Fst The algorithm used in snpStats

David Clayton

May 21, 2025

F statistics for diversity of groups

There is a very large literature on this topic and the author does not claim any great expertise. The purpose of this vignette is simply to document the method of calculation implemented in snpStats.

We shall start by introducing some notation. Let:

- N_q Number of chromosomes in group g
- N_{sq} Number of chromsomes in group g observed for SNP s
- N_s Number of chromosomes observed for SNP s, all groups
- p_{sg} Allele (relative) frequency for SNP s in group g
- p_s Overall allele frequency for SNP s

and let:

$$Y_s = \frac{N_s}{N_s - 1} p_s (1 - p_s)$$
$$X_{sg} = \frac{N_{sg}}{N_{sg} - 1} p_{sg} (1 - p_{sg})$$
$$X_s = \sum_g W_g X_{sg}$$

where W_g are group-specific weights (see below).

The value returned for the F statistic for SNP s is

$$F_s = 1 - \frac{X_s}{Y_s} = \frac{Y_s - X_s}{Y_s}.$$

A natural combined value over all SNPs is obtained by summing numerators and denominators of the SNP-specific values Denoting summation by a + subscript,

$$F = \frac{Y_{+} - X_{+}}{Y_{+}},$$

which can also be written as a weighted mean of the SNP-specific values, with Y_s as weights:

$$F = \frac{1}{\sum_{s} Y_s} \sum_{s} Y_s F_s.$$

There appear to be two ways of looking at this index, leading to different weights when group sizes are unequal.

Pairwise differences

One rationale suggests that the index can be written

$$\frac{D_T - D_W}{D_T}$$

where D_T is the probability that two chromosomes, sampled at random from the total population, differ and D_W is the probability that two chromosomes, sampled at random from the same subpopulation, differ. For a single SNP, s, Y_s is an unbiased estimator for D_T and X_{sg} is an unbiased estimator for D_W within subgroup g. With this rationale, the weights, $\{W_g\}$ should reflect the numbers of distinct pairwise comparisons within each group:

$$W_g = \frac{N_g(N_g - 1)}{\sum_g N_g(N_g - 1)}$$

The analysis of variance

Another rationale would seem to be in terms of partition of the total variance, specifically the ratio of the between-group variance to the total variance (this seems to be the thrust of a series of papers by Cockerham). Y_s is then an unbiased estimate of the total variance of SNP s and X_{sg} is an unbiased estimator of its variance in group g. But the natural weights are then

$$W_g = \frac{N_g}{\sum_g N_g}.$$

(Cockerham also seems to have considered an unweighted analysis but that could be inefficient if group sizes differ substantially).

An example

Here we show the results of these calculations using the HapMap data discussed in other vignettes. These data were constructed by re-sampling individuals from two groups of HapMap subjects, the CEU sample (of European origin) and the JPT+CHB sample (of Asian origin), these groups being identified by the variable **stratum** in the subject support data frame.

We first use the pair-wise difference weights, first calculating the SNP-specific values, followed by the weighted average across all SNPs:

```
> data(for.exercise)
> f1 <- Fst(snps.10, subject.support$stratum, pairwise=TRUE)
> weighted.mean(f1$Fst, f1$weight)
```

[1] 0.06795229

We now compare this result with that obtained with the alternative (AOV) weights:

```
> f2 <- Fst(snps.10, subject.support$stratum, pairwise=FALSE)
> weighted.mean(f2$Fst, f2$weight)
```

[1] 0.06767651

Here there is little difference between the two values, since the group sizes are nearly the same:

```
> table(subject.support$stratum)
```

CEU JPT+CHB 494 506

In other cases the two weighting schemes could lead to different answers. In such situations, the preference of this author is for the analysis of variance weights and, accordingly, this has been set as the default action.