Package ‘carnation’

February 11, 2026
Title Shiny App to Explore RNA-Seq Analysis
Version 0.99.8

Description Interactive Shiny dashboard app that can be used to
explore RNA-Seq analysis results including differential expression (DE),
functional enrichment and pattern analysis. Several visualizations
are implemented to provide a wide-ranging view of data sets. For
DE analysis, we provide PCA plot, MA plot, Upset plot & heatmaps,
in addition to a highly customizable gene plot. Seven different
visualizations are available for functional enrichment analysis,
and we also support gene pattern analysis. In addition, the app
provides a platform to manage multiple projects and user groups
that can be run on a central server.

License MIT + file LICENSE
Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.3

Depends R (>=4.6.0)

Imports BiocParallel, colorspace, ComplexUpset, dendextend, DESeq?2,
dplyr, DT, enrichplot, GeneTonic, ggplot2, ggrepel, heatmaply,
htmltools, igraph, methods, MatrixGenerics, plotly, reticulate,
RColorBrewer, rintrojs, scales, shiny, shinyBS,
shinycssloaders, shinymanager, shinythemes, shinyWidgets,
sortable, SummarizedExperiment, tools, utils, viridisLite,
visNetwork, yaml

Suggests airway, BiocStyle, DEGreport, GenomicFeatures, goseq, knitr,
org.Hs.eg.db, rmarkdown, testthat

VignetteBuilder knitr
URL https://nichd-bspc.github.io/carnation/

BugReports https://github.com/NICHD-BSPC/carnation/issues

biocViews GUI, GeneExpression, Software, ShinyApps, GO, Transcription,
Transcriptomics, Visualization, Differential Expression,
Pathways, GeneSetEnrichment

https://nichd-bspc.github.io/carnation/
https://github.com/NICHD-BSPC/carnation/issues

2 Contents

git_url https://git.bioconductor.org/packages/carnation
git_branch devel

git_last_commit e7954ac

git_last_commit_date 2026-01-30

Repository Bioconductor 3.23

Date/Publication 2026-02-11

Author Apratim Mitra [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3279-0054>),
Ryan Dale [fnd] (ORCID: <https://orcid.org/0000-0003-2664-3744>)

Maintainer Apratim Mitra <apratim.mitra@nih.gov>

Contents
carnation-package L. L e 3
add.set.column 4
add_metadata e e 5
alluvialmod e e e 6
check _user_access e 7
cnetmod L L e e e e e e e 8
create_access_yaml Lo e e e e 9
degmod e 10
degpatterns_dex e e e e e e e 12
dendromod e e e e e 12
distillmod e 14
dimod e e e e e 15
dummy_genetonic e 16
emapmod e e e e 17
enrich_to_genetonic e e e e 18
eres_cell e e e e e 19
res_deX s, 19
format_genes e e e e e e 20
fromList.with.names 21
funenrichmod e 21
fuzzymod e e 23
geneplotmod e 24
getcountplot L e 26
get_access_path e 28
get_config e 28
get_degplot 29
GEL_ZENE_COUNLS . . o . v v v v vt e e e e e e e e e e e e e e 30
get_project_name_from_path L L 31
get_upset_table 32
GELY_INIt e e e e e e 32
gs_radar L e e e 33

heatmapmod L. 34

https://orcid.org/0000-0003-3279-0054
https://orcid.org/0000-0003-2664-3744

carnation-package 3

helpmod e e 35
helpModal 36
horizonmod e e e e e e e 37
install_carnation e e e 38
I_admin_group e e e e e e 39
is_site_admin L e e e 40
loadmod e e 40
makeEnrichResult e 41
make_example_carnation_object L. Lo 42
make_final_object L 43
maplotmod e e e e e e 44
metamod L L e e e 45
MY.SUMMATY .« o o v v v v v e 46
pecamod oL L e 47
plotMA.label e 49
plotMA.label_ly e 50
PIOtPCALly e e e 51
PIOtPCA.san e e e e e 52
plotScatter.dabel 53
plotScatter.dabel _ly 55
radarmod 57
read_access_yaml L L L e e 59
res_cell . .. e e 59
TES_AEX . . o s 60
TUN_CArNation v ittt e e e e e e e e e e e e e e e e 61
savemod L L e 61
save_access_yaml L L e e 63
scattermod L . L. e e e e e e e 64
settingsmod L L L 65
summarize.res.list L L e e e 67
sumovmod L. L L e e e 68
TOP.ZENES L e 69
upsetmod L e e e e e e 70
Index 72
carnation-package carnation
Description

carnation is an interactive Shiny dashboard that makes complex bulk RNA-Seq data more accessi-
ble and intuitive, integrating all facets of bulk RNA-Seq analysis using three modules - differential
expression analysis, functional enrichment and pattern analysis.

4 add.set.column

Details

* Deeply explore analysis results from complex experiments using interactive plots.
* Easily keep track of genes of interest using the *Gene scratchpad’.

» Use fuzzy search to filter and search functional enrichment results.

* Visualize complex patterns using highly customizable gene plot.

* Manage local data in single-user mode or deploy on a server to share with collaborators using
in-built user management system.

Main function to run the app: run_carnation()

Author(s)

Maintainer: Apratim Mitra <apratim.mitra@nih.gov> (ORCID)

Other contributors:

* Ryan Dale <ryan.dale@nih.gov> (ORCID) [funder]

See Also
Useful links:

* https://nichd-bspc.github.io/carnation/
* Report bugs at https://github.com/NICHD-BSPC/carnation/issues

add.set.column Add set column to UpSet plot matrix

Description
This function adds a column denoting set number to a matrix generated for an upset plot with
fromList.with.names()

Usage
add.set.column(df)

Arguments
df binary matrix where row = genes & columns are gene sets, with 1 indicating that
a gene is present is that gene set and vice-versa
Value

data.frame with added set column

https://orcid.org/0000-0003-3279-0054
https://orcid.org/0000-0003-2664-3744
https://nichd-bspc.github.io/carnation/
https://github.com/NICHD-BSPC/carnation/issues

add_metadata

Examples

list of genes
1st <- list(groupl = c(a = "genel”, b = "gene2", ¢ = "gene3"”, d = "gene4"),
group2 = c(c = "gene3"”, d = "gene4"))

binarized matrix with group membership
df <- fromList.with.names(lst)

matrix with added set column
1df <- add.set.column(df)

add_metadata Add metadata to counts data frame

Description

Add metadata to counts data frame

Usage

add_metadata(df, coldata, exclude.intgroups)

Arguments
df data.frame with gene counts
coldata data.frame with metadata

exclude.intgroups
metadata columns to ignore

Value

counts data frame with added metadata
Examples
library(DESeq2)

make example DESeq data set
dds <- makeExampleDESeqDataSet()

extract counts and metadata
df <- assay(dds)
coldata <- colData(dds)

get gene counts df
counts_df <- get_gene_counts(dds, paste@d('gene', seq_len(10)))

add metadata

6 alluvialmod

counts_df <- add_metadata(counts_df, coldata, exclude.intgroups=NULL)

alluvialmod Alluvial plot module

Description

UI & module to generate alluvial plots.

Usage
alluvialUI(id, panel)

alluvialServer(id, obj, res_obj, config)

Arguments
id Module id
panel string, can be ’sidebar’ or "main’
obj reactiveValues object containing GeneTonic object
res_obj reactive, dataframe containing enrichment results
config reactive list with config settings

Value

Ul returns tagList with plot UI server invisibly returns NULL (used for side effects)

Examples

library(shiny)

get DESegResults object
data(res_dex, package='carnation')

get enrichResult object
data(eres_dex, package='carnation')

convert to GeneTonic object
gt <- GeneTonic::shake_enrichResult(eres_dex)

obj <- reactive({
list(l_gs = gt$l_gs,
anno_df = gt$anno_df,
label = 'compl1')
»

check user_access

res_obj <- reactive({ res })
config <- reactiveVal(get_config())

run simple shiny app with plot
if(interactive()){
shinyApp(
ui = fluidPage(
sidebarPanel(alluvialUI('p', 'sidebar')),
mainPanel(alluvialUI('p', 'main'))
),
server = function(input, output, session){
alluvialServer('p', obj, res_obj, config)

3
)
3
check_user_access Get data areas a user has access to
Description

This function takes a username and returns a list with two elements:

Usage
check_user_access(al, u, admin = "admin")
Arguments
al list with access settings; should have two elements - user_group & data_area
u user name
admin Admin user group
Details

user_group: one element vector data_area: vector of data areas

Value

list of user groups and data areas

8 cnetmod

Examples

save access details to file
home <- Sys.getenv('HOME')

create carnation data area if it doesn't exist
carnation_home <- file.path(home, 'carnation/data')
if(!dir.exists(carnation_home)) dir.create(carnation_home)

create_access_yaml(user = 'admin',
user_group = 'admin',

data_area = carnation_home)

get current user access details
al <- read_access_yaml()

1st <- check_user_access(al, u="admin')

cnetmod Cnetplot module

Description

UI & module to generate Cnetplots.

Usage

cnetPlotUI(id, panel)

cnetPlotServer(id, obj, config)

Arguments
id Module id
panel string, can be ’sidebar’ or *main’
obj reactive, dataframe containing enrichment results
config reactive list with config settings
Value

UI returns tagList with plot UI server invisibly returns NULL (used for side effects)

create_access_yaml 9

Examples

library(shiny)

get DESegResults object
data(res_dex, package='carnation')

obj <- reactive({ res })
config <- reactiveVal(get_config())

run simple shiny app with plot
if(interactive()){
shinyApp(
ui = fluidPage(
sidebarPanel(cnetPlotUI('p', 'sidebar')),
mainPanel(cnetPlotUI('p', 'main'))
),
server = function(input, output, session){
cnetPlotServer('p', obj, config)
}

create_access_yaml Create access yaml

Description

This function creates an access yaml file. This is primarily intended for the first run.

Usage

create_access_yaml (user, user_group, data_area)

Arguments

user User name

user_group User group

data_area Path to data area containing RDS files
Value

Invisibly returns NULL. This function is primarily used for its side effect of saving a yaml file with
access settings

10 degmod

Examples

save access details to file
home <- Sys.getenv('HOME')

create carnation data area if it doesn't exist
carnation_home <- file.path(home, 'carnation/data')
if(!dir.exists(carnation_home)) dir.create(carnation_home)

create_access_yaml(user = 'admin',
user_group = 'admin’,
data_area = carnation_home)

degmod Pattern plot module

Description

Module UI & server to generate pattern plots.

Usage

patternPlotUI(id, panel, tab)

patternPlotServer(id, obj, coldata, plot_args, config)

Arguments
id Module id
panel string, can be ’sidebar’ or *'main’
tab string, if “plot’ show plot settings, if ’table’ show table settings; if ’both’, show
settings for both.
obj reactiveValues object containing carnation object
coldata reactiveValues object containing object metadata
plot_args reactive containing ’gene_scratchpad’ (genes selected in scratchpad) & ’up-
set_data’ (list containing data from upset plot module)
config reactive list with config settings
Value

UI returns tagList with module UI server invisibly returns NULL (used for side effects)

degmod

Examples

library(s
library(D

Create
oobj <-m

obj <- re
dds =
rld =
res =
all_dd
all_rl
dds_ma

)

cdata <-

hiny)
ESeq2)

reactive values to simulate app state
ake_example_carnation_object()

activeValues(

oobj$dds,

oobjs$rld,

oobjs$res,

s = oobj$all_dds,

d = oobj$all_rld,

pping = oobj$dds_mapping

lapply(oobj$rld, function(x) colData(x))

coldata <- reactiveValues(all=cdata, curr=cdata)

plot_args
list(

gene_

upset
)
»

config <-

shinyApp(
ui = f1

<- reactive({

scratchpad=c('genel', 'gene2'),
_data=list(genes=NULL, labels=NULL)

reactiveVal(get_config())

uidPage(
sidebarPanel(
patternPlotUI('p', 'sidebar', 'both'),
conditionalPanel(condition = "input.pattern_mode == 'Plot'",
patternPlotUI('p', 'sidebar', 'plot')
),
conditionalPanel(condition = "input.pattern_mode == 'Table'”,
patternPlotUI('p', 'sidebar', 'table')
)
),
mainPanel

tabsetPanel(id="'pattern_mode"',
tabPanel('Plot’,
patternPlotUI('p', 'plot')
), # tabPanel plot

tabPanel('Cluster membership',
patternPlotUI('p', 'table')
) # tabPanel cluster_membership

) # tabsetPanel pattern_mode
) # tabPanel pattern_analysis

11

12 dendromod

),
server = function(input, output, session){
patternPlotServer('deg_plot', obj, coldata,
plot_args, config)

}
)
degpatterns_dex A degPatterns object for differentially expressed genes in the dexam-
ethasone treatment comparison.
Description

A degPatterns object for differentially expressed genes in the dexamethasone treatment compari-
son.

Format

A degPatterns object, generated with the degPatterns function from the DEGreport package.

Details

This degPatterns object was created to test for groups of coexpressed genes in the top 100 differ-
entially expressed genes from the dexamethasone treatment comparison.

Details on how this object has been created are included in the create_carnation_data.R script,
included in the scripts folder of the Carnation package.

References

Himes BE, Jiang X, Wagner P, Hu R, Wang Q, Klanderman B, Whitaker RM, Duan Q, Lasky-
Su J, Nikolos C, Jester W, Johnson M, Panettieri R Jr, Tantisira KG, Weiss ST, Lu Q. “RNA-Seq
Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene that Modulates
Cytokine Function in Airway Smooth Muscle Cells.” PLoS One. 2014 Jun 13;9(6):€99625. PMID:
24926665. GEO: GSE52778

dendromod Dendrogram module

Description

UI & module to generate dendrograms.

dendromod

Usage

dendrogramUI(id, panel)

dendrogramServer(id, obj, config)

Arguments
id Module id
panel string, can be ’sidebar’ or *main’
obj reactiveValues object containing GeneTonic object
config reactive list with config settings
Value

Ul returns tagList with plot UI server invisibly returns NULL (used for side effects)

Examples

library(shiny)

get enrichResult object
data(eres_dex, package='carnation')

convert to GeneTonic object
gt <- GeneTonic::shake_enrichResult(eres_dex)

obj <- reactive({
list(l_gs = gt$l_gs,
anno_df = gt$anno_df,
label = 'comp1')
»

config <- reactiveVal(get_config())

run simple shiny app with plot
if(interactive()){
shinyApp(
ui = fluidPage(
sidebarPanel (dendrogramUI('p', 'sidebar')),
mainPanel (dendrogramUI('p', 'main'))
),
server = function(input, output, session){
dendrogramServer('p', obj, config)

}

13

14 distillmod

distillmod Distilled enrichment map module

Description

UI & module to generate distill enrichment map plots.

Usage
distillPlotUI(id, panel)

distillPlotServer(id, obj, args, config)

Arguments
id Module id
panel string, can be ’sidebar’ or *main’
obj reactive containing ’distilled’ enrichment results
args reactive, list with plot arguments, 'numcat’ (number of categories to plot)
config reactive list with config settings
Value

UI returns tagList with plot UI server returns reactive with number of plotted terms

Examples

library(GeneTonic)
library(shiny)

get DESegResults object
data(res_dex, package='carnation')

get enrichResult object
data(eres_dex, package='carnation')

preprocess & convert to GeneTonic object
eres2 <- GeneTonic::shake_enrichResult(eres_dex)
gt <- enrich_to_genetonic(eres_dex, res_dex)

get distilled results
df <- distill_enrichment(
eres2,
res_dex,
gt$anno_df,
n_gs = 10,
cluster_fun = "cluster_markov"

dlmod 15

number of plotted terms
args <- reactive({ list(numcat=10) })

config <- reactiveVal(get_config())

run simple shiny app with plot
if(interactive()){
shinyApp(
ui = fluidPage(
sidebarPanel(distillPlotUI('p', 'sidebar')),
mainPanel (distillPlotUI('p', 'main'))
),
server = function(input, output, session){
numcat <- observe({
distillPlotServer('p',
reactive({ df }),

args,
config)
»
3
)
3

dlmod Download button module

Description

Module UI & server for download buttons.

Usage

downloadButtonUI(id)

downloadButtonServer(id, outplot, plot_type)

Arguments

id Module id

outplot reactive plot handle

plot_type reactive/static value used for output filename
Value

UI returns tagList with download button UL Server invisibly returns NULL (used for side effects).

16 dummy_genetonic

Examples

library(shiny)
library(ggplot2)

get example object
obj <- make_example_carnation_object()
res <- as.data.frame(obj$res[[1]1])

make MA plot
p <- ggplot(res, aes(x=baseMean, y=log2foldChange)) +
geom_point(color="black', alpha=0.5)

outplot <- reactive({ p })

app with a single button to download a plot
if(interactive()){
shinyApp(
ui = fluidPage(
downloadButtonUI('p')
),
server = function(input, output, session){
downloadButtonServer('p', outplot, 'maplot')

3
)
3
dummy_genetonic Make dummy GeneTonic object
Description

Make dummy GeneTonic object

Usage

dummy_genetonic(eres)

Arguments

eres enrichResult object

Value

GeneTonic object

emapmod

17

emapmod Enrichment map plot module

Description

UI & module to generate enrichment map plots.

Usage
enrichmapUI(id, panel)

enrichmapServer(id, obj, res_obj, config)

Arguments
id Module id
panel string, can be ’sidebar’ or *main’
obj reactiveValues object containing GeneTonic object
res_obj reactive, dataframe containing enrichment results
config reactive list with config settings

Value

Ul returns tagList with plot UI server invisibly returns NULL (used for side effects)

Examples

library(shiny)

get DESegResults object
data(res_dex, package='carnation')

get enrichResult object
data(eres_dex, package='carnation')

convert to GeneTonic object
gt <- GeneTonic: :shake_enrichResult(eres_dex)

obj <- reactive({
list(l_gs = gt$l_gs,
anno_df = gt$anno_df,
label = 'comp1')
»

res_obj <- reactive({ res })

config <- reactiveVal(get_config())

18

run simple shiny app with plot
if(interactive()){
shinyApp(
ui = fluidPage(
sidebarPanel (enrichmapUI('p', 'sidebar')),
mainPanel(enrichmapUI('p', 'main'))
),
server = function(input, output, session){
enrichmapServer('p', obj, res_obj, config)

enrich_to_genetonic

3
)
}
enrich_to_genetonic Convert enrichResult to GeneTonic object
Description

This function takes an enrichResult object and DE analysis results and creates a GeneTonic object.

Usage

enrich_to_genetonic(enrich, res)

Arguments

enrich enrichResult object

res data frame with DE analysis results
Value

GeneTonic object

Examples

get enrich & res objects
data(res_dex, package="carnation")
data(eres_dex, package="carnation")

convert to GeneTonic object
gt <- enrich_to_genetonic(eres_dex, res_dex)

eres_cell 19

eres_cell An enrichResult object for differentially expressed genes in the cell
line comparison.

Description

An enrichResult object for differentially expressed genes in the cell line comparison.

Format

An enrichResult object, generated with the enrichGO function from the clusterProfiler pack-
age.

Details

This enrichResult object was created to test for functional enrichment using the GO Biological
Process (BP) ontology on the top 100 differentially expressed genes from the cell line comparison.

Details on how this object has been created are included in the create_carnation_data.R script,
included in the scripts folder of the Carnation package.

References

Himes BE, Jiang X, Wagner P, Hu R, Wang Q, Klanderman B, Whitaker RM, Duan Q, Lasky-
Su J, Nikolos C, Jester W, Johnson M, Panettieri R Jr, Tantisira KG, Weiss ST, Lu Q. “RNA-Seq
Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene that Modulates
Cytokine Function in Airway Smooth Muscle Cells.” PLoS One. 2014 Jun 13;9(6):¢99625. PMID:
24926665. GEO: GSE52778

eres_dex An enrichResult object for differentially expressed genes in the dex-
amethasone treatment comparison.

Description
An enrichResult object for differentially expressed genes in the dexamethasone treatment com-
parison.

Format

An enrichResult object, generated with the enrichGO function from the clusterProfiler pack-
age.

20 format_genes

Details

This enrichResult object was created to test for functional enrichment using the GO Biologi-
cal Process (BP) ontology on the top 100 differentially expressed genes from the dexamethasone
treatment comparison.

Details on how this object has been created are included in the create_carnation_data.R script,
included in the scripts folder of the Carnation package.

References

Himes BE, Jiang X, Wagner P, Hu R, Wang Q, Klanderman B, Whitaker RM, Duan Q, Lasky-
Su J, Nikolos C, Jester W, Johnson M, Panettieri R Jr, Tantisira KG, Weiss ST, Lu Q. “RNA-Seq
Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene that Modulates
Cytokine Function in Airway Smooth Muscle Cells.” PLoS One. 2014 Jun 13;9(6):e99625. PMID:
24926665. GEO: GSE52778

format_genes format gene names to look pretty in table output

Description

This function works by grouping long lists of genes into groups of a specified size. Each group
is collapsed using commas, while groups are separated by spaces so that datatable formatting is
tricked into separating space-separated groups and not comma-separated groups

Usage

format_genes(g, sep = "\\/", genes.per.line = 6)

Arguments
g vector of gene names
sep gene name separator

genes.per.line number of genes to show in a line

Value

vector of gene names prettified for data.table output

Examples

string with genes separated by '/'
g <- "genel/gene2/gene3/gene4/gene5/gene6/gene?”

gg <- format_genes(g, genes.per.line=3)

fromList.with.names

21

fromList.with.names Prepare list for UpSet plots, but include rownames

Description

Prepare list for UpSet plots, but include rownames

Usage

fromList.with.names(1lst)

Arguments

1st List of sets to compare (same input as to UpSetR::fromList)

Value

data.frame of 1 and 0 showing which genes are in which sets

Examples

list of genes
1st <- list(groupl = c(a

"genel”, b = "gene2", ¢ = "gene3"”, d = "gene4"),

group2 = c(c = "gene3"”, d = "gene4"))
binarized matrix with group membership
df <- fromList.with.names(1lst)
funenrichmod Functional enrichment module

Description

UI & module to show functional enrichment tables & plots.

Usage

enrichUI(id, panel, tab = "none")

enrichServer(id, obj, upset_table, gene_scratchpad, reset_genes, config)

22 funenrichmod
Arguments
id ID string used to match the ID used to call the module UI function
panel string, can be ’sidebar’ or *main’
tab string, if “table’ show table settings, if *plots’ show plot settings; if ’compare_results’,
show comparison settings.
obj reactiveValues object containing carnation object
upset_table reactive, data from upset plot module
gene_scratchpad
reactive, genes selected in gene scratchpad
reset_genes reactive to reset genes in scratchpad
config reactive list with config settings
Value
Ul returns tagList with plot Ul server returns reactive with gene selected from functional enrichment
tables.
Examples
library(shiny)
library(DESeq2)

Create reactive values to simulate app state
oobj <- make_example_carnation_object()

obj <-
dds
rld
res
all_

)

reactiveValues(

oobj
oobj
oobj

$dds,
$rld,
$res,

dds = oobj$all_dds,
all_rld = oobj$all_rld,
dds_mapping = oobj$dds_mapping

upset_table <- reactiveValues(tbl=NULL, intersections=NULL, set_labels=NULL)

gene_scratchpad <- reactive({ c('genel', 'gene2') })

config <- reactiveVal(get_config())

shinyApp(

ui = fluidPage(

sidebarPanel(
conditionalPanel(condition = "input.func == 'Table'”,
enrichUI('p', 'sidebar', 'table')
),
conditionalPanel(condition = "input.func == 'Plot'",

)7

enrichUI('p', 'sidebar', 'plot')

fuzzymod

conditionalPanel(condition = "input.func == 'Compare results
enrichUI('p', 'sidebar', 'compare_results')
)
),
mainPanel (

tabsetPanel(id="'func',
tabPanel('Table',
enrichUI('p', 'main', 'table')
), # tabPanel table

tabPanel('Plot’,
enrichUI('p', 'main', 'plot')
), # tabPanel plot

tabPanel('Compare results',
enrichUI('p', 'main', 'compare_results')
) # tabPanel compare_results

) # tabsetPanel func
) # tabPanel
),
server = function(input, output, session){

enrich_data <- enrichServer('p', obj,
upset_table,
gene_scratchpad,
reactive({ FALSE }),

(R

’

23

config)
}
)
fuzzymod Fuzzy enrichment map module
Description

UI & module to generate fuzzy enrichment map plots.

Usage
fuzzyPlotUI(id, panel)

fuzzyPlotServer(id, obj, args, config)

Arguments
id Module id
panel string, can be ’sidebar’ or 'main’

obj reactive containing ’distilled’” enrichment results

24 geneplotmod

args reactive, list with plot arguments, 'numcat’ (number of categories to plot)
config reactive list with config settings
Value

Ul returns tagList with plot UI server returns reactive with number of plotted terms

Examples

library(shiny)

get enrichResult object
data(eres_dex, package='carnation')

preprocess & convert to GeneTonic object
gt <- GeneTonic: :shake_enrichResult(eres_dex)

get distilled results

df <- GeneTonic::gs_fuzzyclustering(gtlseq_len(10),1],
similarity_threshold = 0.35,
fuzzy_seeding_initial_neighbors = 3,
fuzzy_multilinkage_rule = 0.5)

number of plotted terms
args <- reactive({ list(numcat=10) })

config <- reactiveVal(get_config())

run simple shiny app with plot
if(interactive()){
shinyApp(
ui = fluidPage(
sidebarPanel (fuzzyPlotUI('p', 'sidebar')),
mainPanel (fuzzyPlotUI('p', 'main'))
),
server = function(input, output, session){
numcat <- observe({
fuzzyPlotServer('p',
reactive({ df }),
args,
config)
1))

geneplotmod Gene plot module

geneplotmod 25

Description

UI & server for module to create gene plot

Usage
genePlotUI(id, panel)

genePlotServer(id, obj, coldata, plot_args, config)

Arguments
id Module id
panel string, can be ’sidebar’ or "main’
obj reactiveValues object containing carnation object
coldata reactiveValues object containing object metadata
plot_args reactive list with 3 elements: “gene.id’ (all gene IDs) & ’gene_scratchpad’ (genes
selected in scratchpad) & ’comp_all’ (selected comparison)
config reactive list with config settings
Value

UI returns tagList with gene plot UL Server invisibly returns NULL (used for side effects).

Examples

library(shiny)
library(DESeq2)

Create reactive values to simulate app state
oobj <- make_example_carnation_object()

obj <- reactiveValues(
dds = oobj$dds,
rld = oobj$rld,
res = oobj$res,
all_dds = oobj$all_dds,
all_rld = oobj$all_rld,
dds_mapping = oobj$dds_mapping
)

Set up coldata structure that the module expects
coldata <- reactiveValues(
curr = list(
all_samples = colData(oobjddsmain),
main = colData(oobjddsmain)
)
)

plot_args <- reactive({

26

list(
gene.to.plot = c("genel”, "gene2"),
gene.id = rownames(oobjddsmain),
comp_all = "comp1”

)

config <- reactiveVal(get_config())

shinyApp(

ui = fluidPage(
sidebarPanel(genePlotUI('p', 'sidebar')),
mainPanel(genePlotUI('p', 'main'))
)!

server = function(input, output, session){

genePlotServer('p', obj, coldata, plot_args, config)

3

getcountplot

getcountplot Create gene plot

Description

This function creates the gene plot.

Usage

getcountplot(
df,
intgroup = "group”,
factor.levels,
title = NULL,
ylab = "Normalized counts”,
color = "gene",
nrow = 2,
ymin = NULL,
ymax = NULL,
log = TRUE,
freey = FALSE,
trendline = "smooth”,
facet = NULL,
legend = TRUE,
boxes = TRUE,

rotate_x_labels = 30

getcountplot

Arguments

df
intgroup
factor.levels
title
ylab
color
nrow

ymin

ymax

log

freey
trendline
facet
legend

boxes

rotate_x_labels

Value

ggplot handle

Examples

data.frame with gene counts
metadata variable to plot on x-axis
levels of intgroup to show on x-axis
title of plot

y-axis label

metadata variable to color by
number of rows to plot if faceting
y-axis lower limit

y-axis upper limit

should y-axis be log10-transformed?
should y-axes of faceted plots have independent scales?
type of trendline to draw

metadata variable to facet by

show legend?

show boxes?

angle to rotate x-axis labels (default=30)

make example DESeq dataset
dds <- DESeq2::makeExampleDESegDataSet ()

get gene counts

df <- get_gene_counts(dds, gene = c('genel', 'gene2'))

standard gene plot

p <- getcountplot(df, intgroup = "condition"”, factor.levels = c("A", "B"))

with genes faceted
p1 <- getcountplot(df, intgroup = "condition”, factor.levels = c("A", "B"), facet = "gene")

27

28 get_config

get_access_path Get path to access yaml file

Description

This function checks for an environment variable "CARNATION_ACCESS_YAML’ to specify di-
rectory to save access yaml. If env variable does not exist uses home directory as save location.

Usage

get_access_path()

Value

path to access yaml

Examples

p <- get_access_path()

get_config Get config

Description

This function reads the config.yaml and returns the list

Usage

get_config()

Value

list containing config items

Examples

cfg <- get_config()

get_degplot

29

get_degplot Plot a degPatterns object

Description

This function plots a degPatterns object.

Usage
get_degplot(

obj,
time,
color = NULL,
cluster_column = "cluster”,
cluster_to_show,
x_order,
points = TRUE,
boxes = TRUE,
smooth = "smooth”,
lines = TRUE,
facet = TRUE,

prefix_title = "Cluster ",
genes_to_label = NULL

)
Arguments
obj degPatterns object
time metadata variable to plot on x-axis
color variable to color plot

cluster_column column to use for grouping genes
cluster_to_show
which clusters to show in plot

x_order order of x-axis values

points boolean, show samples on plot? Default: TRUE

boxes boolean, show boxes on plot? Default: TRUE

smooth what type of trendline to use? can be ’smooth’ (default) or ’line’.
lines show lines joining samples? Default: TRUE

facet boolean, should plot be faceted? Default: TRUE

prefix_title string, prefix for facet titles

genes_to_label genes to label on plot

30 get_gene_counts

Value

ggplot handle

Examples

get degpatterns object
data(degpatterns_dex, package = 'carnation')

get pattern plot
all_clusters <- unique(degpatterns_dex$normalized$cluster)

dp <- get_degplot(degpatterns_dex, time='dex',
cluster_to_show=all_clusters,
x_order=c('untrt', 'trt'))

get_gene_counts Get read counts for gene

Description

This is a simple function to obtain read counts for a specified gene, based on the DESeq2::plotCounts

function.
Usage

get_gene_counts(dds, gene, intgroup = "condition”, norm_method = "libsize")
Arguments

dds DESeqgDataSet object

gene gene name vector

intgroup metadata variable to attach to counts

norm_method normalization method, can be ’libsize’ (default) or vst’
Value

data.frame with gene counts

Examples

make example DESeq data set
dds <- DESeq2::makeExampleDESegDataSet ()

get counts for genel
gg <- get_gene_counts(dds, 'genel')

get_project_name_from_path

get_project_name_from_path
Get project name from path

Description

This function takes in a path to an RDS file and returns a string to be used as project name

Usage
get_project_name_from_path(
X,
depth = 2,

end_offset = 0,
staging_dir = "dev",
fsep = .Platform$file.sep

)

Arguments
X character path to RDS file
depth integer how many levels below path to look?
end_offset integer how far from the end of path to end?
staging_dir name of staging directory
fsep file separator to split path with

Value

project name parsed from path to object

Examples

path to carnation object
obj_path <- "/path/to/project/test/main.rnaseq.rds"”

parsed project name
get_project_name_from_path(obj_path, depth = 2, end_offset = 0)

32

get_y_init

get_upset_table Generate upset plot table

Description

Generate upset plot table

Usage

get_upset_table(gene.lists, comp_split_pattern = ";")
Arguments

gene.lists list with character vectors of gene names

comp_split_pattern
character used to separate gene set names

Value

list with upset table elements

Examples

1st <- list(groupl = c(a = "genel”, b = "gene2", c

"gene3”, d = "gene4"),

group2 = c(b = "gene2", d = "gene4", e = "geneb"),
group3 = c(d = "gene4”, e = "gene5", f = "gene6"))
df <- get_upset_table(lst)
str(df)
get_y_init Get initial y-axis limits
Description
Get initial y-axis limits
Usage
get_y_init(df, y_delta, pseudocount)
Arguments
df data.frame with counts. Must have column ’count’
y_delta y-axis padding for visualization, must be between 0 and 1

pseudocount pseudo-count to add to the data.frame

gs_radar

Value

min and max limits for count column, padded for visualization

Examples

make example DESeq dataset
dds <- DESeq2::makeExampleDESegDataSet()

get gene counts
df <- get_gene_counts(dds, gene = c('genel', 'gene2'))

get y axis limits
get_y_init(df, y_delta = .01, pseudocount = 1)

33

gs_radar Radar plot

Description

This is a copy of gs_radar from GeneTonic where the labels of gene sets are converted to parameters

Usage
gs_radar(
res_enrich,
res_enrich2 = NULL,
labell = "scenario 1",
label2 = "scenario 2",
n_gs = 20,
p_value_column = "gs_pvalue”
)
Arguments
res_enrich GeneTonic object for comparison 1
res_enrich2 GeneTonic object for comparison 2 (default = NULL)
label1 label for comparison 1
label2 label for comparison 2
n_gs number of gene sets (default = 20)

p_value_column column to use as p-value (default = "gs_pvalue’)

Value

ggplot handle

34 heatmapmod

Examples

library(GeneTonic)

get DESeqResults object
data(res_dex, package='carnation')

get enrichResult object
data(eres_dex, package='carnation')

convert to GeneTonic object
gt <- shake_enrichResult(eres_dex)

get annotation df

idx <- match(c('gene', 'symbol'), tolower(colnames(res_dex)))
anno_df <- res_dex[,idx]

colnames(anno_df) <- c('gene_id', 'gene_name')

add aggregate score columns
gt <- get_aggrscores(gt, res_dex, anno_df)

make radar plot
p <- gs_radar(gt)

heatmapmod Heatmap module

Description

Module UI & server to generate heatmap.

Usage

heatmapUI(id, panel)

heatmapServer(id, obj, coldata, plot_args, gene_scratchpad, config)

Arguments
id Module id
panel string, can be ’sidebar’ or *main’
obj reactive Values object containing carnation object
coldata reactive Values object containing object metadata
plot_args reactive containing ’fdr.thres’ (padj threshold), *fc.thres’ (log2FC) & "upset_data’

(list containing data from upset plot module)

gene_scratchpad
reactiveValues object containing genes selected in scratchpad which will be la-
beled

config reactive list with config settings

helpmod

Value

Ul returns tagList with heatmap UI. Server invisibly returns NULL (used for side effects).

Examples

library(shiny)
library(DESeq2)

Create reactive values to simulate app state
oobj <- make_example_carnation_object()

obj <- reactiveValues(
dds = oobj$dds,
rld = oobj$rld,
res = oobj$res,
all_dds = oobj$all_dds,
all_rld = oobj$all_rld,
dds_mapping = oobj$dds_mapping
)

cdata <- lapply(oobj$rld, function(x) colData(x))
coldata <- reactiveValues(all=cdata, curr=cdata)

plot_args <- reactive({

list(
fdr.thres=0.1,
fc.thres=0,
upset_data=list(genes=NULL, labels=NULL)
)
»
gene_scratchpad <- reactive({ c('genel', 'gene2') })

config <- reactiveVal(get_config())

shinyApp(
ui = fluidPage(
sidebarPanel(heatmapUI('p', 'sidebar')),
mainPanel (heatmapUI('p', 'sidebar'))
),
server = function(input, output, session){
heatmapServer('p', obj, coldata,
plot_args, gene_scratchpad, config)

helpmod Help button module

36 helpModal

Description

Module UI & server for help buttons.

Usage
helpButtonUI(id)
helpButtonServer(id, ...)
Arguments
id Module id. This also doubles as prefixes for help text files.
other params passed to helpModal()
Value

UI returns tagList with help button UL Server invisibly returns NULL (used for side effects).

Examples

library(shiny)

app with a single help button to show DE summary table details
if(interactive()){
shinyApp(
ui = fluidPage(
helpButtonUI('de_summary_help')
),
server = function(input, output, session){
helpButtonServer('de_summary_help')

3

helpModal Help modal

Description

This generates a modal dialog that includes text from a markdown file.

Usage

helpModal(mdfile, title = NULL, ...)

horizonmod
Arguments
mdfile path to markdown file
title Title of modal dialog
other params passed to modalDialog()
Value

Modal dialog with help documentation.

37

horizonmod Horizon plot module

Description

UI & module to generate horizon plots.

Usage
horizonUI(id, panel)

horizonServer(id, obj, config)

Arguments
id Module id
panel string, can be ’sidebar’ or *main’
obj reactiveValues object containing two GeneTonic objects
config reactive list with config settings
Value

Ul returns tagList with plot UI server invisibly returns NULL (used for side effects)
Examples
library(shiny)

get enrichResult object
data(eres_dex, package='carnation')

convert to GeneTonic object
gt <- GeneTonic: :shake_enrichResult(eres_dex)

get second enrichResult object
data(eres_cell, package='carnation')

convert to GeneTonic object

38 install_carnation

gt1 <- GeneTonic::shake_enrichResult(eres_cell)

obj <- reactive({

list(
obj1 = list(l_gs = gt$l_gs,
anno_df = gt$anno_df,
label = 'compl'),
obj2 = list(l_gs = gt1$l_gs,
anno_df = gti$anno_df,
label = 'comp2')
)

»
config <- reactiveVal(get_config())

run simple shiny app with plot
if(interactive()){
shinyApp(
ui = fluidPage(
sidebarPanel (horizonUI('p', 'sidebar')),
mainPanel (horizonUI('p', 'main'))
),
server = function(input, output, session){
horizonServer('p', obj, config)

3
)
}
install_carnation Create carnation python environment
Description

This function installs ’plotly’ and ’kaleido’ python packages in an environment to allow PDF down-
loads from plotly plots.

Usage
install_carnation(envname, ...)
Arguments
envname name of the python environment
parameters passed to reticulate::py_install
Value

NULL, invisibly. The function is called for its side effects.

in_admin_group

Examples

if(interactive()){
install_carnation()

39

in_admin_group is user is in admin group?

Description

is user is in admin group?

Usage

in_admin_group(u)

Arguments

u username

Value

TRUE/FALSE to indicate if the user is part of the admin group

Examples

save access details to file
home <- Sys.getenv('HOME')

create carnation data area if it doesn't exist
carnation_home <- file.path(home, 'carnation/data')

if(!dir.exists(carnation_home)) dir.create(carnation_home)

create_access_yaml(user = 'admin',
user_group = 'admin',
data_area = carnation_home)

check <- in_admin_group('user"')

40 loadmod

is_site_admin is user an admin?

Description

is user an admin?

Usage

is_site_admin(u)

Arguments

u username

Value

boolean to indicate is user is in admin group

Examples

check if default user is admin
yy <- is_site_admin(u="admin")

loadmod Load data module

Description

Module UI & server to load new data

Usage
loadDataUI (id)

loadDataServer(id, username, config, rds = NULL)

Arguments
id Module id
username user name
config reactive list with config settings

rds Object to be edited

makeEnrichResult

Value

UI returns tagList with module UI Server returns reactive with app reload trigger
Examples

library(shiny)

username <- 'admin'

config <- reactiveVal(get_config())

obj <- make_example_carnation_object()

rds <- reactive({ obj=obj })

shinyApp(

ui = fluidPage(

loadDatalUI('p')
),

server = function(input, output, session){
loadDataServer('p', username=username, config, rds)

41

}
)
makeEnrichResult Make an enrichResult obj from a data frame
Description

Most of the parameters are just placeholders and the dataframe must contain the columns *ID’ and

’genelD’
Usage
makeEnrichResult(
df,
split = "/",

keytype = "UNKNOWN",
ontology = "UNKNOWN",
type = "enrichResult”

Arguments

df data frame with functional enrichment results

split string, character used to split gene IDs

42

keytype type of gene ID

ontology ontology database being used

type string, can be ’enrichResult’ or ’gseaResult’
Value

enrichResult object

Examples

get enrichResult object
data(eres_dex, package='carnation')

extract the results
df <- as.data.frame(eres_dex)

convert to a stripped down enrichResult object
eres2 <- makeEnrichResult(df)

make_example_carnation_object

make_example_carnation_object
Make example carnation object

Description

Returns example carnation object used in examples & testing

Usage

make_example_carnation_object()

Value

reactiveValues object containing carnation object

Examples

obj <- make_example_carnation_object()

make_final_object 43

make_final_object Make final object for internal use by the app

Description

This function takes an uploaded object and sanitizes it to make sure it is suitable for internal use
along with other additions:

* adds a ’dds_mapping’ element that maps dds_list keys to res_list objects.

* if there are multiple dds_list objects, it adds a "all_dds’ element combining all samples.

Usage

make_final_object(obj)

Arguments
obj list object containing lists of DE analysis results, functional enrichment objects,
pattern analysis objects & raw and normalized counts objects.
Value

final carnation object with additional pre-processing
Examples
library(DESeq2)

make example DESeq dataset
dds <- makeExampleDESeqDataSet()

run DE analysis
dds <- DESeq(dds)

extract comparison of interest
res <- results(dds, contrast = c("condition”, "A", "B"))

perform VST normalization
rld <- varianceStabilizingTransformation(dds, blind = TRUE)

build minimal object

obj <- list(
res_list = list(
comp = list(
res = res,
dds = "main",

label = "A vs B"

44 maplotmod

dds_list = list(main
rld_list = list(main

dds),
rid)

)

final object
final_obj <- make_final_object(obj)

maplotmod MA plot module

Description

UI & server for module to create MA plot

Usage

maPlotUI(id, panel)

maPlotServer(id, obj, plot_args, config)

Arguments
id Module id
panel string, can be ’sidebar’ or 'main’
obj reactiveValues object containing carnation object
plot_args reactive containing ’fdr.thres’ (padj threshold), ’fc.thres’ (10g2FC threshold) &
“gene.to.plot’ (genes selected in scratchpad)
config reactive list with config settings
Value

Ul returns tagList with MA plot Ul Server invisibly returns NULL (used for side effects).

Examples

library(shiny)
library(DESeq2)

Create reactive values to simulate app state
oobj <- make_example_carnation_object()

obj <- reactiveValues(
dds = oobj$dds,
rld = oobj$rld,
res = oobj$res,
all_dds = oobj$all_dds,
all_rld = oobj$all_rld,

metamod 45

dds_mapping = oobj$dds_mapping
)

Set up coldata structure that the module expects
coldata <- reactiveValues(
curr = list(
all_samples = colData(oobjddsmain),
main = colData(oobjddsmain)
)
)

plot_args <- reactive({
list(
fdr.thres=0.1,
fc.thres=0,
gene.to.plot=c('genel', 'gene2')
)
»

config <- reactiveVal(get_config())

shinyApp(
ui = fluidPage(
sidebarPanel(maPlotUI('p', 'sidebar')),
mainPanel(maPlotUI('p', 'main'))
),
server = function(input, output, session){
maPlotServer('p', obj, plot_args, config)
}

metamod Metadata module

Description
This module generates the metadata tab that allows users to view the metadata associated with the
loaded carnation object.

Usage
metadatalI(id, panel)

metadataServer(id, obj, cols.to.drop)

Arguments

id Module id

panel context for generating ui elements (’sidebar’ or *main’)

46 my.summary

obj reactiveValues object containing carnation object

cols.to.drop columns to hide from table

Value

UI returns tagList with metadata Ul Server returns reactive object with metadata.

Examples

library(shiny)

Create reactive values to simulate app state
oobj <- make_example_carnation_object()

obj <- reactiveValues(
dds = oobj$dds,
rld = oobj$rld,
res = oobj$res,
all_dds = oobj$all_dds,
all_rld = oobj$all_rld,
dds_mapping = oobj$dds_mapping
)

config <- get_config()
cols.to.drop <- config$server$cols.to.drop

shinyApp(
ui = fluidPage(
sidebarPanel (metadatalI('p', 'sidebar')),
mainPanel(metadatalUI('p', 'main'))
),
server = function(input, output, session){
reactiveVal to save updates
saved_data <- reactiveVal()

cdata <- metadataServer('p', obj, cols.to.drop)
observeEvent(cdata(), {

saved_data(cdata())
»

my . summary Summarize DESeq?2 results into a dataframe

Description

summary(res) prints out info; this function captures it into a dataframe

pcamod

Usage
my.summary(res, dds, alpha, 1fc.thresh = 0)

Arguments
res DESeq?2 results object
dds DEseq?2 object
alpha Alpha level at which to call significantly changing genes
1fc.thresh log2FoldChange threshold
Value

Dataframe of summarized results

Examples

n_genes <- 100

make mock dds list
dds <- DESeq2::makeExampleDESegDataSet(n=n_genes)

make mock results df

res <- data.frame(
baseMean = runif(n_genes, 10, 1000),
log2FoldChange = rnorm(n_genes, 0, 2),
1fcSE = runif(n_genes, 0.1, 0.5),
stat = rnorm(n_genes, 0, 3),
pvalue = runif(n_genes, 0, 1),
padj = runif(n_genes, 0, 1),
symbol = paste@("GENE"”, 1:n_genes),
row.names = paste@("”gene”, 1:n_genes)

)

get summary
df <- my.summary(res, dds, alpha=0.1)

pcamod PCA plot module

Description

Module UI + server to generate a pca plot.

Usage
pcaPlotUI(id, panel)

pcaPlotServer(id, obj, coldata, config)

48

Arguments
id Module id
panel string, can be ’sidebar’ or *'main’
obj reactive Values object containing carnation object
coldata reactiveValues object containing object metadata
config reactive list with config settings

Value

pcamod

UI returns tagList with PCA plot Ul Server invisibly returns NULL (used for side effects).

Examples

library(shiny)
library(DESeq2)

Create reactive values to simulate app state
oobj <- make_example_carnation_object()

obj <- reactiveValues(
dds = oobj$dds,
rld = oobj$rld,
res = oobj$res,
all_dds = oobj$all_dds,
all_rld = oobj$all_rld,
dds_mapping = oobj$dds_mapping
)

Set up coldata structure that the module expects
coldata <- reactiveValues(
curr = list(
all_samples = colData(oobjddsmain),
main = colData(oobjddsmain)
)
)

config <- reactiveVal(get_config())

shinyApp(
ui = fluidPage(
sidebarPanel(pcaPlotUI('p', 'sidebar')),
mainPanel(pcaPlotUI('p', 'main'))
),
server = function(input, output, session){
pcaPlotServer('p', obj, coldata, config)
3

plotMA . label 49
plotMA.label Create a labeled MA plot
Description
This function creates an MA plot from a data.frame containing DE analysis results.
Usage
plotMA. label(
res,
fdr.thres = 0.01,
fc.thres = 0,
fc.lim = NULL,
lab.genes = NULL,
tolower.cols = c("SYMBOL", "ALIAS")
)
Arguments
res data.frame with DE analysis results. Must contain "padj" & "log2FoldChange"
columns
fdr.thres False discovery rate (FDR) threshold
fc.thres log2FoldChange threshold
fc.lim y-axis limits
lab.genes genes to label on MA plot

tolower.cols column names that will be converted to lower case

Value

ggplot handle

Examples

make mock results df

n_genes <- 100

res <- data.frame(
baseMean = runif(n_genes, 10, 1000),
log2FoldChange = rnorm(n_genes, 0, 2),
1fcSE = runif(n_genes, 0.1, 0.5),
stat = rnorm(n_genes, 0, 3),
pvalue = runif(n_genes, 0, 1),
padj = runif(n_genes, 0, 1),
symbol = paste@(”"GENE"”, 1:n_genes),
row.names = paste@("gene”, 1:n_genes)

50

plotMA.label(res, lab.genes = c("genel”, "gene2"))

plotMA .label_ly

plotMA.label_ly Create an interactive labeled MA plot

Description

This function creates an MA plot from a data.frame containing DE analysis results using plot_ly

Usage
plotMA.label_ly(
res,
fdr.thres = 0.01,
fc.thres = 0,

fc.lim = NULL,
lab.genes = NULL,
tolower.cols = c("SYMBOL", "ALIAS")

)
Arguments
res data.frame with DE analysis results. Must contain "padj" & "log2FoldChange"
columns
fdr.thres False discovery rate (FDR) threshold
fc.thres log2FoldChange threshold
fc.lim y-axis limits
lab.genes genes to label on MA plot

tolower.cols column names that will be converted to lower case

Value

plotly handle

Examples

make mock results df
n_genes <- 100
res <- data.frame(
baseMean = runif(n_genes, 10, 1000),
log2FoldChange = rnorm(n_genes, 0, 2),
1fcSE = runif(n_genes, 0.1, 0.5),
stat = rnorm(n_genes, 0, 3),
pvalue = runif(n_genes, 0, 1),
padj = runif(n_genes, 0, 1),
symbol = paste@(”"GENE"”, 1:n_genes),

plotPCA.ly 51

row.names = paste@(”gene”, 1:n_genes)

)

plotMA.label_ly(res, lab.genes = c("genel”, "gene2"))

plotPCA.ly Plot an interactive PCA plot

Description

Plot an interactive PCA plot

Usage

plotPCA.ly(rld, intgroup)

Arguments
rld DESeqTransform object output by varianceStabilizingTransformation() or rlog()
intgroup character vector of names in colData(x) to use for grouping

Value

Handle to ggplot with added label field in aes_string() for plotting with ggplotly()

Examples

make example dds object
dds <- DESeq2::makeExampleDESegDataSet()

normalize
rld <- DESeq2::varianceStabilizingTransformation(dds, blind=TRUE)

make pca plot
p <- plotPCA.ly(rld, intgroup='condition')

52

plotPCA.san

plotPCA.san

Adjustable PCA plot

Description

Create a PCA plot with specified PCs on x- and y-axis

Usage

plotPCA.san(
object,
intgroup = "group”,
pcx,
pcy,
pcz = NULL,
ntop = 500,

samples = NULL,

loadings

FALSE,

loadings_ngenes = 10

Arguments

object
intgroup
pcx

pcy

pcz

ntop
samples

loadings

loadings_ngenes

Value

ggplot handle

Examples

normalized DESeqDataSet object
metadata variable to use for grouping samples
principal component to plot on x-axis

principal component to plot on y-axis

principal component to plot on z-axis. If not NULL, function returns a 3-D PCA

plot.
number of most-variable genes to use
vector of sample names to show on plot

boolean, show gene loadings? Default is FALSE.

integer, # genes to show loadings for (default=10)

make example dds object
dds <- DESeq2::makeExampleDESeqDataSet ()

normalize

plotScatter.label

53

rld <- DESeqg2::varianceStabilizingTransformation(dds, blind=TRUE)

make pca plot

p <- plotPCA.san(rld, intgroup='condition', pcx='PC1', pcy='PC2')

plotScatter.label Plot a scatterplot to compare two contrasts

Description

Plot a scatterplot to compare two contrasts

Usage

plotScatter.label(

compare,
df,
label_x,
label_y,
lim.x,
lim.y,

color.palette,
lab.genes = NULL,

plot_all = "no",
name.col = "geneid"”,
lines = c("yes"”, "yes", "yes"),
alpha = 1,
size = 4,
show.grid = "yes"
)
Arguments
compare string, what values to plot? can be "log2FoldChange’ or ’P-adj’
df data frame with log2FoldChange & padj values to plot from 2 contrasts
label_x string, label for x-axis
label_y string, label for y-axis
lim.x x-axis limits
lim.y y-axis limits

color.palette

lab.genes
plot_all

character vector of colors to use for significance categories 'Both - same LFC
sign’, Both - opposite LFC sign’, ’None’, label_x, label_y
genes to label (default=NULL)

string, can be yes’ or ’no’. if ’yes’, points outside axis limits are plotted along
x/y axis lines (default="no’).

54 plotScatter.label

name.col gene name column to merge the 2 results, also used for labeling points

lines 3-element character vector to plot gridlines in the order (x=0, y=0, x=y), with
’yes’” or 'no’ values. E.g. ("yes’, 'yes’, 'no’) will plot dotted lines forx =0 & y
= 0, but not the x =y diagonal.

alpha float, marker opacity (default=1).
size float, marker size (default=4).
show.grid string, can be ’yes’ (default) or 'no’.
Value
ggplot handle
Examples

make mock results df

n_genes <- 100

res1l <- data.frame(
baseMean = runif(n_genes, 10, 1000),
log2FoldChange = rnorm(n_genes, 0, 2),
1fcSE = runif(n_genes, 0.1, 0.5),
stat = rnorm(n_genes, 0, 3),
pvalue = runif(n_genes, 0, 1),
padj = runif(n_genes, 0, 1),
symbol = paste@("GENE"”, 1:n_genes),
row.names = paste@("”gene”, 1:n_genes)

)

res2 <- data.frame(
baseMean = runif(n_genes, 10, 1000),
log2FoldChange = rnorm(n_genes, 0, 2),
1fcSE = runif(n_genes, 0.1, 0.5),
stat = rnorm(n_genes, 0, 3),
pvalue = runif(n_genes, 0, 1),
padj = runif(n_genes, 0, 1),
symbol = paste@("GENE"”, 1:n_genes),
row.names = paste@("”gene”, 1:n_genes)

)

add geneid column
res1l <- cbind(geneid=rownames(res1), resl)
res2 <- cbind(geneid=rownames(res2), res2)

make merged df from the two comparisons

cols.sub <- c('log2FoldChange', 'padj', 'geneid')

df_full <- dplyr::inner_join(
dplyr::select(as.data.frame(resl1), all_of(cols.sub)),
dplyr::select(as.data.frame(res2), all_of(cols.sub)),
by = 'geneid',
suffix = c('.x",

B2

plotScatter.label_ly 55

calculate x & y limits for log2FoldChange
xlim <- range(df_full[['log2FoldChange.x' 11)
ylim <- range(df_full[['log2FoldChange.y' 11)

get color palette
color.palette <- RColorBrewer::brewer.pal(n=5, name='Set2')

add significance column

sig.x <- df_full$padj.x < 0.1 & !is.na(df_full$padj.x)

sig.y <- df_full$padj.y < 0.1 & !is.na(df_full$padj.y)

up.x <- df_full$log2FoldChange.x >= @

up.y <- df_full$log2FoldChange.y >= @

significance <- rep('None', nrow(df_full))

significancel sig.x & sig.y & ((up.x & up.y) | ('up.x & 'up.y)) 1 <- 'Both - same LFC sign'
significance[sig.x & sig.y & ((up.x & !up.y) | (lup.x & up.y)) 1 <- 'Both - opposite LFC sign'
significance[sig.x & !sig.y] <- 'A vs B'

significance[!sig.x & sig.y 1 <- 'B vs A'

df_full$significance <- significance

generate scatter plot
p <- plotScatter.label(compare = 'log2FoldChange’,
df = df_full,
label_x = 'A vs B',
label_y = 'B vs A",
lim.x = x1lim,
lim.y = ylim,
color.palette = color.palette)

plotScatter.label_ly Plot an interactive scatterplot to compare two contrasts

Description

Plot an interactive scatterplot to compare two contrasts

Usage

plotScatter.label_ly(
compare,
df,
label_x,
label_y,
lim.x,
lim.y,
color.palette,
lab.genes = NULL,
name.col = "geneid",
lines = c("yes"”, "yes", "yes"),

56

alpha = 1,
size = 4,
show.grid =

)

Arguments

compare
df
label_x
label_y
lim.x
lim.y

color.palette

lab.genes
name.col

lines

alpha
size

show.grid

Value

plotly handle

Examples

plotScatter.label_ly

nyesn

string, what values to plot? can be "log2FoldChange’ or 'P-adj’

data frame with log2FoldChange & padj values to plot from 2 contrasts

string, label for x-axis

string, label for y-axis

x-axis limits

y-axis limits

character vector of colors to use for significance categories 'Both - same LFC
sign’, *Both - opposite LFC sign’, ’None’, label_x, label_y

genes to label (default=NULL)
gene name column to merge the 2 results, also used for labeling points

3-element character vector to plot gridlines in the order (x=0, y=0, x=y), with
’yes’” or 'no’ values. E.g. ("yes’, ’yes’, 'no’) will plot dotted lines forx =0 & y
= 0, but not the x =y diagonal.

float, marker opacity (default=1).
float, marker size (default=4).

string, can be "yes’ (default) or 'no’.

make mock results df

n_genes <- 100

resl <- data.frame(
baseMean = runif(n_genes, 10, 1000),
log2FoldChange = rnorm(n_genes, 0, 2),
1fcSE = runif(n_genes, 0.1, 0.5),

stat

pvalue

padj

rnorm(n_genes, 0, 3),
= runif(n_genes, 0, 1),
runif(n_genes, 0, 1),

symbol = paste@("GENE"”, 1:n_genes),
row.names = paste@("gene", 1:n_genes)

)

res2 <- data.frame(
baseMean = runif(n_genes, 10, 1000),
log2FoldChange = rnorm(n_genes, 0, 2),
1fcSE = runif(n_genes, 0.1, 0.5),

radarmod 57

stat = rnorm(n_genes, 0, 3),

pvalue = runif(n_genes, 0, 1),

padj = runif(n_genes, 0, 1),

symbol = paste@("GENE"”, 1:n_genes),
row.names = paste@(”gene", 1:n_genes)

)

add geneid column
resl <- cbind(geneid=rownames(resl1), resl)
res2 <- cbind(geneid=rownames(res2), res2)

make merged df from the two comparisons

cols.sub <- c('log2FoldChange', 'padj', 'geneid')

df_full <- dplyr::inner_join(
dplyr::select(as.data.frame(res1), all_of(cols.sub)),
dplyr::select(as.data.frame(res2), all_of(cols.sub)),
by = 'geneid',
suffix = c('.x",

)

-y

calculate x & y limits for log2FoldChange
x1lim <- range(df_full[['log2FoldChange.x' 11)
ylim <- range(df_full[['log2FoldChange.y' 11)

get color palette
color.palette <- RColorBrewer: :brewer.pal(n=5, name='Set2')

add significance column

sig.x <- df_full$padj.x < 0.1 & !is.na(df_full$padj.x)

sig.y <- df_full$padj.y < 0.1 & !is.na(df_full$padj.y)

up.x <- df_full$log2FoldChange.x >= @

up.y <- df_full$log2FoldChange.y >= @

significance <- rep('None', nrow(df_full))

significance[sig.x & sig.y & ((up.x & up.y) | (lup.x & 'up.y))] <- 'Both - same LFC sign'
significancel sig.x & sig.y & ((up.x & lup.y) | (lup.x & up.y)) 1 <- 'Both - opposite LFC sign’
significance[sig.x & !sig.y] <- 'A vs B'

significance[!sig.x & sig.y] <- 'B vs A'

df_full$significance <- significance

generate scatter plot
p <- plotScatter.label_ly(compare = 'log2FoldChange',
df = df_full,
label_x = 'A vs B',
label_y = 'B vs A',
lim.x = x1lim,
lim.y = ylim,
color.palette = color.palette)

radarmod Radar plot module

58

Description

Usage
radarUI(id, panel, type = "")
radarServer(id, obj, config, type = "")
Arguments
id Module id
panel string, can be ’sidebar’ or *main’
type string, if ’comp’ then show the comparison view
obj reactiveValues object containing GeneTonic object
config reactive list with config settings
Value

UI & module to generate radar plots.

UI returns tagList with plot UI server invisibly returns NULL (used for side effects)

Examples

library(shiny)

get enrichResult object
data(eres_dex, package='carnation')

convert to GeneTonic object
gt <- GeneTonic::shake_enrichResult(eres_dex)

obj <- reactive({
list(l_gs = gt$l_gs,
anno_df = gt$anno_df,
label = 'comp1')
»

config <- reactiveVal(get_config())

run simple shiny app with plot
if(interactive()){
shinyApp(
ui = fluidPage(
sidebarPanel(radarUI('p', 'sidebar')),
mainPanel(radarUI('p', 'main'))
),
server = function(input, output, session){
radarServer('p', obj, config)

}

radarmod

read_access_yaml 59

read_access_yaml Read access yaml with user groups and data areas

Description

This function reads the access yaml file and returns user groups and data areas as a list of data
frames.

Usage

read_access_yaml ()

Value

return carnation access settings from yaml file

Examples

save access details to file
home <- Sys.getenv('HOME')

create carnation data area if it doesn't exist
carnation_home <- file.path(home, 'carnation/data')
if(!dir.exists(carnation_home)) dir.create(carnation_home)

create_access_yaml(user = 'admin',
user_group = 'admin',

data_area = carnation_home)

al <- read_access_yaml()

res_cell A DESeqResults object testing the difference between two cell lines of
smooth muscle cells

Description

A DESeqResults object testing the difference between two cell lines of smooth muscle cells

Format

A DESeqResults object, generated in the DESeq2 framework

60 res_dex

Details

This DESeqResults object on the data from the airway package has been created comparing two
smooth muscle cell lines, accounting for the effect of dexamethasone treatment.

Details on how this object has been created are included in the create_carnation_data.R script,
included in the scripts folder of the Carnation package.

References

Himes BE, Jiang X, Wagner P, Hu R, Wang Q, Klanderman B, Whitaker RM, Duan Q, Lasky-
Su J, Nikolos C, Jester W, Johnson M, Panettieri R Jr, Tantisira KG, Weiss ST, Lu Q. “RNA-Seq
Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene that Modulates
Cytokine Function in Airway Smooth Muscle Cells.” PLoS One. 2014 Jun 13;9(6):€99625. PMID:
24926665. GEO: GSE52778

res_dex A DESeqResults object testing the effect of dexamethasone on smooth
muscle cells

Description

A DESeqResults object testing the effect of dexamethasone on smooth muscle cells

Format

A DESegResults object, generated in the DESeq?2 framework

Details

This DESeqResults object on the data from the airway package has been created comparing dex-
amethasone treated vs untreated samples, accounting for the different cell lines included.

Details on how this object has been created are included in the create_carnation_data.R script,
included in the scripts folder of the Carnation package.

References

Himes BE, Jiang X, Wagner P, Hu R, Wang Q, Klanderman B, Whitaker RM, Duan Q, Lasky-
Su J, Nikolos C, Jester W, Johnson M, Panettieri R Jr, Tantisira KG, Weiss ST, Lu Q. “RNA-Seq
Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene that Modulates
Cytokine Function in Airway Smooth Muscle Cells.” PLoS One. 2014 Jun 13;9(6):€99625. PMID:
24926665. GEO: GSE52778

run_carnation 61

run_carnation Carnation

Description

Interactive shiny dashboard for exploring RNA-Seq analysis.

Usage

run_carnation(credentials = NULL, passphrase = NULL, enable_admin = TRUE, ...)
Arguments

credentials path to encrypted sqlite db with user credentials.

passphrase passphrase for credentials db.

enable_admin if TRUE, admin view is shown. Note, this is only available if credentials have
sqlite backend.

parameters passed to shinyApp() call

Value
shiny App object
Examples
if(interactive()){
shiny: :runApp(
run_carnation()
)
}
savemod Save object module Ul
Description

Module UI & server to save carnation object.

Usage

saveUI(id)

saveServer(id, original, current, coldata, pattern, username, config)

62 savemod

Arguments
id Module id
original original carnation object
current current carnation object
coldata reactiveValues object containing object metadata
pattern regex pattern for finding carnation data
username user name
config reactive list with config settings
Value

Ul returns actionButton Server returns reactive with trigger to refresh the app

Examples

library(shiny)
library(DESeq2)

default username
username <- reactive({ NULL })

internal carnation config
config <- reactiveVal(get_config())

regex to find carnation files
pattern <- reactive({ config()$servers$pattern })

get example object
obj <- make_example_carnation_object()

make reactive with obj & path
original <- reactiveValues(obj = obj, path = "/path/to/carnation/obj.rds")

extract metadata
coldata <- reactive({ lapply(obj$dds, colData) })

edit metadata
coldata_edit <- lapply(coldata, function(x){

x$type <- 'new'; x

b

add to object
edit_obj <- obj
for(name in names(edit_obj$dds)){
colData(edit_obj$dds[[name]1]) <- coldata_edit[[name]]

}

run simple shiny app with plot
shinyApp(

save_access_yaml 63

ui = fluidPage(
saveUI('p')
),
server = function(input, output, session){
save_event <- saveServer('save_object',

original=original,
current=reactive({ edit_obj 3}),
coldata=coldata,
pattern=pattern(),
username=username,

config)
}
)
save_access_yaml Save access yaml to file
Description

This function saves access details (user groups and data areas) to the designated access yaml file.

Usage

save_access_yaml (1st)

Arguments

1st list of data frames with user_groups and data_areas

Value

save access settings to yaml file

Examples

save access details to file
home <- Sys.getenv('HOME')

create carnation data area if it doesn't exist
carnation_home <- file.path(home, 'carnation/data')
if(!dir.exists(carnation_home)) dir.create(carnation_home)

create_access_yaml(user = 'admin',
user_group = 'admin',
data_area = carnation_home)

read access yaml
1st <- read_access_yaml()

64 scattermod

add new user
lst$user_group$admin <- c(lst$user_group$admin, 'userl')

save to access settings
save_access_yaml(1lst)

scattermod Scatterplot module

Description

Module UI + server for generating scatter plots.

Usage

scatterPlotUI(id, panel)

scatterPlotServer(id, obj, plot_args, config)

Arguments
id Module id
panel string, can be ’sidebar’ or *main’ passed to UI
obj reactiveValues object containing carnation object passed to server
plot_args reactive containing ’fdr.thres’ (padj threshold), ’fc.thres’ (log2FC) & *gene.to.plot’
(genes to be labeled) passed to server
config reactive list with config settings passed to server
Value

UI returns tagList with scatter plot UL Server invisibly returns NULL (used for side effects).

Examples

library(shiny)

Create reactive values to simulate app state
oobj <- make_example_carnation_object()

obj <- reactiveValues(
dds = oobj$dds,
rld = oobj$rld,
res = oobjs$res,
all_dds = oobj$all_dds,
all_rld = oobj$all_rld,
dds_mapping = oobj$dds_mapping

settingsmod

plot_args <- reactive({
list(
fdr.thres=0.1,
fc.thres=0,
gene.to.plot=c('genel', 'gene2')
)
»

config <- reactiveVal(get_config())

shinyApp(
ui = fluidPage(
sidebarPanel(scatterPlotUI('p', 'sidebar')),
mainPanel(scatterPlotUI('p', 'sidebar'))
),
server = function(input, output, session){
scatterPlotServer('p', obj, plot_args, config)
3

settingsmod Settings module

Description

Module UI & server for user access details interface.

Server code for settings module

Usage

settingsUI(id, panel, username)

settingsServer(id, details, depth, end_offset, assay_fun, config)

Arguments
id Module id
panel context for generating ui elements (’sidebar’ or ’'main’)
username user name
details reactive list with user name & app location details
depth project name depth
end_offset project name end offset
assay_fun function to parse assay names from file path

config reactive list with config settings

66 settingsmod

Value

UI returns tagList with module UI Server returns reactive with list containing user access details

Examples

library(shiny)

default username
username <- reactive({ NULL 3})

internal carnation config
config <- reactiveVal(get_config())

regex to find carnation files
pattern <- reactive({ config()$server$pattern })

access permissions
assay.list <- reactiveValues(l=read_access_yaml())

if(interactive()){
shinyApp(
ui = fluidPage(
sidebarPanel (uiOutput('settings_sidebar')),
mainPanel (uiOutput('settings_main'))
),
server = function(input, output, session){
output$settings_main <- renderUI({
settingsUI('settings', panel='main', username=username)

D

output$settings_sidebar <- renderUI({
settingsUI('settings', panel='sidebar', username=username)

D

settings <- settingsServer('p',
details=reactive({
list(username=username,
where=NULL)
»,

depth=2,

end_offset=0,

assay_fun=function(x)

sub(paste@(pattern(), '\\.rds$'), '',

basename(x),
ignore.case=TRUE),

config

)

summarize.res.list 67

summarize.res.list Combine everything in the results list into a single table

Description

Combine everything in the results list into a single table

Usage
summarize.res.list(
res.list,
dds.list,
dds_mapping,
alpha,
1fc.thresh,
labels = NULL
)
Arguments
res.list Named list of lists, where each sublist contains the following names: c(res’,
’dds’, ’label’). "res" is a DESeqResults object, "dds" is either the indexing label
for the dds.list object or the DESeq object, and "label" is a nicer-looking label
to use. NOTE: backwards compatibility with older versions of lcdb-wf depends
on no dds.list object being passed.
dds.list List of DESeqDataSet objects whose names are expected to match ’dds’ slots in
the "res.list’ object
dds_mapping List mapping names of dds.list to res.list elements
alpha false-discovery rate threshold
1fc.thresh log2FoldChange threshold
labels list of descriptions for res.list elements
Value
Dataframe
Examples

n_genes <- 100

make mock dds list
dds_list <- list(main=DESeq2::makeExampleDESegDataSet(n=n_genes))

make mock results df
resl <- data.frame(
baseMean = runif(n_genes, 10, 1000),

68 sumovmod

log2FoldChange = rnorm(n_genes, 0, 2),
1fcSE = runif(n_genes, 0.1, 0.5),

stat = rnorm(n_genes, 0, 3),

pvalue = runif(n_genes, 0, 1),

padj = runif(n_genes, 0, 1),

symbol = paste@("GENE"”, 1:n_genes),
row.names = paste@("”gene”, 1:n_genes)

)

res2 <- data.frame(
baseMean = runif(n_genes, 10, 1000),
log2FoldChange = rnorm(n_genes, 0, 2),
1fcSE = runif(n_genes, 0.1, 0.5),
stat = rnorm(n_genes, 0, 3),
pvalue = runif(n_genes, 0, 1),
padj = runif(n_genes, 0, 1),
symbol = paste@("GENE"”, 1:n_genes),
row.names = paste@("”gene”, 1:n_genes)

)

make list of results

res_list <- list(
compl=resi,
comp2=res2

)

make dds mapping
dds_mapping <- list(compl="main', comp2='main"')

get summary
df <- summarize.res.list(res_list, dds_list, dds_mapping, alpha=0.1, lfc.thresh=0)

sumovmod Summary overview plot module

Description

UI & module to generate summary overview plots.

Usage

sumovPlotUI(id, panel, type = "")

sumovPlotServer(id, obj, config, type = "")

Arguments

id Module id

panel string, can be ’sidebar’ or *main’

top.genes
type string, if ’comp’ then show the comparison view
obj reactive Values object containing GeneTonic object
config reactive list with config settings

Value

UI returns tagList with plot UI server invisibly returns NULL (used for side effects)

Examples

library(shiny)

get enrichResult object
data(eres_dex, package='carnation')

convert to GeneTonic object
gt <- GeneTonic::shake_enrichResult(eres_dex)

obj <- reactive({
list(l_gs = gt$l_gs,
anno_df = gt$anno_df,
label = 'comp1')
»

config <- reactiveVal(get_config())

run simple shiny app with plot
if(interactive()){
shinyApp(
ui = fluidPage(
sidebarPanel (sumovPlotUI('p', 'sidebar')),
mainPanel (sumovPlotUI('p', 'main'))
),
server = function(input, output, session){
sumovPlotServer('p', obj, config)

3

69

top.genes Get top DE genes by log2FoldChange or adjusted p-value

Description

Get top DE genes by log2FoldChange or adjusted p-value

Usage

top.genes(res, fdr.thres = 0.01, fc.thres = @, n = 10, by = "log2FoldChange")

70 upsetmod

Arguments

res data.frame with DE analysis results

fdr.thres FDR threshold

fc.thres log2FoldChange threshold

n number of genes to return

by metric to determine top genes ("log2FoldChange’ or ’padj’)
Value

vector of gene symbols

Examples

get DE results
data(res_dex, package='carnation')

g <- top.genes(res_dex)

upsetmod Upset plot module

Description

Module UI & server to generate upset plots.

Usage

upsetPlotUI(id, panel)

upsetPlotServer(id, obj, plot_args, gene_scratchpad, reset_genes, config)

Arguments
id Module id
panel string, can be ’sidebar’ or *main’
obj reactive Values object containing carnation object
plot_args reactive containing ’fdr.thres’ (padj threshold) & ’fc.thres’ (1og2FC)

gene_scratchpad
reactiveValues object containing genes selected in scratchpad

reset_genes reactive to reset gene scratchpad selection
config reactive list with config settings
Value

Ul returns tagList with upset plot UL Server returns reactive with list containing upset table, inter-
sections & selected genes.

upsetmod

Examples

library(shiny)
oobj <- make_example_carnation_object()

obj <- reactiveValues(
dds = oobj$dds,
rld = oobj$rld,
res = oobj$res,
all_dds = oobj$all_dds,
all_rld = oobj$all_rld,
dds_mapping = oobj$dds_mapping

)
plot_args <- reactive({
list(
fdr.thres=0.1,
fc.thres=0
)
»
gene_scratchpad <- reactive({ c('genel', 'gene2') })

reset_genes <- reactiveVal()
config <- reactiveVal(get_config())

shinyApp(
ui = fluidPage(
sidebarPanel (upsetPlotUI('p', 'sidebar')),
mainPanel (upsetPlotUI('p', 'sidebar'))
),
server = function(input, output, session){
upset_data <- upsetPlotServer('p', obj, plot_args,
gene_scratchpad,
reset_genes, config)

Index

* internal
carnation-package, 3

add.set.column, 4
add_metadata, 5

alluvialmod, 6

alluvialServer (alluvialmod), 6
alluvialUI (alluvialmod), 6

carnation (carnation-package), 3
carnation-package, 3
check_user_access, 7

cnetmod, 8

cnetPlotServer (cnetmod), 8
cnetPlotUI (cnetmod), 8
create_access_yaml, 9

degmod, 10

degpatterns_dex, 12
dendrogramServer (dendromod), 12
dendrogramUI (dendromod), 12
dendromod, 12

distillmod, 14
distillPlotServer (distillmod), 14
distillPlotUI (distillmod), 14
dlmod, 15
downloadButtonServer (dlmod), 15
downloadButtonUI (dlmod), 15
dummy_genetonic, 16

emapmod, 17
enrich_to_genetonic, 18
enrichmapServer (emapmod), 17
enrichmapUI (emapmod), 17
enrichServer (funenrichmod), 21
enrichUI (funenrichmod), 21
eres_cell, 19

eres_dex, 19

format_genes, 20
fromList.with.names, 21

72

funenrichmod, 21

fuzzymod, 23

fuzzyPlotServer (fuzzymod), 23
fuzzyPlotUI (fuzzymod), 23

geneplotmod, 24

genePlotServer (geneplotmod), 24
genePlotUI (geneplotmod), 24
get_access_path, 28
get_config, 28

get_degplot, 29
get_gene_counts, 30
get_project_name_from_path, 31
get_upset_table, 32
get_y_init, 32
getcountplot, 26

gs_radar, 33

heatmapmod, 34

heatmapServer (heatmapmod), 34
heatmapUI (heatmapmod), 34
helpButtonServer (helpmod), 35
helpButtonUI (helpmod), 35
helpmod, 35

helpModal, 36

horizonmod, 37

horizonServer (horizonmod), 37
horizonUI (horizonmod), 37

in_admin_group, 39
install_carnation, 38
is_site_admin, 40

loadDataServer (loadmod), 40
loadDataUI (loadmod), 40
loadmod, 40

make_example_carnation_object, 42
make_final_object, 43
makeEnrichResult, 41

maplotmod, 44

INDEX

maPlotServer (maplotmod), 44
maPlotUI (maplotmod), 44
metadataServer (metamod), 45
metadataUI (metamod), 45
metamod, 45

my . summary, 46

patternPlotServer (degmod), 10
patternPlotUI (degmod), 10
pcamod, 47

pcaPlotServer (pcamod), 47
pcaPlotUI (pcamod), 47
plotMA.label, 49
plotMA.label_ly, 50
plotPCA.ly, 51
plotPCA.san, 52
plotScatter.label, 53
plotScatter.label_ly, 55

radarmod, 57

radarServer (radarmod), 57
radarUI (radarmod), 57
read_access_yaml, 59
res_cell, 59

res_dex, 60
run_carnation, 61
run_carnation(), 4

save_access_yaml, 63

savemod, 61

saveServer (savemod), 61

saveUI (savemod), 61
scattermod, 64
scatterPlotServer (scattermod), 64
scatterPlotUI (scattermod), 64
settingsmod, 65

settingsServer (settingsmod), 65
settingsUI (settingsmod), 65
summarize.res.list, 67
sumovmod, 68

sumovPlotServer (sumovmod), 68
sumovPlotUI (sumovmod), 68

top.genes, 69

upsetmod, 70
upsetPlotServer (upsetmod), 70
upsetPlotUI (upsetmod), 70

	carnation-package
	add.set.column
	add_metadata
	alluvialmod
	check_user_access
	cnetmod
	create_access_yaml
	degmod
	degpatterns_dex
	dendromod
	distillmod
	dlmod
	dummy_genetonic
	emapmod
	enrich_to_genetonic
	eres_cell
	eres_dex
	format_genes
	fromList.with.names
	funenrichmod
	fuzzymod
	geneplotmod
	getcountplot
	get_access_path
	get_config
	get_degplot
	get_gene_counts
	get_project_name_from_path
	get_upset_table
	get_y_init
	gs_radar
	heatmapmod
	helpmod
	helpModal
	horizonmod
	install_carnation
	in_admin_group
	is_site_admin
	loadmod
	makeEnrichResult
	make_example_carnation_object
	make_final_object
	maplotmod
	metamod
	my.summary
	pcamod
	plotMA.label
	plotMA.label_ly
	plotPCA.ly
	plotPCA.san
	plotScatter.label
	plotScatter.label_ly
	radarmod
	read_access_yaml
	res_cell
	res_dex
	run_carnation
	savemod
	save_access_yaml
	scattermod
	settingsmod
	summarize.res.list
	sumovmod
	top.genes
	upsetmod
	Index

