficient as it needs to transfer data over sockets but is guaranteed
to work.

Developers can control these choices directly by explicitly specifying shared and fork, while users
can control them indirectly with setBasiliskFork and related functions.

basiliskStart 5

Constraints on user-defined functions

In basiliskRun, there is no guarantee that fun has access to basiliskRun’s calling environment.
This has several consequences for code in the body of fun:

• Variables used inside fun should be explicitly passed as an argument to fun. Developers
should not rely on closures to capture variables in the calling environment of basiliskRun.

• Developers should not attempt to pass complex objects to memory in or out of fun. This
mostly refers to objects that contain custom pointers to memory, e.g., file handles, pointers to
reticulate objects. Both the arguments and return values of fun should be pure R objects.

• Functions or variables from non-base R packages should be prefixed with the package name
via ::, or those packages should be reloaded inside fun.

Developers can test that their function behaves correctly in basiliskRun by setting setBasiliskShared
and setBasiliskFork to FALSE. This forces the execution of fun in a new process; any incorrect
assumption of shared environments will cause errors.

Persisting objects across calls

Objects created inside fun can be persisted across calls to basiliskRun by setting persist=TRUE.
This will instruct basiliskRun to pass a store argument to fun that can be used to store arbitrary
objects. Those same objects can be retrieved from store in later calls to basiliskRun using the
same proc. Any object can be stored in .basilisk.store but will remain strictly internal to proc.

This capability is primarily useful when a Python workflow is split across multiple basiliskRun
calls. Each subsequent call can pick up from temporary intermediate objects generated by the
previous call. In this manner, basilisk enables modular function design where developers can easily
mix and match different basiliskRun invocations. See Examples for a working demonstration.

Use of lazy installation

If the specified basilisk environment is not present and env is a BasiliskEnvironment object, the
environment will be created upon first use of basiliskStart. These environments are created in
an external user-writable directory defined by getExternalDir. The location of this directory can
be changed by setting the BASILISK_EXTERNAL_DIR environment variable to the desired path. This
may occasionally be necessary in rare cases, e.g., if the file path to the default location is too long
for Windows.

Advanced users may consider setting the environment variable BASILISK_USE_SYSTEM_DIR to 1
when installing basilisk client packages from source. This will place each package’s Python envi-
ronments in the R system directory, which simplifies permission management and avoids duplica-
tion in enterprise settings.

Author(s)

Aaron Lun

See Also

setupBasiliskEnv, to set up the Python environments.

getBasiliskFork and getBasiliskShared, to control various global options.

6 clearExternalDir

Examples

tmploc <- file.path(tempdir(), "my_package_A")
if (!file.exists(tmploc)) {

setupBasiliskEnv(tmploc, c('pandas=2.2.3'))
}

Pulling out the pandas version, as a demonstration:
cl <- basiliskStart(tmploc)
basiliskRun(proc=cl, function() {

X <- reticulate::import("pandas"); X$`__version__`
})
basiliskStop(cl)

This happily co-exists with our other environment:
tmploc2 <- file.path(tempdir(), "my_package_B")
if (!file.exists(tmploc2)) {

setupBasiliskEnv(tmploc2, c('pandas=2.2.2'))
}

cl2 <- basiliskStart(tmploc2)
basiliskRun(proc=cl2, function() {

X <- reticulate::import("pandas"); X$`__version__`
})
basiliskStop(cl2)

Persistence of variables is possible within a Start/Stop pair.
cl <- basiliskStart(tmploc)
basiliskRun(proc=cl, function(store) {

store$snake.in.my.shoes <- 1
invisible(NULL)

}, persist=TRUE)
basiliskRun(proc=cl, function(store) {

return(store$snake.in.my.shoes)
}, persist=TRUE)
basiliskStop(cl)

clearExternalDir Clear the external installation directory

Description

Clear the external installation directory by removing all or obsolete virtual environments. This
can be used to free up some space if the expiry mechanism is not fast enough at deleting unused
environments.

Usage

clearExternalDir(
path = getExternalDir(),
package = NULL,
obsolete.only = FALSE

)

configureBasiliskEnv 7

Arguments

path String containing a path to the external directory containing the virtual environ-
ments.

package String containing the name of a client R package. If provided, all environments
will be removed for this package.

obsolete.only Logical scalar indicating whether to only remove environments for obsolete
package versions.

Value

If package=NULL and obsolete.only=FALSE, all of the virtual environments in the external direc-
tory are destroyed. If obsolete.only=TRUE, the environments associated with basilisk versions
older than the current version are destroyed.

If package is supplied and obsolete.only=FALSE, all virtual environments for the specified client
package are destroyed. If obsolete.only=FALSE, only the environments for older versions of the
client package are destroyed.

Author(s)

Aaron Lun

See Also

getExternalDir, which determines the location of the external directory.

Examples

We can't actually run clearExternalDir() here, as it
relies on basilisk already being installed.
print("dummy test to pass BiocCheck")

configureBasiliskEnv Configure client environments

Description

Configure the basilisk environments in the configure file of client packages.

Usage

configureBasiliskEnv(src = "R/basilisk.R")

Arguments

src String containing path to a R source file that defines one or more BasiliskEnvi-
ronment objects.

8 createLocalBasiliskEnv

Details

This function is designed to be called in the configure file of client packages, triggering the con-
struction of basilisk environments during package installation. It will only run if the BASILISK_USE_SYSTEM_DIR
environment variable is set to "1".

We take a source file as input to avoid duplicated definitions of the BasiliskEnvironments. These
objects are used in basiliskStart in the body of the package, so they naturally belong in R/;
we then ask configure to pull out that file (named "basilisk.R" by convention) to create these
objects during installation.

The source file in src should be executable on its own, i.e., you can source it without loading any
other packages (beside basilisk, obviously). Non-BasiliskEnvironment objects can be created but
are simply ignored in this function.

Value

One or more basilisk environments are created corresponding to the BasiliskEnvironment objects
in src. A NULL is invisibly returned.

Author(s)

Aaron Lun

See Also

setupBasiliskEnv, which does the heavy lifting of setting up the environments.

Examples

Not run:
configureBasiliskEnv()

End(Not run)

createLocalBasiliskEnv

Manually create a local virtual environment manually

Description

Manually create a local virtual environment with versioning and thread safety. This is intended for
use in analysis workflows rather than package development.

Usage

createLocalBasiliskEnv(dir, ...)

Arguments

dir String containing the path to a directory in which the local environment is to be
stored.

... Further arguments to pass to setupBasiliskEnv.

destroyOldVersions 9

Details

This function is intended for end users who wish to use the basilisk machinery for coordinating one
or more Python environments in their analysis workflows. It can be inserted into, e.g., Rmarkdown
reports to automatically provision and cache an environment on first compilation, which will be au-
tomatically re-used in later compilations. Some care is taken to ensure that the cached environment
is refreshed when basilisk is updated, and that concurrent access to the environment is done safely.

Value

String containing a path to the newly created environment, or to an existing environment if one was
previously created. This can be used in basiliskRun.

Author(s)

Aaron Lun

Examples

tmploc <- file.path(tempdir(), "my_package_C")
tmp <- createLocalBasiliskEnv(tmploc, packages="pandas=2.2.3")
basiliskRun(env=tmp, fun=function() {

X <- reticulate::import("pandas"); X$`__version__`
})

destroyOldVersions Destroy old versions?

Description

Should we destroy old environments for basilisk client packages?

Usage

destroyOldVersions()

Details

The default value is TRUE, in order to save some disk space. This can be changed by setting
BASILISK_NO_DESTROY environment variable to "1".

Value

Logical scalar providing an answer to the above.

Author(s)

Aaron Lun

See Also

obtainEnvironmentPath, which removes old environments as a side-effect.

10 getBasiliskFork

getBasiliskFork Options for basilisk

Description

Options controlling run-time behavior of basilisk. Unlike the various environment variables, these
options can be turned on or off by users without requiring reinstallation of the basilisk ecosystem.

Usage

getBasiliskFork()

setBasiliskFork(value)

getBasiliskShared()

setBasiliskShared(value)

setBasiliskCheckVersions(value)

getBasiliskCheckVersions()

Arguments

value Logical scalar:

• For setBasiliskFork, whether forking should be used when available.
• For setBasiliskShared, whether the shared Python instance can be set in

the R session.
• For setBasiliskCheckVersions, whether to check for properly versioned

package strings in setupBasiliskEnv.

Value

All functions return a logical scalar indicating whether the specified option is enabled.

Controlling process creation

By default, basiliskStart will attempt to load a shared Python instance into the R session. This
avoids the overhead of setting up a new process but will potentially break any reticulate-dependent
code outside of basilisk. To guarantee that non-basilisk code can continue to execute, users can
set setBasiliskShared(FALSE). This will load the Python instance into a self-contained basilisk
process.

If a new process must be generated by basiliskStart, forking is used by default. This is generally
more efficient than socket communication when it is available (i.e., not on Windows), but can be less
efficient if any garbage collection occurs inside the new process. In such cases, users or developers
may wish to turn off forking with setBasiliskFork(FALSE), e.g., in functions where many R-
based memory allocations are performed inside basiliskRun.

If many basilisk-dependent packages are to be used together on Unix systems, setting setBasiliskShared(FALSE)
may be beneficial. This allows each package to fork to create a new process as no Python has been
loaded in the parent R process (see ?basiliskStart). In contrast, if any package loads Python

getExternalDir 11

sharedly, the others are forced to use parallel socket processes. This results in a tragedy of the
commons where the efficiency of all other packages is reduced.

Developers may wish to set setBasiliskShared(FALSE) and setBasiliskFork(FALSE) during
unit testing, to ensure that their functions do not make incorrect assumptions about the calling
environment used in basiliskRun.

Disabling package version checks

By default, setupBasiliskEnv requires versions for all requested Python packages. However, in
some cases, the exact version of the packages may not be known beforehand. Developers can set
setBasiliskCheckVersions(FALSE) to disable all version checks, instead allowing pip to choose
appropriate versions for the initial installation. The resulting environment can then be queried using
listPackages to obtain the explicit versions of all Python packages.

Needless to say, this option should only be used during the initial phases of developing a basilisk
client. Once a suitable environment is created, Python package versions should be pinned in
setupBasiliskEnv. This ensures that all users are creating the intended environment for greater
reproducibility (and easier debugging).

Author(s)

Aaron Lun

See Also

basiliskStart, where these options are used.

Examples

getBasiliskFork()
getBasiliskShared()

getExternalDir External directory for virtual environments

Description

Define an external location for installing the virtual environments managed by basilisk.

Usage

getExternalDir()

Details

The default path contains the version number so that installation of a new version of basilisk will
trigger the creation of new virtual environments. This ensures that any changes to basilisk functions
will be respected by all client packages in the same R installation.

If the BASILISK_EXTERNAL_DIR environment variable is set to some absolute path, this will be used
instead as the installation directory. Setting this variable is occasionally necessary if the default

12 getPythonBinary

path returned by R_user_dir has spaces; or on Windows, if the 260 character limit is exceeded
after combining the default path with deeply nested environment paths.

We assume that the user has read-write access to the external directory. Write access is necessary
to generate new environments and to handle locking in lockExternalDir.

Value

String containing a path to an appropriate external folder. The last component of the path will
always be the basilisk version number.

Author(s)

Aaron Lun

Examples

We can't actually run getExternalDir() here, as it
either relies on basilisk already being installed.
print("dummy test to pass BiocCheck")

getPythonBinary Get Python binary paths

Description

Get Python binary paths

Usage

getPythonBinary(envpath)

Arguments

envpath String containing the path to a virtual environment.

Details

This code is largely copied from reticulate, and is only present here as they do not export these
utilities for general consumption.

Value

String containing the path to the Python executable inside envpath.

Author(s)

Aaron Lun

Examples

getPythonBinary("foo/bar")

getSystemDir 13

getSystemDir Get the system installation directory

Description

Get the system installation directory for a package. This is not entirely trivial as it may be called
before the package is installed.

Usage

getSystemDir(pkgname, installed)

Arguments

pkgname String containing the package name.

installed Logical scalar specifying whether the package is likely to be installed yet.

Value

String containing the path to the (likely, if installed=FALSE) installation directory for pkgname.

Author(s)

Aaron Lun

Examples

getSystemDir("basilisk", installed=FALSE)

isWindows Find the operating system or architecture.

Description

Indicate whether we are on Windows or MacOSX. For MacOSX and Linux, we can also determine
if we are on an x86-64 or Arm-based architecture.

Usage

isWindows()

isMacOSX()

isMacOSXArm()

isLinux()

isLinuxAarch64()

14 listPackages

Value

Logical scalar indicating whether we are on the specified OS and/or architecture.

Author(s)

Aaron Lun

Examples

isWindows()
isMacOSX()
isLinux()

listPackages List packages

Description

List the set of Python packages (and their version numbers) that are installed in a virtual environ-
ment.

Usage

listPackages(env)

listPythonVersion(env)

Arguments

env A BasiliskEnvironment object specifying the basilisk environment to use.
Alternatively, a string specifying the path to an environment, though this should
only be used for testing purposes.

Value

For listPackages, a data.frame containing the full, a versioned package string, and package, the
package name.

For listPythonVersion, a string containing the default version of Python.

Author(s)

Aaron Lun

Examples

tmploc <- file.path(tempdir(), "my_package_A")
if (!file.exists(tmploc)) {

setupBasiliskEnv(tmploc, c('pandas=1.4.3'))
}
listPackages(tmploc)
listPythonVersion(tmploc)

lockExternalDir 15

lockExternalDir Lock external directory

Description

Lock the external directory so that multiple processes cannot try to create environments at the same
time.

Usage

lockExternalDir(path = getExternalDir(), ...)

unlockExternalDir(lock.info, ...)

Arguments

path String containing the path to the external directory.
... For lockExternalDir, further arguments to pass to lockDirectory such as

exclusive. For unlockExternalDir, further arguments to pass to unlockDirectory
such as clear.

lock.info A lock object generated by lockDirectory.

Details

This will apply a lock to the (possibly user-specified) external environment directory, so that a
user trying to run parallel basilisk processes will not have race conditions during lazy environment
creation. We use dir.expiry to manage the locking process for us, with the following strategy:

• If a system installation is being performed, we do not perform any locking. Rather, the R
package manager will lock the entire R installation directory for us.

• If the external directory is not yet present, we establish an exclusive lock and create that
directory.

• If an external installation directory is already present, we establish a shared lock. This will
wait for any exclusive lock to expire (and thus any currently running installation to finish). No
waiting is required if there are no existing exclusive locks.

Note that locking is only required during the creation of virtual environments, not during their actual
use. Once an environment is created, we assume that it is read-only for all processes.

Value

lockExternalDir will return a lock object from lockDirectory.
unlockExternalDir will unlock the file and return NULL invisibly.

Author(s)

Aaron Lun

Examples

loc <- lockExternalDir()
unlockExternalDir(loc)

16 PyPiLink

obtainEnvironmentPath Obtain the environment path

Description

Obtain a path to a virtual environment, lazily creating it if it does not already exist.

Usage

obtainEnvironmentPath(env)

Arguments

env A BasiliskEnvironment object specifying the environment. Alternatively a string
containing a path to an existing environment.

Value

String containing the path to an instantiated virtual environment.

For a BasiliskEnvironment env, the function will also lazily create the environment, if useSystemDir()
returns FALSE and the environment does not already exist.

Author(s)

Aaron Lun

Examples

tmploc <- file.path(tempdir(), "my_package_A")
if (!file.exists(tmploc)) {

setupBasiliskEnv(tmploc, c('pandas=1.4.3'))
}
obtainEnvironmentPath(tmploc)

env <- BasiliskEnvironment("test_env", "basilisk",
packages=c("scikit-learn=1.1.1", "pandas=1.43.1"))

Not run: obtainEnvironmentPath(env)

PyPiLink Link to PyPi

Description

Helper function to create a Markdown link to the PyPi landing page for a Python package. Intended
primarily for use inside vignettes.

Usage

PyPiLink(package)

setupBasiliskEnv 17

Arguments

package String containing the name of the Python package.

Value

String containing a Markdown link to the package’s landing page.

Author(s)

Aaron Lun

Examples

PyPiLink("pandas")
PyPiLink("scikit-learn")

setupBasiliskEnv Set up basilisk-managed environments

Description

Set up a virtual environment for isolated execution of Python code with appropriate versions of all
Python packages.

Usage

setupBasiliskEnv(envpath, packages, channels = NULL, pip = NULL, paths = NULL)

Arguments

envpath String containing the path to the environment to use.

packages Character vector containing the names of PyPI packages to install into the envi-
ronment. Version numbers must be included.

channels Deprecated and ignored.

pip Same as packages.

paths Character vector containing absolute paths to Python package directories, to be
installed by pip.

Details

Developers of basilisk client packages should never need to call this function directly. For typical
usage, setupBasiliskEnv is automatically called by basiliskStart to perform lazy installation.
Developers should also create configure(.win) files to call configureBasiliskEnv, which will
call setupBasiliskEnv during R package installation when BASILISK_USE_SYSTEM_DIR=1.

Pinned version numbers must be present for all desired packages. This improves predictability and
simplifies debugging across different systems. Any = version specifications will be automatically
converted to ==.

Additional Python packages can be installed from local directories via the paths argument. This is
useful for basilisk clients vendoring Python packages that are not available in standard repositories.

18 setupBasiliskEnv

While paths expects absolute paths for general usage, this will be auto-generated in a package
development context - see BasiliskEnvironment for details.

It is also good practice to explicitly list the versions of the dependencies of all desired packages.
This protects against future changes in the behavior of your code if the pip dependency resolver
decides to use a different version of a dependency. To identify appropriate versions of dependencies,
we suggest:

1. Creating a fresh virtual environment with the desired packages, using packages= in setupBasiliskEnv.

2. Calling listPackages on the environment to identify any relevant dependencies and their
versions.

3. Including those dependencies in the packages= argument for future use. (It is helpful to
mark dependencies in some manner, e.g., with comments, to distinguish them from the actual
desired packages.)

If versions for the desired packages are not known beforehand, developers may use setBasiliskCheckVersions(FALSE)
before running setupBasiliskEnv. This instructs setupBasiliskEnv to create an environment
with appropriate versions of all unpinned packages, which can then be read out via listPackages
for insertion in the packages= argument as described above. We stress that this option should not
be used in any release of the R package, it is a development-phase-only utility.

The virtual environment can be created with a specific Python version by specifying python= in
packages, e.g., "python=3.10". If no Python version is listed, the environment is created with
the defaultPythonVersion version. It is advised to explicitly list the desired version of Python in
packages, even if this is already version-compatible with the default. This protects against changes
to the Python version in future basilisk versions. Each requested Python version will be installed
using Pyenv with install_python if it is not already available.

Instead of installing a new Python instance, administrators or users can use their own Python by
defining the BASILISK_CUSTOM_PYTHON_* environment variable. This can be of the form BASILISK_CUSTOM_PYTHON_X,
for Python version X; or BASILISK_CUSTOM_PYTHON_X_Y, for Python version X.Y; or BASILISK_CUSTOM_PYTHON_X_Y_Z,
for Python version X.Y.Z. In each case, the environment variable should be set to a path to a Python
binary. When a particular Python version is requested, setupBasiliskEnv will check the corre-
sponding environment variable.

Administrators can also set the BASILISK_NO_PYENV environment variable to 1 to disable instal-
lation via Pyenv altogether. Doing so instructs setupBasiliskEnv to throw an error if a custom
Python is not available via the BASILISK_CUSTOM_PYTHON_* variables. This can occasionally be
useful to prevent unexpected installations of new Python instances.

Value

A virtual environment is created at envpath containing the specified packages. A NULL is invisibly
returned.

See Also

listPackages, to list the packages in the virtual environment.

Examples

tmploc <- file.path(tempdir(), "my_package_A")
if (!file.exists(tmploc)) {

setupBasiliskEnv(tmploc, c('pandas=2.2.3'))
}

useBasiliskEnv 19

useBasiliskEnv Use basilisk environments

Description

Use basilisk environments for isolated execution of Python code with appropriate versions of all
Python packages.

Usage

useBasiliskEnv(envpath, full.activation = NA)

Arguments

envpath String containing the path to the basilisk environment to use.

full.activation

Deprecated and ignored.

Details

useBasiliskEnv will load the Python binary at envpath (or specifically, its shared library) into
the current R session via reticulate. Users can then use, e.g., import to access functionality in the
Python packages installed in the virtual environment.

To ensure that the correct packages are used, useBasiliskEnv will unset environment variables
like PYTHONPATH and PYTHONHOME. These can be restored by running the function returned by
useBasiliskEnv.

It is unlikely that developers should ever need to call useBasiliskEnv directly. Rather, this inter-
action should be automatically handled by basiliskStart.

Value

The function will attempt to load the specified basilisk environment into the R session, possibly
with the modification of some environment variables (see Details).

A function is invisibly returned that accepts no arguments and resets all environment variables to
their original values prior to the useBasiliskEnv call.

Author(s)

Aaron Lun

See Also

basiliskStart, for how these basilisk environments should be used.

20 useSystemDir

Examples

tmploc <- file.path(tempdir(), "my_package_A")
if (!file.exists(tmploc)) {

setupBasiliskEnv(tmploc, c('pandas==2.2.3'))
}

This may or may not work, depending on whether a Python instance
has already been loaded into this R session.
try(useBasiliskEnv(tmploc))

useSystemDir Use the R system directory?

Description

Should we use the R system directory for installing Python environments in basilisk clients?

Usage

useSystemDir()

Details

The default value is FALSE to avoid problems with position-dependent code in packaged binaries.
This can be changed by setting BASILISK_USE_SYSTEM_DIR environment variable to "1".

Value

Logical scalar providing an answer to the above.

Author(s)

Aaron Lun

See Also

link{configureBasiliskEnv}, which is run during package installation.

Index

BasiliskEnvironment, 3, 5, 7, 8, 14, 16, 18
BasiliskEnvironment

(BasiliskEnvironment-class), 2
BasiliskEnvironment-class, 2
basiliskRun, 9–11
basiliskRun (basiliskStart), 3
basiliskStart, 2, 3, 8, 10, 11, 17, 19
basiliskStop (basiliskStart), 3

clearExternalDir, 6
configureBasiliskEnv, 7, 17
createLocalBasiliskEnv, 8

defaultPythonVersion
(setupBasiliskEnv), 17

destroyOldVersions, 9

getBasiliskCheckVersions
(getBasiliskFork), 10

getBasiliskFork, 3, 5, 10
getBasiliskShared, 4, 5
getBasiliskShared (getBasiliskFork), 10
getExternalDir, 5, 7, 11
getPythonBinary, 12
getSystemDir, 13

import, 19
install_python, 18
isLinux (isWindows), 13
isLinuxAarch64 (isWindows), 13
isMacOSX (isWindows), 13
isMacOSXArm (isWindows), 13
isWindows, 13

listPackages, 11, 14, 18
listPythonVersion (listPackages), 14
lockDirectory, 15
lockExternalDir, 12, 15

obtainEnvironmentPath, 9, 16

PyPiLink, 16

R_user_dir, 12

setBasiliskCheckVersions, 18

setBasiliskCheckVersions
(getBasiliskFork), 10

setBasiliskFork, 4, 5
setBasiliskFork (getBasiliskFork), 10
setBasiliskShared, 5
setBasiliskShared (getBasiliskFork), 10
setupBasiliskEnv, 2, 5, 8, 10, 11, 17
source, 8
system.file, 2

unlockDirectory, 15
unlockExternalDir (lockExternalDir), 15
useBasiliskEnv, 19, 19
useSystemDir, 20

21

	BasiliskEnvironment-class
	basiliskStart
	clearExternalDir
	configureBasiliskEnv
	createLocalBasiliskEnv
	destroyOldVersions
	getBasiliskFork
	getExternalDir
	getPythonBinary
	getSystemDir
	isWindows
	listPackages
	lockExternalDir
	obtainEnvironmentPath
	PyPiLink
	setupBasiliskEnv
	useBasiliskEnv
	useSystemDir
	Index

